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Contribution au probléme linéaire
de flexion d'une plaque élastique ',

par L. BorrE, professeur a 1'Ecole polytechnique
de I’Université de Lausanne.

(Suite et fin)?

624.073.1

§ 8. Analyse de ces résultats.

Dans les formules établies la solution compléte du
probleme apparait comme une superposition de deux
solutions dépendant I'une du déplacement & contenu
dans 20 (2.3) et Pautre de la rotation w.

Mais bien que les fonctions Q0 et w satisfassent a
des équations (2.4 a et 2.4 b) distinctes, il n’est en général
pas possible de les déterminer séparément du fait qu’elles
sont liées par les conditions limites.

Nous retrouvons ainsi, mais mise sous une forme plus
simple et plus exacte la solution proposée en 1877 par
M. Lévy 2

La comparaison de nos résultats avec ceux de M. Lévy
montre que la correspondance est parfaite dans les
termes en w. Il suflit en effet de remplacer w dans nos

I

formules par — —z Pour retrouver avec Papproximation
3

m? > 10 les termes en Z des formules de M. Lévy. Cette
coincidence est d’autant plus remarquable que ce dernier
admettait une variation des contraintes sinusoidale ou
cosinusoidale en z. Remarquons encore que la solution

Y Voir Bulletin technique du 11 octobre 1947, p. 281,
2 Loc. cit.. pages 258 et suivantes.

en w apparait ici tout naturellement comme un élément
indispensable de la solution compléte du probléeme
alors qu’introduite par M. Lévy comme un «nouveau
cas particulier du probléme de I'équilibre d’un cylindre
élastique », elle semblait superposée, en quelque sorte
artificiellement, & la solution connue en & aux seules
fins de pouvoir satisfaire aux trois conditions de Poisson.

Quant aux termes en v ou 20 nous les trouvons en
accord presque aussi parfait avec les formules données
A.E.H. Love? flexion d’une
plaque selon un état généralisé de tension plane. La

par relativement a la
seule différence apparait dans le terme en Aw qui figure
au coté de s dans 'expression de Q0. Ce terme négligé

dans la théorie de Kirchhoff contient chez Love un

facteur 1 équi chez nous fait défaut. Pour v ==0,3

Perreur de 20 n’est que le 4 9% d’un terme le plus sou-
vent négligé.

A ces deux solutions correspondent aussi deux types
w=0 et W0

la plaque fléchit et de telle facon que dans un méme

de déformation bien distincts. Si
feuillet d’ordonnée z les composantes u = z¢ et ¢ =z}
du déplacement d’un point dérivent du potentiel 2
(formules 2.5). Nous dirons, pour cette raison, que la
flexion est dans ce cas trrotationnelle. St par contre
A =0 et wz£0 la plaque ne fléchit pas et la défor-
mation est plane; elle se réduit & de simples distorsions
sans dilatation des divers éléments d’un méme feuillet.

Remarquons enfin que dans les expressions des dévia-
tions et des efforts les termes en QU sont identiques &

1 Theory of Elasticity, § 3C4
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ceux en ¢ dans les expressions correspondantes de la
théorie classique et que ces deux fonctions satisfont 2
la méme équation indéfinie. Des lors, si la flexion est
irrotationnelle et st le déplacement w n’apparait pas expli-
citement dans les conditions limites, les deux théories
donneront les mémes valeurs des déviations et des efforts,

seul le déplacement sv sera différent.

§ 4. Equations et formules en coordonnées polaires.
Les équations
AAQD — P
N
et

i A0

W= YP'—

restent inchangées & condition d’écrire ici le laplacien
sous la forme

A )=

() 1)  1&()
o Rl = 2082
Rapportant la déviation de la génératrice et les efforts

au systeme d’axes r, 6, nous aurons successivement :

| I R Jw
i *= ") TE T
y - 1920 k2 Jw l
b=l m s |
( (72@(’ /1 JPw 1 Jdw ;
. 0 [ ) R | e i i
. ; VAT {1~V ar? v) 5 <r arde 1 de >
N A (20 (L Pw 1 dwyy
=~ (A A =) or? (Bt 5\r dJdrdo r2de /)
1 1 72220 1 020 h JPw
i ( B ) ;1/7 /6 o 1—2— ()9 e (}I
J (AW) Jw
- 75 L
i T or + (1 %) r()es
L 1 Q(A“L’) ) dw
s = e —(17\’)%

§ 5. Applications a la plaque circulaire pleine.

A. Flexion irrotationnelle suivant une surface de

révolution.

Iei deux conditions limites suflisent a déterminer la
fonction 20 de la seule variable . Comme ces deux
conditions sont, dans les modes d’appui courants, indé-
pendantes de la valeur du déplacement s sur le bord,
nous savons que nos formules n’apporteront que dans
la valeur de la fleche un terme correctif représentant
Pinfluence de I'effort tranchant. Pour une plaque chargée
uniformément, par exemple, Paugmentation de la fleche
totale vaut

g plt2h? 3 ph?
“T20(1—wWN 10 Gh

quelles que soient les conditions sur le bord extérieur.

Voici par contre un probléme qui n’admet aucune
solution dans la théorie habituelle. 11 s’agit d’une plaque
(fig. 5a) chargée, sur le bord extérieur de rayon a, par
un effort tranchant ¢, = P constant et s’appuyant sur
une couronne de galets disposés sur une circonférence
concentrique de rayon b. Il est clair que la partie cen-
trale de la plaque aura tendance a se soulever et nous
nous proposons de trouver la pression p(r) qu’il faudrait
exercer sur cette partie de la plaque pour I'empécher
de se soulever et quelle serait dans ces conditions la
réaction unitaire X des galets.

) e |
| P{")

N

7 N
v X \

P

b) —m,(&tx:J)

|
= ¥ A
= ‘
d)
=== ]
Fig. 5.
a) Plaque circulaire chargée sur le bord extérieur

et maintenue plane dans sa partie centrale.
c) et d) Systéemes de plaques hyperstatiques.

c)

Cr

Dans la théorie de Kirchhoff I'annulation du dépla-
cement ¢ pour toute valeur de r << b implique p(r) =0, ce
qui n’est évidemment pas une solution. Par contre,
selon nos formules la condition w =0 conduit a choisir
p(r) de fagon a annuler simplement le terme de charge

de Péquation (2.1), c’est-a-dire & poser :

V51—V

plr) = :

Po o (1INy7) A=
po désignant une constante arbitraire et J, la fonction

de Bessel d’ordre zéro. Des lors

ap — P oo
W = )\;’QOV I (A1)
et par conséquent
P = )\f}% 1J; () r— f—l" Wy (M) =\N -9

m,:—p—o[ (t\y ))+

Vi e
N2 o lJl(L)\ll)J

Les valeurs de p, et de la réaction X\ se déduiraient des

conditions limites relatives aux deux régions de la

plaque. Cependant la détermination exacte de ces gran-

deurs n’offrant aucun intérét, on peut, avec une approxi-
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mation suffisante, considérer la couronne extérieure | 2K . 1—v
. , s | w=0 =0 J=—""00J, (M) t=——NN\-{
comme sensiblement encastrée sur son bord intérieur | J A 2
et déterminer le moment d’encastrement correspondant. \ : -
La derniére formule fera alors correspondre & ce moment | my = — (1 —v) NK, [Jo (eNr) + Y 1 Jy (”‘")}
une valeur approchée de p, et la réaction unitaire X l
s’écrira \ Les contraintes maximum calculées par les for-
| mules
- a . . ‘
X=tipr9g—to—o="P ) —po iJ1(IMD) \ o Bmu o 3t
[ L h? 920k
ou, si 'on néglige au second membre le premier terme, et rapportées 2 la contrainte T, agissant sur le bord

en général petit

A m,

XDty = ’ (\b) H

f(\;b) désignant ici I'expression

Sy (N A —v
Fd) =rrmn T e

Pour N\ b > 10, c¢’est-a-dire ]; > 5.5, f(\p)2—1 et
)

par conséquent

m,

NJ
h h

2m,

X\ my=— \"_5 (1fv5

Tout se passe donc, au point de ¢ue statique, comme
si le moment d’encastrement m, était équilibré uniquement
par deux réactions agissant en sens contraire sur les bords

- . h
d’un anneau sans rigidité tangentielle et de largeur =
(fig. 5b).

ol = . e, S, S !
Si —=0,5 on trouverait X = 7,75F 7 soit envi-
a

ron huit fois la valeur qu’aurait la réaction si la pla-
que reposait librement sur I'appui. Cet exemple per-
véritables
Un
nature perpendiculaire a la plaque, et se composant

met de se faire une idée des pressions

existant dans un encastrement. effort de méme
ici avec un effort horizontal, apparaitrait aussi dans la
soudure du systéme représenté par la figure 5e. Dans
le systéme retourné par contre (fig. 5d), la soudure
n'aurait plus & transmettre que Ueffort horizontal car
les deux plaques pourraient prendre alors des courbures
opposées correspondantes aux moments qui les solli-

citent.,

B. Déjormation plane.

Considérons une plaque chargée par un moment de
torsion m, =— M constant agissant sur tout élément
du cylindre contournant. Il est clair que la théorie de
Kirchhoff est ici encore en défaut puisque Peffort tran-
chant équivalent & une telle distribution des couples de
torsion s’annule en tout point. Nous pouvons par contre

satisfaire & toutes les conditions du probléme en posant :

QA =0 w == K Jj(tkr)

d’on résulte

sont représentées en fonction d dans la figure 6.

==l
R

Fig. 6. — Contraintes engendrées dans une plaque
circulaire par un moment de torsion uniforme
sur le bord.

L’épaisseur relative de la plaque vaut ici

l—l — —1: ~ 0,316. La contrainte 1/ est partout sensi-
R 10 !

blement égale en valeur absolue A la contrainte T
A une distance du bord égale & Iépaisseur de la plaque
ces contraintes ont & peine le dixieme de leur valeur
sur le bord.

C..Cas
Le probleme de

général de déformation.

la flexion d’une plaque circulaire
pleine sollicitée sur sa périphérie par trois efforts donnés
peut étre résolu complétement & l'aide des sommes sui-
vantes de solutions particuliéres des équations: (2.4)

B :
Q0 = ay + byr2 + E [(an + bar?) 1™ cos n0 + (ca+dp r¥)r* sin nGJ
n=1

el

w= Ky Jo (i) + N T (i0) (Ku cos n0 + Ly sin no).

n=1

En effet les constantes arbitraires figurant dans ces

sommes sont en nombre justement suflisant pour

permettre de développer en séries de Fourier trois
fonctions arbitrairement données sur le bord. Cependant
afin de comparer, sans de trop longs calculs, nos résultats
avece ceux de la théorie de Kirchhoff, nous choisirons
les efforts sur le bord de facon & ce que chacun de ces




296

BULLETIN TECHNIQUE DE LA SUISSE ROMANDE

Mode de charge.

t, =0
m =0
m, = mcos28

+10t- -

lo282/ ™

m_ f

Mode de charge -

m=0
mAEO

t = —Rfl cos 28

= 0316

=T

h
R 0

~

[ 0300/,

OOOSZ)O/R_‘/r cos 28

<

=

Fig. 7.
T ,£R£=1
'raR
/ﬁ ""f
- - &=0
\\ /_Vi J. 089
\\
we = +_ 023 007 I'" Fcos 28
x) 0216 025

Eig. 9.

Comparaison, selon nos formules (w¢ et courbes

en trait plein) et selon celles de Kirchholl (w

Mode de charge : = =
T o
t,=0 { 1

m, =0

Yl .
M=777

my = m sin 2&

ol = _mJ[o416 070__ 2
R "V - 0% //0433 0050/ 77 Teos 28
R —

Fig. 8.
Mode de charge: Conditions limites de Kirchhoff
m
= AL
m, =0 m,=0 . ——é—Ra =0
tom —%ﬂcos&? Solution identiquement nulle
my=msin2& %”}
B S L m Jfooss] , [0032
R =T = 09 =+ /(0) (0) /r'coszc?
04 06

+0,&‘r~>-»—<-— Setpe et

+02 -

10.

Fig.

et courbes

pointillées), de I'état élastique d’une plaque circulaire sollicitée sur le hord par

10

20

3o

40

un moment fléchissant m, = m cos 20 (fig. 7);
un moment de torsion mu = msin 20 (fig. 8);
un effort tranchant ¢, = %cos 20 (fig. 9);
, ‘ 2m
le mode composé my = msin 20 et /, = R cos 20

¢quivalent a zéro dans la

développements se réduise & un seul terme (en cos 20

ou en sin 20).

(fig. 7, 8, 9),

Dans les exemples numériques traités
nous considérons séparément les effets

élastiques engendrés par chacun des efforts m,, my, t
agissant sur le bord. L’¢paisseur relative de la plaque

a toujours

la méme valeur

h
R

1
Vv 10

Tous

~ 0,316.

les modes de charge étant proportionnels soit a cos 20
ou & sin 20 il suffit de représenter les contraintes, en

théorie de KirchhofY (fig. 10).

4

R

fonction du rayon -, pour les seules valeurs 0 et

de la variable 6.

Dans chaque mode de charge les valeurs des con-
a contrainte maximum
Les courbes pointillées corres-

traintes sont rapportées la
appliquée sur le bord.
pondent aux résultats donnés par la théorie de Kirchhofl.
Constatons en premier lieu la trés bonne approximation
moyenne donnée ici encore, et malgré la forte épaisseur

de la plaque, par cette simple solution. L’écart n’est
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important qu’au voisinage du bord. Cependant comme
une légere différence (10 9%, environ) subsiste méme au
centre de la plaque on ne peut prétendre ici, en toute
rigueur, que les modifications apportées a la solution
connue par lintroduction des termes en w, s’effacent
nécessairement comme ces termes eux-mémes & une faible
distance du bord. La représentation graphique du
déplacement % n’offrant aucun intérét nous donnons
simplement en regard de chaque figure son expression
calculée par les deux théories (les coefficients du haut
correspondent & la solution compléte, ceux du bas a
celle de Kirchholf).

Dans le dernier exemple (fig. 10) les efforts sur le
bord ont été choisis de facon a obtenir une solution
identiquement nulle dans la théorie habituelle. Nos
formules par contre donnent encore un faible déplace-
ment s et des contraintes ne disparaissant pas tota-
lement dans la partie centrale de la placue.

§ 8. Autres applications.

Nous n’étudierons pas ici les modifications que nos
formules introduisent dans les théories de la stabilité
et des vibrations ; nous montrerons simplement encore,
dans un seul exemple, qu’elles permettent d’analyser
la déformation de la plaque méme au voisinage d’un
point singulier du contour.

Aucune formule, & notre connaissance, n'a été donnée
jusqu’ici pour représenter, ne serait-ce qu’approxima-
tivement, ce qui se passe dans I'angle d’une plaque
carrée appuyée ou encastrée et chargée uniformément.
On sait seulement que I'angle de la plaque se souléve
si celle-ci est simplement appuyée, mais on ne sait a
quelle distance du sommet s’établit le premier contact
avec I'appui.

Le cas particulier représenté dans les figures 1la-c
illustre ce phénomene et donne probablement une valeur
approchée de cette distance. Il s’agit d’un secteur droit
chargé uniformément et libre de toute action sur ses
cotés rectilignes. Ces conditions sont exactement celles
qui régnent jusqu'au contact de Iappui, dans l'angle
relevé de la plaque carrée envisagée.

En admettant que la flexion est irrotationnelle au
voisinage du sommet de ce secteur, on peut satisfaire
aux conditions données sur les deux cotés en posant
simplement :

Qv — prt | 3 _ 1 4 3v

/
08 4
199N ) Ty S by

d’oit résulte le déplacement élastique
) ; . 4
w —’———‘ 3(1-v)-(1+3v)cos40| rt ~112r2<

qui sur les deux bords prend la valeur

48
[)4?‘\. (1 4 2 p2 g2

[ S — 29\ )4
Y=ma—wN)“© o

Cette derniére équation montre que la courbe méridienne

Flexion irrotationnelle
d'un secteur droit

Libre de toute action sur ses cotés

100;

200,
rectilignes , et chargé uniformément

320

Fig. 11. — Essai de représentation de D'état élastique dans
I'angle relevé d'une plaque carrée chargée uniformément et
librement appuyée le long de ses cotés.

de la surface ¢lastique, sur les bords du secteur, présente

un point d’inflexion J, & la distance
2

BA) oyt

V5 (1—3v)

En faisant tourner le secteur autour de la droite J, — J

~ 2,86 & pour v=(0,3).

wiy

jusqu’a ce que les tangentes aux courbes méridiennes en
ces deux points d’inflexion deviennent horizontales nous
ameénerons ce secteur dans une position ou il aura un
contact du deuxiéme ordre avec un appui horizontal.
On peut donc admettre, dans ces conditions, que notre
secteur représente approximativement I'état élastique
régnant dans angle relevé d’une plaque carrée, et dans
cette hypothese I'abscisse donnée par (5.1) serait une

valeur approchée de la distance au sommet du premier
point de contact avec Pappui. La figure 1la est une
projection cotée de la surface élastique. La figure 110
reproduit quelques méridiennes de cette méme surface
et dans la figure 11c¢ nous avons reporté les diverses
contraintes en fonction de 6.

§ 7. Application de la méthode précédente a la
résolution du probléme de la torsion.

Les éléments géométriques utilisés pour représenter
la plaque élastique permettent de représenter aussi
'état déformé de la tranche d’un prisme droit soumis
4 la torsion simple. Pour retrouver les formules de
Saint-Venant, il suflira done de généraliser nos résultats
en admettant la présence de forces tangentielles agissant
dans les feuillets superficiels de la plagque. Nous pouvons

ici supposer ces forces antisymétriques par rapport au
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feuillet moyen, ce qui revient a4 admettre que 1’élément
recoit, en plus d’une charge spécifique normale p(zy),
Paction d’un couple spécifique vertical u(zy) dont les
composantes paralleles aux plans zz et zy auront les
valeurs

Mz = hT.z et u, = h1y;

Tz et Tz désignant ici les composantes de 'action
spécifique tangentielle exercée sur le feuillet superficiel
Z2= 4+ =.

"2

Les équations d’équilibre d’un élément intérieur s écri-

vent done

dmz  Imy, dmy,  Imy, dy Ny

a0 =tz_.r'—— — My a5 - = P
n dy ¥ H dy s ™ Ty P

Jdr

tandis que celles relatives & un élément du contour
restent inchangées. Dans 'expression de la loi de Hooke,
seule la valeur de la constante %k devrait étre modifiée
et choisie ici égale & un. Nous nous bornerons & repro-
duire les seules formules dont nous aurons besoin dans
la résolution de notre probléme particulier.

Les expressions sulvantes subsistent sans changement :

/ | / |
:Q_qa ‘)_f e dIy_ % W=gpw— 2
de " Jdy 2\dz oy A3
Jo (M e
(71) mz—N (Z}‘ -V @) I)Iy——l\ (@ +V(}—:L->
1=y () Je
may=—"5" g+ %

Des équations d’équilibre et de la loi de Hooke nous
tirons comme précédemment, mais avec les valeurs
12 6 (1—v)

)\2 = h_2 et )\% == h2

qui correspondent a k= 1,

B [{7@0 Row 1 ]

( w16 Jy “ente

)

L [9w Raw 1

, A VR A
, S
\ e + Aw NN’

dont découle par élimination

. A9 & L(r)uz " r/P‘y)

(
6h\ dv ~ dy
(7.3) S
/ Aw —\2 _._6_ é,)“ - dﬁ’)
\ S Gh? (/; v

Quant aux efforts tranchants ils deviennent :
en un point intérieur

de Jw de Jw
b=V (=G e 4= (S 1))+

|

et sur le bord

[ P
(7.4) tn = N <(7—:— (1—v) 7‘:) + Mn-

Désignant ici par 6 'angle spécifique de torsion, nous
devons, conformément & 'hypothése habituelle de défor-
mation, poser :

= bz

-

¢=—0y
d’on résulte immédiatement (formules 7.1)
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puis avec p = 0 (formules 7.2)
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Les équations 7.3 donnent enfin
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Revenant aux contraint = M — M t
aux contraintes 1., = 7, Tw=7 e
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on satisfait identiquement & Iéquation (7.6) a), alors
que (7.6 b) devient

A = —2G6.
La condition 7.4 se réduit, puisque t, = 0, a
(7.7) i = htn =0
ou encore &

Des lors la fonction @, dont dérivent les composantes
Tz et 7., de la contrainte tangentielle, se trouve ainsi
parfaitement définie,

Quant au gauchissement de la section, il est donné
par le déplacement w, solution de Déquation (7.5 ¢)
Aw = 0 et satisfaisant & la condition limite :

dw ey
—dy — — dv — 0 (ydy + x dx) = 0.
Jx dy

Nous retrouvons ainsi exactement les résultats établis

par Saint-Venant.

Errata. — Le lecteur voudra bien corriger les erreurs
typographiques suivantes relevées dans la  premiere
partie du présent article (Bulletin technique du 11 octo-
bre 1947) :

Page 284, 2¢ colonne, remplacer N par A} dans les
formules des 8¢ et 9¢ lignes depuis le bas et N\ par \

dans le dernier terme de la formule (2.3).
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