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Contribution au problème linéaire

de flexion d'une plaque élastique1,
par L. Bolle, professeur à l'Ecole polytechnique

de l'Université de Lausanne.

(Suite et fin)1
C21.073.1

§ 3. Analyse de ces résultats.
Dans les formules établies la solution complète du

problème apparaît comme une superposition de deux
solutions dépendant l'une du déplacement w contenu
dans W (2.3) et l'autre de la rotation uu.

Mais bien que les fonctions W et uj satisfassent à

des equatiftjft (2.4 a et 2.4 b) distinctes, il n'est en général
pas possible de les déterminer séparément du fait qu'elles
sont liées par les conditions limites.

Nous retrouvons ainsi, mais mise sous une forme plus
simple et plus exacte la solution proposée en 1877 par
M. Lévy2.

La comparaison de nos résultats avec ceux de M. Lévy
montre que la correspondance est parfaite dans les

termes en uj. Il suffit en effet de remplacer uj dans nos

I i i2z ¦ ¦formules par r-g- pour retrouver avec 1 approximation

Tta Ç^ 10 les termes en Z des formules de M. Lévy. Cette
coïncidence est d'autant plus remarquable que ce dernier
admettait une variation des contraintes sinusoïdale ou
cosinusoïdale en z. Remarquons encore que la solution

1 Voir Bulletin technique du 11 octobre 1947, p. 281.
2 hoc. cit.. pages 258 et suivantes.

en uu apparaît ici tout naturellement comme un élément

indispensable de la solution complète du problème
alors qu'introduite par M. Lévy comme un « nouveau
cas particulier du problème de l'éqAibre d'un cylindre
élastique », elle semblait superposée, en quelque sorte
artificiellement, à la solution connue en w aux seules

fins de pouvoir satisfaire aux trois conditions de Poisson.

Quant aux termes en w ou ^ nous les trouvons en
accord presque aussi parfait avec les formules données

par A. E. H. Love1 relativement à la flexion d'une

plaque selon un état généralisé de tension plane. La
seule différence apparaît dans le terme en Aw qui figure
au côté de w dans l'expression de ^V. Ce terme négligé
dans la théorie de Kirchhoff contient chez Love un

v _ _facteur 1 + tt qui chez nous fait défaut. Pour v 0,3
o

l'erreur de "5C n'est que le 4 % d'un terme le plus
souvent négligé.

A ces deux solutions correspondent aussi deux types
de déformation bien distincts. Si uu 0 et 9lV ^z£ 0

la plaque fléchit et de telle façon que dans un même
feuillet d'ordonnée z les composantes u zy et c »I»

du déplacement d'un point dérivent du potentiel W
(formules 2.5). Nous dirons, pour cette raison, que la
flexion est dans ce cas irrotationnelle. Si par contre
^C =0 et uj ^z£ 0 la plaque ne fléchit pas et la défor»

mation est plane ; elle se réduit à de simples distorsions

sans dilatation des divers éléments d'un même feuillet.
Remarquons enfin que dans les expressions des déviations

et des efforts les termes en QV sont identiques à

1 Theory of Elasticity, $ 304
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ceux en w dans les expressions correspondantes de la
théorie classique et que ces deux fonctions satisfont à

la même équation indéfinie. Dès lors, si la flexion est
irrotationnelle et si le déplacement w n'apparaît pas
explicitement dans les conditions limites, les deux théories
donneront les mêmes valeurs des déviations et des efforts,
seul le déplacement w sera différent.

§ 4. Equations et formules en coordonnées polaires.

Les équations

PAA^ N
10

Auj -rx- uj
h*

et

w W — f- AW

restent inchangées à condition d'écrire ici le laplacien
sous la forme

A( *( i^( 1 *{
dr* r dr + r2 d&*

Rapportant la déviation de la génératrice et les efforts
SlpBsystème d'axes r, 6, nous aurons successivement :

__
I dr '5 rdQ

j
1 dW_ A2 _Au_

\ r dQ 5 Jr

.?W i. SA2/1 <?2uj 1äi\mr=-W> VAW+(1-V)—7-5- +(1-V)-=-(-• T-rr s ^
m,--JN

dr

d2W

0 \T

h2 /l ^2
riA^_(1_v)__(1_v).5 _.___,

1 <?UJ

mr( (l -v)Ar -—— —-5^- + uj

Ar(<?(A$e>)

5 A*

<?UJ

'ri
t r dQ

<?UJ

2F1

§ 5. Applications à la plaque circulaire pleine.

A. Flexion irrotationnelle suivant une surface de

révolution.

Ici deux conditions limites suffisent à déterminer la
fonction ^P de la seule variable r. Comme ces deux
conditions sont, dans les modes d'appui courants,
indépendantes de la valeur du déplacement w sur le bord,
nous savons que nos formules n'apporteront que dans
la valeur de la flèche un terme correctif représentant
l'influence de l'effort tranchant. Pour une plaque chargée
uniformément, par exemple, l'augmentation de la flèche
totale vaut

p/?2Aa 3 PRZ
10 Gh

f,
20 (1 — v) N

quelles que soient les conditions sur le bord extérieur.

Voici par contre un problème qui n'admet aucune
solution dans la théorie habituelle. Il s'agit d'une plaque
(fig. 5a) chargée, sur le bord extérieur de rayon a, par
un effort tranchant tr P constant et s'appuyant sur
une couronne de galets disposés sur une circonférence
concentrique de rayon b. Il est clair que la partie
centrale de la plaque aura tendance à se soulever et nous
nous proposons de trouver la pression p(r) qu'il faudrait
exercer sur cette partie de la plaque pour l'empêcher
de se soulever et quelle serait dans ces conditions la
réaction unitaire X des galets.

Z9

\LM

^^ ^

b) -m,<4

c)

d)

P1)

1

£ ^
Fig. 5.

a) Plaque circulaire chargée sur le bord extérieur
et maintenue plane dans sa partie centrale.

c) et d) Systèmes de plaques hyperstatiques.

Dans la théorie de Kirchhoff l'annulation du
déplacement w pour toute valeur de r^ b implique p(r) S 0, ce
qui n'est évidemment pas une solution. Par contre,
selon nos formules la condition wEEiO conduit à choisir
p(r) de façon à annuler simplement le terme de charge
de l'équation (2.1), c'est-à-dire à poser :

Sf 5(1p{r) * p0 J0 (i\xr)

p0 désignant une constante arbitraire et J0 la fonction
de Bessel d'ordre zéro. Dès lors

PoW/) r-_0_ T i:\
\fN J°[lKir)

et par conséquent

9 *pl'Jl {iKr) tr xjiJl {ikir) x?iV'9

mr=z~ij[J°{ikl r) + ÉÉil Jl(lV)

Les valeurs de p2 e* de la réaction X se déduiraient des
conditions limites relatives aux deux régions de la
plaque. Cependant la détermination exacte de ces
grandeurs n'offrant aucun intérêt, on peut, avec une approxi-
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mation suffisante, considérer la couronne extérieure

comme sensiblement encastrée sur son bord intérieur
et déterminer le moment d'encastrement correspondant.
La dernière formule fera alors correspondre à ce moment
une valeur approchée de p0 et la réaction unitaire X
s'écrira

X ^ (ft + e) <r(6-6) =j P. P0 «Jl (*M)

ou, si l'on néglige au second membre le premier terme,
en général petit

X^à— trib(» - E)

X] m,

f(Kjb) désignant ici l'expression

J0 (iXjft) 1 — v
/(M>) iJ1(i\1b)

' \tb

Pour Xj^è^lO, c'est-à-dire, >• 5.5, /(Xjè) 1 et

par conséquent

X -^ — X] rrir — \f 5 (1 — v)
mr 'Mir

Tout se passe donc, au point de vue statique, comme

si le moment d'encastrement mr était équilibré uniquement

par dieux réactions agissant en sens contraire sur les bords

d'un anneau sans rigidité tangentielle et de largeur -^

(fig. 5b).

r.- b _ _ _ __ _ fl
Si - 0,5 on trouverait A T,lbP T soit envi-

a b

ron huit fois la valeur qu'aurait la réaction si la plaque

reposait librement sur l'appui. Cet exemple
permet de se faire une idée des véritables pressions

existant dans un encastrement. Un effort de même

nature perpendiculaire à la plaque, et se composant
ici avec un effort horizontal, apparaîtrait aussi dans la
soudure du système représenté par la figure 5c. Dans

le système retourné par contre (fig. 5d), la soudure

n'aurait plus à transmettre que l'effort horizontal car
les deux plaques pourraient prendre alors des courbures

opposées correspondantes aux moments qui les •

sollicitent.

B. Déformation plane.
Considérons une plaque chargée par un moment de

torsion mrt M constant agissant sur tout élément
du cylindre contournant. Il est clair que la théorie de

Kirchhoff est ici encore en défaut puisque l'effort
tranchant équivalent à une telle distribution des couples de

torsion s'annule en tout point. Nous pouvons par contre
satisfaire à toutes les conditions du problème en posant :

<3C> 0 K0 J0 {i\r)

0 9 0 A T^iJi {ihr) U » Nh*-d,
X 2

mn — (1 — v) NK0 J0 (ikr) + r-iJx (iXr)
Kr

Les contraintes maximum calculées par les

formules

t:,=
6m,i t» — -h' ~ 2h

et rapportées à la contrainte tL agissant sur le bord

sont représentées en fonction de -=- dans la figure 6.

O <& <#i

io

Q8

06
T' + CU

±oz

t:>«
oj,

06

TJ -06
-(O

Fig. 6. — Contraintes engendrées dans une plaque
circulaire par un moment de torsion uniforme

sur le bord.

la plaque vaut iciL'épaisseur relative de

-Fr ,— £â 0,316. La contrainte t? est partout sensi-
R \Jio~ '

blement égale en valeur absolue à la contrainte t«.
A une distance du bord égale à l'épaisseur de la plaque
ces contraintes ont à peine le dixième de leur valeur
sur le bord.

C. Cas général de déformation.
Le problème de la flexion d'une plaque circulaire

pleine sollicitée sur sa périphérie par trois efforts donnés

peut être résolu complètement à l'aide des sommes
suivantes de solutions particulières des équations : (2.4)

W

et

UJ

• a0 + brfr*+ V I (0«+ 6i»r*) r* cos nB + (c» + dn r^r* sin n6 I
n—1

KaJo J0 (i\r) -\- V J„ (iXr) (Kn cos nQ -\- Ln sin ?iG

£sulte

En effet les constantes arbitraires figurant dans ces

sommes sont en nombre justement suffisant pour
permettre de développer en séries de Fourier trois
fonctions arbitrairement données sur le bord. Cependant
afin de comparer, sans de trop longs calculs, nos résultats

aveo ceux de la théorie de Kirchhoff, nous choisirons
les efforts sur le bord de façon à ce que chacun de; ces
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Mode de charge "F"
5m

'(«•«J
O

m.m., s o

».>**2dm, - m coi

089

1

"m Kr+iTëss+lssin*"2*
HO»IP

8-0
œ,e OS*

'0.6*C.6

*fti «M»ft« r,.,
X. Tr f0.2•V

T-02 *,' „ai"/« »W"»r
•a« w

-0.6-0.6

-O.S

-W

ftforfe de charge

t, - 0

m, eO

A _ 1

6mr: 7F
».?

&-$¦

-n;

'7F" Z0-31B W' .- JU.J[M16f_[0-070ljïlr'cQs 2d-WW W]f0-433J WoSOjR'r
C0$ ^

&*0 H.OrB-4-

^MOt—V?06 -t--:
-t-î-'W

»04

02 t-
ï/a

2ê=^

•a -0.2-
5C?..L

m ;. Semm-L
M-

tw
-10

Fig. 7.

Afode rfe charge:

ms 0

tr--£-cos2&

¦£---~~0 316

r -3^->

4»=0

ßr° 89

H" -+4- f™6l- a019Mr'cos2&
M »f 10716J (T02S R*f

8=0 œz&i ï"
ÇmL.Lw

%hrt^
il r K- M 06 n r

a? o.«

<m
-2

%'Sl'JS
&_'

Fig. 9.

Mode de charge:

mrmO

trm2Mcos2»

0316

Conditions limites de Kirchhoff

m, 0 t.- feV a 0

Solution identiquement natte

W .+E.JfOOSSf. f0032fjr*lr'COS2»wm '*¥]( io)J+ (o) Jwfrcos2erR fW
0.4 o.6 as 1 02 0« 0.6 | o.srrra

r.'
?,'.a? h »ft?l-

-0.2

sr:

U1.0 .1. J. I j
0.« 06 0.4 06

Fie. 10.

Comparaison, selon nos formules (we et courbes en trait plein) et selon celles de Kirchhofe (wA- et courbes
pointillées), de l'état élastique d'une plaque circulaire sollicitée sur le bord par

1° un moment fléchissant n^ m cos 26 (fig. 7) ;

2° un moment de torsion mH, m sin 26 (fig. 8) ;

3° un effort tranchant tr 4 cos 26 (fig. 9) ;

4° le mode composé rar( m sin 26 et tT
R

équivalent à zéro dans la théorie de Kirchhnff (fig. 10).

développements se réduise à un seul terme (en cos 26

ou en sin 28). Dans les exemples numériques traités

(fig. 7, 8, 9), nous considérons séparément les effets

élastiques engendrés par chacun des efforts mr, mrt, tr

agissant sur le bord. L'épaisseur relative de la plaque

i a
h 4

a toujours la même valeur B */l0
~ 0,316. Tous

les modes de charge étant proportionnels soit à cos 26

ou à sin 26 il suffit de représenter les contraintes, en

fonction du rayon •=, pour les seules valeurs 0 et yR pwW 4
de la variable 6.

Dans chaque mode de charge les valeurs des con*

traintes sont rapportées à la contrainte maximum

appliquée sur le bord. Les courbes pointillées
correspondent aux résultats donnés par la théorie de Kirchhoff.
Constatons en premier lieu la très bonne approximation

moyenne donnée ici encore, et malgré la forte épaisseur
de la plaque, par cette simple solution. L'écart n'est



BULLETIN TECHNIQUE DE LA SUISSE ROMANDE 297

important qu'au voisinage du bord. Cependant comme

une légère différence (10 % environ) subsiste même au

centre de la plaque on ne peut prétendre ici, en toute

rigueur, que les modifications apportées à la solution

connue par l'introduction des termes en uj, s'effacent

nécessairement comme ces termes eux-mêmes à une faible

distance du bord. La représentation graphique du

déplacement w n'offrant aucun intérêt nous donnons

simplement en regard de chaque figure son expression

calculée par les deux théories (les coefficients du haut
correspondent à la solution complète, ceux du bas à

celle de Kirchhoff).
Dans le dernier exemple (fig. 10) les efforts sur le

bord ont été choisis de façon à obtenir une solution

identiquement nulle dans la théorie habituelle. Nos

formules par contre donnent encore un faible déplacement

w et des contraintes ne disparaissant pas
totalement dans la partie centrale de la plaque.

§ 6. Autres applications.

Nous n'étudierons pas ici les modifications que nos

formules introduisent dans les théories de la stabilité

et des vibrations ; nous montrerons simplement encore,
dans un seul exemple, qu'elles permettent d'analyser
la déformation de la plaque même au voisinage d'un

point singulier du contour.
Aucune formule, à notre connaissance, n'a été donnée

jusqu'ici pour représenter, ne serait-ce qu'approximativement,

ce qui se passe dans l'angle d'une plaque
carrée appuyée ou encastrée et chargée uniformément.
On sait seulement que l'angle de la plaque se soulève

si celle-ci est simplement appuyée, mais on ne sait à

quelle distance du sommet s'établit le premier contact

avec l'appui.
Le cas particulier représenté dans les figures lla-c

illustre ce phénomène et donne probablement une valeur

approchée de cette distance. Il s'agit d'un secteur droit
chargé uniformément et libre de toute action sur ses

côtés rectilignes. Ces conditions sont exactement celles

qui régnent jusqu'au contact de l'appui, dans l'angle
relevé de la plaque carrée envisagée.

En admettant que la flexion est irrotationnelle au

voisinage du sommet de ce secteur, on peut satisfaire

aux conditions données sur les deux côtés en posant
simplement :

i5Jf) _ b192 N i -
d'où résulte le déplacement élastique

L±AV co9 46 j
- v S

P \
192(l-v)iV? 3(1 v)-(l + 3v)cos48 r

48
5
~h2r2'

qui sur les deux bords prend la valeur

P_*2(l-3v)r«-5A«r»|.- v A ' v o S192 (1 — v)

Cette dernière équation montre que la courbe méridienne

i3 ?-0

êr

mmm

o)

100

>:o

—A—*^K)

Flexion irrotationnelle
d'un secteur droit

Libre de toute action sur ses cotes

rectilignes, et chargé uniformément

Fig. 11, —¦ Essai de représentation de l'état élastique dans
l'angle relevé d'une plaque carrée chargée uniformément et

librement appuyée le long de ses côtés.

de la surface élastique, sur les bords du secteur, présente

un point d'inflexion J0 à la distance

2A
(5.1)

v/5(l —3v)
^2,86 h pour v= (0,3).

En faisant tourner le secteur autour de la droite J0 — </„.

jusqu'à ce que les tangentes aux courbes méridiennes en

ces deux points d'inflexion deviennent horizontales nous
amènerons ce secteur dans une position où il aura un
contact du deuxième ordre avec un appui horizontal.
On peut donc admettre, dans ces conditions, que notre
secteur représente approximativement l'état élastique

régnant dans l'angle relevé d'une plaque carrée, et dans

cette hypothèse l'abscisse donnée par (5.1) serait une

valeur approchée de la distance au sommet du premier
point de contact avec l'appui. La figure lia est une

projection cotée de la surface élastique. La figure 116

reproduit quelques méridiennes de cette même surface

et dans la figure lie nous avons reporté les diverses

contraintes en fonction de 6.

3 7. Application de la méthode précédente à la
résolution du problème de la torsion.

Les éléments géométriques utilisés pour représenter
la plaque élastique permettent de représenter aussi

l'état déformé de la tranche d'un prisme droit soumis

à la torsion simple. Pour retrouver les formules de

Saint-Venant, il suffira donc de généraliser nos résultats

en admettant la présence de forces tangentielles agissant
dans les feuillets superficiels de la plaque. Nous pouvons
ici supposer ces forces antisymétriques par rapport au
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feuillet moyen, ce qui revient à admettre que l'élément
reçoit, en plus d'une charge spécifique normale p{xy),
l'action d'un couple spécifique vertical y.(xy) dont les

composantes parallèles aux plans zx et zy auront les
valeurs

H* hilx et u„ hi2y ;

i!X et Tzy désignant ici les composantes de l'action
spécifique tangentielle exercée sur le feuillet superficiel

z= + 2-
Les équations d'équilibre d'un élément intérieur s'écrivent

donc

et sur le bord

dmt
dn

dmx
Vx

dmy dmxy
tv -M»

dtx dty

dy ~IV " dy dx y "y dx '
dy

tandis que celles relatives à un élément du contour
restent inchangées. Dans l'expression de la loi de Hooke,
seule la valeur de la constante k devrait être modifiée

et choisie ici égale à un. Nous nous bornerons à reproduire

les seules formules dont nous aurons besoin dans
la résolution de notre problème particulier.

Les expressions suivantes subsistent sans changement :

1 dx dy

(7.1) -N
d<f

c/X

7»xi/

1 Id\f
' ~ 2 [dx fJyJ

H

v m¦*GH&
l—v idi( +!)•2 [dx

Xï

Des équations d'équilibre et de la loi de Hookë nous
tirons comme précédemment, mais avec les valeurs

12
X2

W et X2 _6(1—v)
A2

qui correspondent à k 1,

9

(7.2)

dw a2 dw i
dx 6 dy 6A

~dW h2 dut 1

L dy

e + Aw —

6 dx 6A^

P
X2A"

dont découle par élimination

(7.3)

\

oh\dx dy

a \* 6 l^x d\iy

Quant aux efforts tranchants ils deviennent :

en un point intérieur

„(de ,<?Ul\ „(de .r?uj\

(7.4) U N de_

dn (i-v)S)+^-
Désignant ici par 6 l'angle spécifique de torsion, nous

devons, conformément à l'hypothèse habituelle de
déformation, poser :

9 — Qy •]/ Qx

d'où résulte immédiatement (formules 7.1)

e 0 uj 6 ^V w mz mv mXy 0

puis avec p 0 (formules 7.2)

(7.5)

dw u*
a) -Q-y -dx- + Gh

b) e.x —
3VJ> Uy

dy Gh

[ c) Aw 0.

Les équations 7.3 donnent enfin

C7-6 «) -jz + T7 °
dx dy

Revenant aux contraintes

posant TV
dy

-26 mGh\
d]lx

dx

T ti A Tqr s h

Tsx-
d<ï>

dx

on satisfait identiquement à l'équation (7.6) a), alors

que (7.6 b) devient

A<D — 2G6.

La condition 7.4 se réduit, puisque ln 0, à

(7.7) u» At„ 0

ou encore a

ds
0

Dès lors la fonction <1>, dont dérivent les composantes
t« et t*j, de la contrainte tangentielle, se trouve ainsi
parfaitement définie.

Quant au gauchissement de la section, il est donné

par le déplacement w, solution de l'équation (7.5 c)

Ah1 0 et satisfaisant à la condition limite :

-rr- dy — dx — 6 (ty dy + x dx) 0.
dx dy

Nous retrouvons ainsi exactement les résultats établis
par Saint-Venant.

Errata. — Le lecteur voudra bien corriger les erreurs
typographiques suivantes relevées dans la première
partie du présent article [Bulletin technique du 11 octobre

1947) :

Page 284, 2e colonne, remplacer X par Xf dans les

formules des 8e et 9e lignes depuis le bas et X4 par Xf
dans le dernier terme de la formule (2.3).
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