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Contribution au problème linéaire
de flexion d'une plaque élastique

par L. Bolle, professeur à l'Ecole polytechnique
de l'Université de Lausanne.

624.073.1

§ A. Introduction.
Le problème de flexion d'une plaque élastique a

retenu l'attention des physiciens plus longtemps que
toute autre question d'élasticité et nous ne saurions

retracer ici toutes les étapes de sa résolution. Cependant,
comme notre étude se rapporte à une question qui fut
autrefois abondamment discutée, nous croyons utile de

l'introduire par un bref exposé historique susceptible
de trouver ici peut-être plus d'intérêt que nos
développements mathématiques.

Le déplacement élastique du feuillet moyen d'une

plaque est régi par une équation aux dérivées partielles
du quatrième ordre trouvée en 1813 sans démonstration
dans les papiers de Lagrange. Ce dernier y était arrivé
en examinant en 1811 la tentative faite par Sophie
Germain d'étendre aux plaques la méthode analytique
qui avait permis d'exprimer l'équilibre de simples fils
et lames élastiques.

1 Une partie des développements mathématiques du présent article a
fait l'objet en septembre 1946 d'une communication au Sixième congrès
international de Mécanique appliquée, à Paris. Depuis cotte date, nous avons
eu connaissance de diverses publications récentes dont deux antérieures
au Congrès, publications dans lesquelles le prof. E. Reissner traite la même

question au moyen du calcul des variations. Le fait que nos deux résultats,
obtenus par des voies totalement différentes, coïncident d'une façon aussi

remarquable est propre à faire croire à leur exactitude même a défaut d'une
vérification expérimentale {E. Reissnbr 1. On the theory of Bending of elastic
plaiea. J. of Math. a. Phys.) ; 2. The Effect of Transverse-Shear Deformation
on the bending of elas'ic plates. J. of App. Mechanics, Juin 1945.

Partant des équations de l'élasticité et admettant

que les fonctions entrant en jeu étaient toutes dévelop-
pables suivant les .puissances de la distance au feuillet
moyen, Poisson donnait dans son mémoire de 18281

une démonstration de l'équation de Lagrange et associait

à cette équation trots conditions limites qui devaient

permettre de choisir arbitrairement les efforts de torsion,
de flexion et de cisaillement agissant sur le contour de

la plaque.
Mais en 1850, Kirchhoff 2 montrait qu'on ne pouvait

en général satisfaire simultanément à ces trois conditions
limites et que l'une d'elles était par conséquent
surabondante. Sa méthode reposait sur deux hypothèses :

1. Toute droite primitivement normale au feuillet moyen
reste après déformation droite et normale à la surface

élastique. 2. Les éléments du feuillet moyen ne subissent

aucune dilatation. Grâce à ces deux hypothèses Kirchhoff

parvenait à exprimer l'énergie potentielle de la

plaque en fonction des courbures de la surface élastique
puis à déduire du principe des travaux virtuels l'équation

de Lagrange avec deux conditions limites
seulement.

Le nombre de ces conditions aux limites opposa
ainsi les théories de Poisson et de Kirchhoff jusqu'au
jour où Kelvin et Tait réussirent à les « réconcilier ». Ces

auteurs3 montrèrent qu'on pouvait passer des conditions

apparemment surabondantes de Poisson à celles

rps élastiques i, Ç. VIII< « Mémoire sur l'équilibre et le mouvement de
du Mem. de l'Ac. des Se.

1 Über Gleichgewicht und Bewegung einer elastischen Scheibe. Journal de

Crelle.
8 Nat. Phil., 1867.
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juste suffisantes de Kirchhoff, en modifiant simplement
la distribution des actions exercées sur le bord de la
plaque. Les forces tangentielles, parallèles au feuillet
moyen et équivalentes au moment de torsion (fig. la),
pouvaient en effet être remplacées, sur chaque élément
du cylindre contournant, par un couple statiquement
équivalent de deux forces perpendiculaires à ce même
feuillet et agissant suivant les génératrices limites de
l'élément (fig. 16). Répétant cette opération sur tout le pourtour

on obtenait ainsi sur chaque génératrice deux forces

opposées réductibles elles-mêmes à leur différence
(fig. le) proportionnelle à la dérivée du couple de torsion
prise le long du contour. Grâce à cet artifice on substituait

au couple de torsion un effort tranchant fictif
qu'il suffisait de fondre dans celui réellement appliqué
pour n'avoir plus à considérer sur le bord que les deux
conditions limites de Kirchhoff. Kelvin et Tait montrèrent
de plus que ce regroupement des charges n'était susceptible

de modifier leur effet élastique que dans une région
toute voisine du bord et ne dépassant guère en largeur
le double de l'épaisseur de la plaque.

Si du point de vue pratique ces résultats consacraient
définitivement la théorie de Kirchhoff ils ne montraient
pas en quoi Poisson s'était trompé lorsqu'il écrivait
trois conditions limites quand deux devaient suffire.

Cherchant à élucider cette question Boussinesq retrouvait

dans son mémoire de 1871x l'artifice qui' avait
permis à Kelvin et Tait de passer des conditions de

Poisson à celles de Kirchhoff et concluait en disant :

« Poisson ayant négligé de remplacer les couples de

torsion par des efforts tranchants équivalents et de
fondre leur effet dans celui de l'effort tranchant réellement

appliqué, avait regardé ces couples comme
représentant un mode d'action distinct, ce qui lui avait
donné une condition de trop. » Se refusant à admettre
une telle conclusion, Maurice Lévy reprit toute la question

dans son grand mémoire sur la théorie des plaques
élastiques planes2. « On admettra difficilement, dit-il,
que dans un problème on puisse arriver à un résultat
différent, suivant qu'on aura ou non remplacé un couple

par un couple statiquement équivalent, si toutefois
cette substitution est permise ; un artifice, quel qu'il
soit on le comprend, peut faciliter la solution d'un
problème mais non la modifier ; s'il la modifie on peut
affirmer d'avance qu'il est illégitime et c'est ce qui a
lieu ici. » Puis il montre comment on peut satisfaire
aux trois conditions de Poisson en superposant à la
déformation caractérisée par les déplacements élastiques
du feuillet moyen, seule déformation envisagée aussi
bien par Poisson que par Kirchhoff, une déformation
nouvelle, satisfaisant rigoureusement dans un cylindre
d'épaisseur quelconque aux équations générales de

l'élasticité, et dans laquelle les points du feuillet moyen
restaient immobiles.

Une vive polémique s'engagea alors entre Boussinesq

Journ. des Mathématiques (Li ou ville).
Journal de Math, pures si appliquées, 1877, juillet-septembre.

B)

r\
&M£Ljr

b)
*P *PTAP" i'tP"

+-

c)

|-t-A£i_4^_^ J

Fig, 1. — Remplacement de l'effort de
torsion réellement appliqué sur le bord
d'une plaque par un effort tranchant

fictif statiquement équivalent.

et M. Lévy, polémique dont le diapason vous est donné

par cette seule phrase tirée des Comptes Rendus de

l'Académie, 1878 : « L'effort tranchant, le couple de
torsion et le couple de flexion, auxquels M. Lévy réduit,
sans le moindre essai de démonstration, toutes les actions
extérieures, sont en eux-mêmes des fictions qu'il aurait
dû discuter avant de s'en servir ».

Saint-Venant rend compte de cette controverse dans

sa traduction de l'ouvrage de Clebsch. Après avoir
analysé le mémoire de M. Lévy « qui offre dans plusieurs
parties de bons modèles de recherches, quoique le sens
du concret y fasse quelquefois défaut et qui aura tout
au moins provoqué une utile controverse », Saint-Venant
conclut en disant qu'il n'y a point lieu, dans les
problèmes des plaques minces, de tenir compte des termes
ajoutés par M. Lévy à la solution connue, dans le but
de se donner une arbitraire de plus pour pouvoir satisfaire

séparément aux trois conditions de Poisson.
Un tel jugement, ajouté au fait qu'une réduction du

nombre des conditions limites équivalait à une notable
simplification des calculs, explique aisément pourquoi
la théorie de Kirchhoff resta dès lors seule appliquée

Si ce bref historique suffit à introduire notre étude, il
semble malheureusement suffire aussi à la condamner
puisque nous retrouvons dans notre solution générale
précisément les termes introduits par M. Lévy.

Cependant on pourrait se demander si Boussinesq
et Saint-Venant n'auraient pas tous deux accordé plus
de considération à ces termes négligeables si M. Lévy
les avait obtenus tout naturellement comme des éléments

indispensables d'une solution unique déduite des seules

hypothèses de la résistance des matériaux Quoi qu'il
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en soit, d'autres raisons justifiaient une nouvelle étude
de la question. La théorie de Kirchhoff ne donnait
aucune image de l'état élastique au voisinage du bord
de la plaque et, de ce fait, ne se prêtait guère à une
vérification expérimentale, du moins au degré d'exactitude

où les essais d'élasticité sont poussés de nos jours.
De plus quelques problèmes aux limites de la théorie
des plaques x se montraient toujours rebelles à l'analyse
et on pouvait se demander si une théorie ne permettant
pas de déterminer dans toute l'étendue de la plaque
une répartition des contraintes qui correspondît
exactement aux véritables actions exercées sur le bord
était bien propre à résoudre ces questions.

Ayant reconnu que la solution de certaines questions
de flexion d'une pièce prismatique ne pouvait satisfaire
à toutes les données du problème qu'à la condition de

tenir compte de la déformation engendrée par l'effort
tranchant 2, nous avons pensé qu'une introduction
analogue de ce même effort dans la théorie des plaques
permeSfrait peut-être de donner une réponse toute
naturelle à la question du nombre des conditions aux
limites. Cette supposition était d'autant plus plausible

que la première hypothèse à la base de la théorie de

Kirchhoff excluait à priori l'influence de cet effort.
Nous avons donc remis le problème en équations en

ne retenant de cette première hypothèse de Kirchhoff
que l'alignement sur une droite des points primitivement

situés sur la normale au feuillet moyen mais en
laissant cette droite s'incliner par rapport à la surface
élastique.

Cette suppression d'une hypothèse restrictive nous a

permis de ramener logiquement le problème linéaire de

flexion d'une plaque élastique à une question d'analyse
à deux dimensions parfaitement définie et dépendant,
conformément aux vues de Poisson, de trois conditions
limites. En accord aussi avec les vues de Maurice Lévy
la solution de ce problème apparaît comme une superposition

de deux déformations particulières dépendant
l'une du fléchissement de la plaque, l'autre de la rotation

dans leur plan des éléments d'un même feuillet.
Sans négliger aucun terme dans les calculs nous

avons pu mettre les équations finales sous une forme des

plus simples qui en facilite beaucoup l'application. Ces

formules parmi lesquelles nous retrouvons évidemment
l'équation de Lagrange mais avec un terme de charge
légèrement modifié permettent de donner une solution
à certains problèmes que la théorie de Kirchhoff ne
résolvait pas, et de comparer dans quelques exemples
numériques nos résultats avec ceux donnés par cette
même théorie.

Enfin dans une dernière partie nous montrons que
la solution, donnée par Saint-Venant, au problème de

la torsion d'une pièce prismatique, se déduit tout natu-

1 J. Stocke» : Mathematical problems connected with Oie bending and
buckling of elastic plates. Bull, of the Am. Math. Soc, 1942, pp. 247-261.

2 L. Bolls ; Quelques remarques au sujet du rôle de l'effort tranchant en
résistance des matériaux. IVe centenaire de la fondation de l'Université,
Lausanne, 1937.

Tellement de nos formules si nous y introduisons encore
l'influence de charges tangentielles, appliquées aux
feuillets superficiels de la plaque, et antisymétriques
par rapport au feuillet moyen.

§ 2. Mise en équations du problème.
Soient (fig. 2a) M0 un point d'une aire plane limitée

par un contour fermé, g0 un segment de longueur h

porté par la normale en M0 et dont le milieu coïncide

avec ce point. Nous appellerons plaque élastique d'épaisseur

h l'ensemble continu à deux dimensions de tous
ces segments ou génératrices gQ associées aux points
de l'aire considérée qui devient le feuillet moyen de la
plaque. Donnons à M0 un petit déplacement M0M
perpendiculaire à l'aire (fig. 2b) et imprimons en même

temps à g0 une légère déviation l'amenant en une position

quelconque g ne coïncidant pas nécessairement avec

la normale à la surface élastique (M.) L'ensemble continu
à deux dimensions des génératrices {M Ig) définira
l'état déformé de la plaque fléchie.

Pour caractériser cet état, il suffit de se donner en
fonction des coordonnées x et y les petits déplacements
de chaque génératrice, c'est-à-dire la translation w de

son point milieu et les deux composantes q> et \\i de sa
déviation. La déformation d'un élément de la plaque
est alors mesurée :

1° par trois paramètres e^, e„ et Yj„ définissant la défor¬

mation d'une section horizontale d'ordonnée z et
2° par deux glissements verticaux mesurant les incli¬

naisons -fx, Yji de la génératrice g par rapport à la
normale à la surface élastique (fig. 26).

Exprimés en fonction des déplacements les paramètres
de la déformation s'écrivent

StfâmHP
<?9 3y
ch t»

?w

<)y

Y* <P + 3x
isrr

T. M» + g ¦

Jx

i
Jy

La loi de Hooke fait passer de ces paramètres aux
efforts unitaires correspondants.

Les moments mx, mv et m^ s'éjçmvent

m, N
,o>x

3"j
()y

1 —v

="(! Tx

dx ày

où N désigne la rigidité de la plaque et v le rapport de
Poisson.

M.
MJpdr ri ï — r w

[MJhHrif. *£
«•l'ï

K1" I
*1»J.
b)

Vis. 2.
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Quant aux efforts tranchants nous avons le droit de les

1- T 1 P 1 \Jfllier aux glissements par la tormule t -j— y (aveck
k 1,2) valable pour une poutre à section rectangulaire
car dans la déformation engendrée par chacun des

efforts tx et ty l'élément de la plaque se comporte
évidemment comme s'il appartenait à une poutre de section

rectangulaire.
Avec les formules et désignations

E
2 (1 + v)

on peut écrire

_(l-v)JVl — — A2 9

N

dw
dx

Ehs
12 (1 X2_P

('J--v)iV „ / dw

Tous les efforts étant ainsi calculés en fonction des

déplacements il reste à exprimer l'équilibre de la plaque.
Celui-ci est régi par les trois équations indéfinies

(fig. 3a)

Pmn dm„
dx di/

dniy

<ly

dm

dx
dtx dty _dx du

rry^dxLdx

l.dy
m^x

m****/paxoy di r*-JS>4abc»n, i c? di

m»«/ "!*
rrXfmcbc 1

r,d
b)

Fier. 3.

auxquelles il faut adjoindre les conditions au contour
(fig. 36)

mx-\- my mx — my
cos 29 — rnxv sin 26

— sin 29 mxv cos z9,A
2 ' xy

tx cos 6 + ty sin 0 tn.

Remplaçant dans ces équations les efforts par les

valeurs trouvées on obtient les équations suivantes en

les inconnues w, 9 et <b. Tout d'abord un système du
sixième ordre

2 d (dy <?n>

.1 — vdx \dx dy

2 d (dy <?i»

1 — v dy \dx dy

dy <9vu

d (dy dy
dy \dx dy

d fdy dy
dx \dx dy

X2 vu +

dw

dx

dw

dy

dx
L Am E.

fy (l-v)X2 N

puis trois conditions limites susceptibles de se présenter
sous plusieurs formes. En particulier :

Si, par exemple, les trois efforts mn m^ tn sont donnés

sur le bord indépendamment des déplacments w, 9
et i|>, les conditions limites sont statiques et s'écrivent :

1 + v (dy dy
l-v\dx+dy

/dy
\dx

_d±
dy

y cos G

dy db

dx dy

sin 26 -

-(äÄin20

üdx y
dw

dx dy

cos

(l-v)JV

2m«
^vWV

2tn
X2 mm

Si par contre la plaque est ®nplement appuyée on
aura :

w — mn m-ns 0

et si elle est encastrée on posera

w — y b 0.

La question est ainsi ramenée à un problème d'analyse

à deux dimensions parfaitement défini. (Système
du sixième ordre avec trois conditions limites.)

Remarquons que l'élimination de 9 et b donne

(2.1) AAv
K2AP n

soit l'équation connue mais avec un terme de charge
légèrement modifié du fait de l'intervention des efforts
tranchants. Comme cette équation n'est que du
quatrième ordre alors que le système est du sixième, elle

ne saurait à elle seule rés|||dre complètement le
problème. Nous devons en conclure aussi que plusieurs
déformations pourront avoir même surface élastique

ou encore, ce qui revient affiniême, qu'une plaque peut
subir des déformations dans lesquelles le feuillet moyen
reste plan. Dans ces conditions nous ne pourrons
évidemment plus calculer les efforts par simples dérivations

de la seule fonction jg| Pour les obtenir sous une
forme aussi simple que possible introduisons d'abord
la dilatation e et la rotation uu dans un feuillet d'ordonnée

z 1 soit :

(2.2)

il vient

dy db
Ê + dy

1 (db_
2 m

dy
dy

1 de

1 — v dx

1 de

1-

r?UU

dy
d\X)

dx

2

ï
m
dx

dw

<)y

1

-v dy

e + Aw

et par élimination

Ae

En introduisant de plus la fonction

(2.31 W

H«
h?

5 1
X

h*

P_

N
Auj X8uj.

e '
a

1 P
— w A Aw -\ —
X? ^ X? ^ X4 N

les formules finales se simplifieront du fait que les

rotations 9 et b tirées des deux premières équations :

dx 5 dy) * \ dy 5 dx,
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s'expriment à l'aide des deux seules fonctions QV et ui.

Comme nous connaissons déjà l'équation indéfinie de ui

il suffit de trouver encore celle de QV. Prenant le double

laplacien de 'W et tenant compte de l'équation trouvée

pour w (2.1) on aura simplement

AA»ÏC P_

N

soit de nouveau l'équation habituelle avec son terme de

charge normal.
Ainsi la fonction *5C' qui ne représente plus ici le

déplacement élastique w du feuillet moyen satisfait
à la même équation indéfinie que ce déplacement lui-
même dans la théorie de Kirchhoff.

Voici le système à résoudre en définitive : deux équations

indéfinies distinctes

(2.4) a) AA «>e> ÇT
N

X>\ A
10

b) Au) -=-5-111
hr

||§|SÉliant en quelque sorte les deux fonctions inconnues,
trois conditions lififites :

N vA^C + (1
cMV

h2

dn2

d fdü)\
ds \dn I

1 <?tll

p ds

nins <>-^)m o dn*

(PjA^)

h2d2U)

5

<?ui;

rapportées (fig. 4) à la normale et à la tangente en

point du contour où le rayon de courbure vaut p.

7)

i*

Wk

^V et ut une fois déterminées on en déduit les

déplacements et les efforts au moyen des formules suivantes :

*^C>
b?

(2.5)

5 (1--v)
dw
dx +

h?dw
5 dy

dw
—

h* dw
5 dx

AW

m — N

m„ —• N

d*W d2W
4- v

dx2

d2<W

dy2
-h2 —

+ v

0 dxdy

d*W 1 —v,„ d2"!
h2

mTy (1 — v) JV

tx — N

ty= — N

Jy2 dx2 5 dxdy

d2w h2 (d2™ dy
dxdy + ÏÔ [dy2" Ix2

?A°3t> ,d\ii
m
du)

dx

dx

dy

(1-v)

-(1-v)
(A

DIVERS

Energie atomique et économie électrique.
Extraits

de la conférence de M. A. Winiger, directeur,
donnée à l'occasion

de l'assemblée générale de l'Association suisse des Electriciens,
le 7 septembre 1947, à Interlaken.

Si la consommation se poursuit au rythme actuel, le

charbon et les carburants feront défaut dans quelques
centaines d'années. Or, le 96 % de l'énergie électrique est produite
thermiquement. C'est la raison pour laquelle l'on s'efforce,
dans tous les pays, d'aménager les forces hydrauliques, car
la « houille blanche » est inépuisable. D'autre part, l'utilisation
de l'énergie atomique pour la production de chaleur et d'électricité

constitue une vaste et précieuse possibilité de remplacer
les combustibles, dont les résenffl s'amenuisent. Einstein,
avait déjà prouvé théoriquement que la masse est une forme
de l'énergie, la plus concentrée qui se puisse concevoir. En-
Suisse, la production d'énergie électrique atteint annuellement
10 milliards de kWh, ce qui correspond théoriquement à

400 g masse seulement. La preuve expérimentale que la masse
est une forme de l'énergie, et qu'il est possible d'en tirer
de l'énergie utile, a été apportée par la bombe atomique,
qui est le résultat des recherches de la physique moderne,
combinées à une production technique gigantesque. Ce récent
succès de la science et de la technique permettra également
de libérer, à des fins pacifiques, l'énergie en sommeil dans
la masse.

L'énergie produite par la transformation atomique ne.'

donne que de la chaleur. Actuellement, seul l'uranium et
le thorium entrent en ligne de compte, qui sont des métaux
rares dont nous n'avons pas de gisements en Suisse. La
production de chaleur en partant de l'uranium s'opère dans
des « piles » qui sont des dispositifs d'un principe fort simple,
mais en réalité très compliqués et extrêmement coûteux,
à cause de la protection qu'ils doivent assurer contre les'

rayons radioactifs mortels. A l'aide de la chaleur ainsi obtenue,
il est possible de produire de l'énergie électrique, comme
dans une usine thermique.

Une importante question est naturellement celle de savoir
jusqu'à quel point les usines atomiques seraient capables
de coBMp'encer les autres usines génératrices. Pour l'instant,

ïjFjsgt tout à fait impossible d'évaluer, même approximativement,

quels seraient les mises de fonds et les frais d'exploitation

d'une usine atomique, avant que l'on ait déterminé
dans une certaine mesure les nombreuses inconnues du
problème.

Il s'agit du traitement chimique et métallurgique des
matières premières et des résidus de la réaction, des dispositifsf
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