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Le calcul d'un tube cylindrique de

révolution à épaisseur de paroi variable

par J. TÂCHE, ingénieur E. I. H

Introduction.
La ligne élastique d'un tube cylindrique de révolution à

épaisseur variable est exprimée par une équation différentielle

très difficile à résoudre. Les solutions numériques
proposées par plusieurs auteurs1 sont ardues et exigent des
connaissances spéciales.

Pour mettre ce problème à la portée d'un plus grand
nombre de constructeurs, nous l'avons résolu algébriquement.
La solution que nous proposons n'exige qu'un minimum de
connaissances mathématiques : savoir appliquer des formules
algébriques, connaître l'emploi de la règle à calcul, savoir
résoudre un système d'équations linéaires.

Notations,
b Rayon moyen du tube avant déformation.
h Epaisseur variable de, la paroi du tube.

M Valeur algébrique par unité d'angle du moment
fléchissant agissant sur la section droite du tube.

T Valeur algébrique par unité d'angle * de l'effort tran¬
chant agissant sur la section droite du tube.

L Valeur algébrique par unité d'angle de la force axiale.

Pi Pression par unité de surface agissant à l'intérieur du
tube.

pe Pression par unité de surface agissant à l'extérieur du
tube.

1 „an — L'inverse du coefficient de Poisson.
m

E Module d'élasticité.

Les expressions ci-dessus sont considérées comme positives
lorsque leur action se fait dans le sens des flèches de la
figure 1.

Cette étude est intimement liée à notre étude « Déformation

circulaire d'un tube cylindrique de révolution » publiée
dans le Bulletin technique des Ateliers de Constructions
Mécaniques de Vevey S. A., années 1944 et suivantes. Ces bulletins
seront désignés par B. V. et les numéros défi formules et des

figures parues dans ces bulletins seront surmontés d'un
astérisque.

Pour toutes les autres notations, nos lecteurs voudront
bien se reporter à celles des B. V.

1 Cette question a déjà fait l'objet récemment de deux remarquables
études publiées par M. le professeur A. Dumas et M. J. Paschoud. ingénieur,
dans nos numéros 15 et 16 de juillet 1945. Ces auteurs avaient montré
l'intérêt que présente ce problème non seulement pour l'ingénieur mécanicien,
mais également pour l'ingénieur civil et toute personne se préoccupant, à
un titre quelconque, de résistance des matériaux ; ils ont proposé deux
solutions qui .furent très remarquées. Nous avons jugé opportun de poursuivre
dans nos colonnes l'étude de cette question en publiant aujourd'hui le
mémoire de M. J. Tâche, ingénieur ; sa méthode de calcul dill'èro sensiblement

de celles des exposés précédents, elle se donne pour être plus simple
et plus accessible à l'ingénieur praticien. A ce titre seul elle méritait d'être
connue. [Réd.)

1 Nous attirons l'attention sur le tait que M et T expriment le moment
fléchissant et l'effort tranchant par unité d'angle et non pas par unité de
longueur mesurée sur la circonférence de rayon 6, selon la notation classique
admise par la majorité des auteurs.

Cette nouvelle notation présente le même avantage que la notation
classique : celui de faire disparaître le nombre 1T de toutes les formules. Par
contre, avec cette nouvelle notation, le moment fléchissant reste homogène
à un couple (force X longueur) et l'effort tranchant, à une force ; tandis
qu'avec la notation classique, le moment fléchissant devient homogène a

une force et l'effort tranchant à une force divisée par une longueur.
En outre, avec la nouvelle notation,* les valeurs tie M et V sont

indépendantes du rayon de la circonférence sur laquelle ils agissent.
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Exposé de la méthode.

Considérons le tronçon du tube de la figure 1 compris
entre deux perturbations consécutives caractérisées par les

efforts tranchants T0 et T± et les moments fléchissants M0
et Mv Ce tube de rayon moyen constant b a une épaisseur
de paroi h que nous supposerons être une fonctitÄ de la
variable indépendante x. On admet en outre que ce tube
est soumis à une traction longitudinale L, à une pression
intérieure p,- et à une pression extérieure pe. Si l'on se reporte
à l'étude parue dans le B. V. 1944-1, il est facile de se rendre

compte que les équations fondamentales établies pour un
tube à paroi d'épaisseur constante sont encore valables pour
le tube à paroi d'épaisseur variable.

Ces équations sont les suivantes :

(41*) y y°
h dT

hE dx

(46*) dx

(89*) B
dx2"

(1 — n
~bh

12 M

Remarquons que la relation (41*) n'est pas rigoureusement
exacte. Elle est entachée d'une petite erreur provenant du
fait que les pressions pi et pe n'agissent plus sur des surfaces

cylindriques. Nous avons négligé intentionnellement 1

influence de la composante axiale de pi et pe afin de ne pas
compliquer outre mesure le problème qui malgré cette
simplification est déjà très ardu.

L'équation (89*) peut s'écrire

(1)
T— n2)12 0M

M
>3d2y

dx*

Dérivons deux fois de suite cette équation par rapport
à x, on obtient

dhdsy

(2)
(1 —n2) 12Q d2M

_Ä3_ä_6/l2
da dx dx3

bE dx2
6Ä 3A

,d2h d?y
dx2'

(3)

En dérivant l'équation (46*) on a

dT d2M
dx

m

LJ
Ni

N,

+ u,

+ X

Fie. 1.

% „. dT d2M
Ln éliminant —=— et „ entre les equationsdx dx'

et (41*), cette dernière peut s'écrire

(2.. (3)

d*y 6 dhd?y
dx* h dx dx3

"6 (dhy
h2\dx) '

L2 (1 — n2) 9

h2 h2

3dVi
hdx2 dav

12(1

y

p h2 yc-

Telle est l'équation différentielle de la ligne élastique d'un
tube à épaisseur de paroi variable soumis aux forces
extérieures représentées sur la figure 1.

La valeur de yc est donnée par l'équation

(42*)
b

hE
L
b

a CD»" pi —C<pepe

Pour plus de généralité, on peut envisager que L, pt et pe
sont des fonctions continues de la seule variable x. Ainsi,
par exemple, L peut varier avec x sous l'influence du poids
propre du tube ou de la force centrifuge. La seule condition
qu'on impose à ces valeurs est d'être uniformément réparties
sur toute la circonférence du tube.

Désignons .par F(x) la solution particulière de l'équation
différentielle (4) avec second membre.

D'autre part on peut se représenter que la solution générale

de l'équation différentielle sans second membre sera de
la forme

(5) y C^x) + Ctft(x) + C,/sO) + C4/4(*).

Dans cette équation, Clt Ca, Cg et C4 sont des constantes
d'intégration qui seront déterminées par exemple par les

perturbations agissant aux deux extrémités du tube. Si ces

perturbations n'existent pas, la ligne élastique (5) n'existe
pas non plus.

Si donc L, pt et pe agissent seuls, la ligne élastique du
tube sera

(6) F{x)

Si T0, Me,, Tx et Mx agissent seuls, la ligne élastique sera
donnée par la relation (5).

Lorsque toutes les forces extérieures représentées sur la
figure 1 agissent simultanément, la ligne élastique sera

(7) y C1f1{x) + CtU{x) + Cifz{*)+CJl{x)+F(x).
C'est la solution générale de l'équation différentielle (4)

avec second membre.
La grande difficulté est de résoudre cette équation.
Certains auteurs ont étudié partiellement ce problème en

négligeant le second membre.
Dans sa remarquable étude citée au début de cet article,

M. J. Paschoud a montré que l'équation différentielle sans
second membre peut être résolue lorsque l'épaisseur du tube
varie suivant la fonction (a + bx)2, où a et b sont des
constantes quelconques.

Cependant nous n'avons nullement l'intention d'inviter
nos lecteurs à suivre les traces de M. Paschoud et de les
conduire jusqu'aux sommets des hautes mathématiques.

Notre but est d'obtenir des formules algébriques aussi
simples que possible, pouvant être appliquées par tout
technicien sachant se servir d'une règle à calcul.

Mais que faire en face de cette équation superbe qui garde
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si jalousement son secret La mutiler par des hypothèses
plus ou moins heureuses ou l'abandonner Nous choisirons
la seconde solution et tâcherons d'arriver au but par un
autre chemin.

Faut-il commencer par étudier le tube très long ou le
tube très court

Le tube très long peut paraître à première vue plus simple,
car en principe le nombre des constantes d'intégration est
réduit de moitié : deux au lieu de quatre.

Mais on se heurte toujours à la difficulté fondamentale :

résoudre l'équation différentielle (4).
Par contre, si l'on commence par étudier le tube court,

tout se simplifie. En effet, si le tube est court on est en
droit d'admettre comme première approximation que sa

ligne élastique est une droite.
Nous poserons donc

(8) y A0 + Axx

et appliquerons la méthode des intégrations successives dont
le principe a été exposé à la page 38 du B. V. 1945-1.

Partant de l'équation (41*), dans laquelle on admet que y
est une fonction linéaire, on obtient T par une première
intégration ; l'intégration de (46*) nous donne la valeur de

M et la double intégration de (89*) fournit une seconde
valeur de y plus précise que celle primitivement admise. On

peut alors recommencer un second cycle d'intégrations
(41*)-(46*)-(89*) puis un troisième cycle, et ainsi de suite.
A chaque cycle les valeurs qu'on se propose de calculer
s'enrichissent d'un nouveau terme qui les rend de plus en

plus précises. Ainsi la ligne élastique, admise au début une
droite, devient une courbe qui se rapproche de plus en plus
de la ligne élastique réelle. Les formules augmentant de

précision peuvent alors être appliquées à des tubes de plus
en plus longs. Cette méthode qui a donné d'excellents résultats

pour des tubes à paroi d'épaisseur constante conduit
également à des équations élémentaires faciles à intégrer
lorsqu'elle est appliquée à des tubes à paroi d'épaisseur
linéairement variable.

Toutefois dès le second cycle d'intégrations, les formules
algébriques deviennent de plus en plus longues et d'une
application si laborieuse qu'il est nécessaire d'avoir recours
à une méthode auxiliaire.

Celle-ci est basée sur le principe suivant : pour construire
un tube, c'est-à-dire pour en vérifier les dimensions d'après
les efforts auxquels il est soumis, il n'est pas indispensable
d'établir dans chaque cas particulier l'équation de la ligne
élastique!

Cette remarque de la plus haute importance va nous

permettre de simplifier d'une façon notable les calculs.
Pour mieux faire comprendre le principe de cette méthode

auxiliaire, prenons l'exemple d'une poutre rectiligne de

section constante à deux appuis simples, soumise à une
force concentrée agissant en un endroit quelconque de cette

poutre. Tout technicien connaît les formules pour calculer
le moment fléchissant maximum et la flèche au droit de la
force. Ayant calculé ces valeurs il est en possession de toutes
les données pour dimensionner judicieusement la poutre soit
au point de vue de sa résistance mécanique, soit au point
de vue de son élasticité, et pourtant il n'a pas eu à établir
la ligne élastique de la poutre. Bien entendu, la formule
dont il s'est servi pour calculer la flèche a été établie sur la
base de la ligne élastique, mais le praticien n'a plus à

s'inquiéter de cette dernière, étant en possession d'une formule
algébrique qui lui donne directement la flèche.

Il en va de même pour le calcul d'un tube.

La méthode auxiliaire à laquelle nous venons de faire
allusion est basée sur l'emploi des coefficients de déformation

k qui permettent d'établir des relations linéaires très
simples entre les moments fléchissants, les efforts tranchants,
les flèches et les tangentes à la ligne élastique qui existent
aux deux extrémités du tube.

Aux pages 48 et suivantes du numéro 1 de 1945 du B. V.,
nous avons exposé les principales propriétés des coefficients Ar,

pour un tube à paroi d'épaisseur constante.
Nous avons pu établir des relations analogues pour un

tube à paroi d'épaisseur linéairement variable. Celles-ci nous
permettent de calculer les flèches et les moments fléchissants
aux deux extrémités du tube, valeurs nécessaires et
suffisantes pour déterminer les tensions tangentielles et longitudinales

en ces deux endroits. En pratique et dans la majorité
des cas, la connaissance de ces tensions sera suffisante pour
juger si le tube est bien dimensionné. S'il y a doute, on aura
la faculté de calculer d'autres points, soit graphiquement,
soit algébriquement, en se basant sur les propriétés des coefficients

k, mais sans avoir à établir l'équation de la ligne
élastique, laquelle, nous le savons, est beaucoup trop
compliquée pour être exprimée algébriquement.

Les coefficients k permettent donc d'aller droit au but
sans passer par la ligne élastique.

En résumé, notre solution s'écarte résolument des chemins
battus. Au heu d'intégrer l'équation générale, synthèse des

équations fondamentales, et d'établir ainsi l'équation de la
ligne élastique pour un tube long, nous laissons de côté
l'équation générale et intégrons successivement les équations
fondamentales en les appliquant à un tube court. Nous
obtenons ainsi des formules algébriques qui permettent au
constructeur de dimensionner son tube sans être obligé
d'établir l'équation de la ligne élastique.

Notre étude s'adressant tout spécialement aux praticiens,
nous donnerons d'abord les formules générales pour le calcul
d'un tube à paroi d'épaisseur linéairement variable, puis
nous indiquerons la façon de les employer avec exemples à

l'appui.
A remarquer que la détermination des coefficients k nécessite

des calculs, sinon difficiles, tout au moins très ardus.
Ceci n'a toutefois pas grande importance pratique, car ces
calculs sont faits une fois pour toutes et conduisent à des

expressions algébriques d'une application simple et rapide.

Formules générales.

Les formules suivantes se rapportent à la figure 2.

K
(9)

r_hx
o

¦^

V.

A 'T.

a\\ A
S- ^e

•^ M.

'AtAt ¦^

/
—o- ô -Ö-

Fi«. 2.
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(10)

(H)

lfl

\/3(l — n2) 1,285

v hhn \Jbhm

différence entre l'épaisseur max. et l'épaisseur min.

somme de ces deux épaisseurs

l - hQ — hl

Flèche en O.

(12)

[13)

2<Xmb

y0= -r~W (-To^i»-amMoktn-T1kln,+atnM1k7p+Nk9n).

2a2b

Tangente en O.

Tfykin+amMJtin+T^kep—amM^kgp—N^J0— ; r? a* 0/l2nT~"'n-'"0'l*n"r-' ln6p "mJ" i"8p filOn/
nmEe

Flèche en D.
2amb

(14) yx= -^ (T0kia+amM0k7n+T1klp-amM1kip+Nk9pl

Tansente en D.
2a2b

(15) uix= r-^r (r0/c6n+aar,M0/c8n+T1Ar2P—OmMik^+Nk^).

(16)

Faïeur d!e iV.

N nLr-+ «m^Pf — Cm lpe

am rayon intérieur au milieu du tube
cm » extérieur » »

Valeurs des coefficients k.

(17)
2 .2a%l3

^=-^l^+-ÏÔTlPi ••¦

(18)
\ 3 11 ai l2

<p2'H all2 ^ '
105

(19) ks k%.

(20)
6 26 Oml

4 _ aJW n4 + 35 94...

(21)
1 I aie'3

||j a«* % 7T~ ?«•¦•

(22)
3 13 ail2

9e-••6 a,U2 n6 210

(23) k7p Aren ; kin kep.

(24)
9

6 9aml
»~afnl3l]* 35 9s- • •

(25)
| 1 al ï»

9_2am«n94 420 99...

(26)
1 a* Z2

10~aiU2 I1l0'',~ 90 9io • • •

Valeurs des facteurs de correction r\

(27)
3 2+ß

ni-2 3=ß2'

(28)

(29)

(30)

(31)

(32)

(33)

(34)

(35)

12
3 + ß

3—62'

¦14 3—ß2

15 n4-

16 M

1.8 n4-

n9
3(1¦3—ß2

3ß
1l0= 3—ß2

9i:

i
G1

(35
bis)

(36)
92

Fi

Ge,

(36
bis)

(37)

Valeur des facteurs de correction 9.

7 /_. 15- T
1 + ß

26 ß6 (1 —ß) (3 —ß2)2 \ 1 * 2ß * S 1—ß

— 135 — 225 ß + 75 ß2 + 165 ß3— 77 ß4 -

+ 5 ß5 + 177 ß6 + 47 ß7 — 32 ß8

(1 + ß)3(l--ß)(9— 3ß — 2ß2+6ß3-
— 3 ß4 + ß5).

9 / 2 + ß—ß2—0,40972ß8—
~ 2(1—ß)(3-^ß2)2 \—0,17508ß4—0,16835ß5...

21 (F 15 1 + ß

24llß6(l—ß)(3—ß2)2 \ 2^2ß 2 gl-ß
— 45 — 15 ß + 135 ß2 + 25 ß8 -- 139 ß4 -

+ 7 ß5 + 129 ß6 + 15 ß7 — 32 ß8.

(1 + ß)4 (1 - ß,)3 (3 - 2 ß + ß2).

9 _/ll+6ß—4ß2 1,111 ß3 +
£ 11 (1—ß) (3—ß2)2 V +0,0202 ß*—0,1414 ß5...

94

^4

91

F 45G.Lr1+ßN

(37
bis) 94

(38)
9s

n
Gs

(38
bis) 9s

(39)
9e

^6

G,

2!13ß6(l—ß)2(3—ß2)2 V * 2ß 4 ° 1—ß/

- 45 + 90ß + 120ß2 — 330ß3 - 54ß4 +
+ 438ß6 + 168ß« — 294ß7 — 93ß8 + 80ß9

(1 + ß)4 (1-ß)6.
I / 117-24ß-85ßa+19ß3+

lF(F-ß)2 (3-ß2)2V+8,7272ß4-l,4545ß5..

7 /-. 15 1 + ß

243ß6(3—ß2)2 V 2ß 5 g 1 —ß

135 — 195 ß2 + 37 ß4 + 63 ß8

(1 + ß)2 (1 — ß)2 (9 + 2 ß2 + ß4).

1

(3 .ixi (9-2ß2 0,5050ß4-0,22843ß8...)

21 15_r T
1+ß

2?13ß6,(3—ß»)2 V 6 2ß • g 1— ß

45 + 60ß — 75ß2 — 100ß8 + 39ß* + 32ß6 4

+ 23ß6 + 8ß7

(l + ß)4(l- ß)2(3-2ß+ß2).
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(39
bis) *e

9s

Ga

(40
bis) 9s

(41)

3 ,39 + 3ß — 8ß2 — l,3333ß8-
13 (3 — ß2)2 — 1,4545 ß4 §1 0,6060 ß5

45 r T
1+ ß

2332ß«(3— ß2)2 V
8 2ß 8 gl—ß

45 — 165 ß2 + 219 ß* — 27 ß6

(1 + ß)4 (1 — ß)4 (1 — ß2)4.

1 / 81 — 16ß2 — i,4545B4—
973"— ß2)2 \— 5,5856 ß6 — 0,11188 ß8..

99

Fa

Fa
15 r r 1+ß

(-ra Lg

(41
bis) *•

(42)

(42
bis) ^m

16ß5(3—ß2)2 \ 9
2ß 9 ël— j

315 + 465 ß — 210 ß2 — 430 ß3 + 3 ß4 +
+ 33 ß5 — 48 ß6

(l + ß)3(l —ß) (21 — llß+ß2+ß3).

ß2 /9 + 7ß + 4,3333ß2 + 3,9090ß3

(3— ß2)2 \ + 2,8125ß4

F
15 1-

16 ß5 (3 — ß2)2 V10 2ß
°10 Lg î

315 —1110 ß2 — 540 ß3 + 543ß4 + 180 ß5.

- 128 ß6

(1 + ß)8(21 — 63 ß + 45ß2 — 3 (3 / R4\

3ß2 /21 +16 ß +11 ß2 +10,9090 ß3

7(3— ß2)2 \ +9 ß4 + 8,7645 ß5

Les formules bis ont été obtenues en développant en série
1 + B

l'expression Lg —.— - ; elles pourront être utilisées lorsque

ß est voisin de zéro.

Pratiquement, pour déterminer la valeur des coefficients s,
on n'utilisera pas les formules ci-dessus, mais on se servira
de courbes que chaque constructeur peut établir sur du
papier millimétré en utilisant le tableau suivant :

Commentaires.

Dans les quatre formules (12), (13), (14) et (15), les coefficients

k sont affectés d'un second indice n ou p.
L'indice n signifie que le coefficient k doit être calculé

en attribuant à ß une valeur négative, la valeur absolue de ß

étant donnée par la formule (11).
L'indice p signifie que le coefficient k doit être calculé

en attribuant à ß une valeur positive.
Toutes les autres valeurs figurant dans les formules sont

des valeurs algébriques ; en particulier Mç, T0, Mlt Tlt L, pt
et pe seront considérés comme positifs si leur sens est celui
donné par les flèches de la figure 2, et comme négatifs dans
le cas contraire.

L'extrémité du tube où l'épaisseur de sa paroi est la plus
grande sera désignée par extrémité épaisse, l'autre par extrémité

mince.
Les quatre formules (12), (13), (14) et (15) sont valables

pour la- figure 2, c'est-à-dire lorsque l'extrémité épaisse est
à gauche, à l'origine 0 des axes.

On remarque que tous les coefficients qui se rapportent
aux perturbations agissant à l'extrémité épaisse sont affectés
de l'indice n et ceux se rapportant aux perturbations agissant

à l'extrémité mince, de l'indice p.
Donc, dans le cas où l'extrémité mince se trouve à gauche,

à l'origine 0, les quatre formules sont valables à la condition
de permuter les indices n et p.

Comparons les coefficients k avec ceux valables pour' un
tube d'épaisseur de paroi constante, formules (372 bis*) et
suivantes.

On constate que ces coefficients se composent des mêmes
termes mais affectés des facteurs -ri et ». Pour cette raison,
ceux-ci sont appelés facteurs de correction ; ce sont eux qui
tiennent compte de la variation de l'épaisseur de la paroi.
En effet, n et y sont des facteurs numériques fonction de
la seule variable ß.

Si l'on suppose que le tube est à épaisseur de paroi
constante, ß est égal à zéro ; tous les facteurs r, et y sont égaux
à l'unité, à l'exception de r,10, y9 et tp10 qui sont nuls. On
obtient dans ce cas les formules établies pour le tube à

épaisseur de paroi constante.
En pratique, la connaissance des flèches y0 et y, et des

tangentes «q et tult aux deux extrémités du tube, est
suffisante pour tracer la ligne élastique du tube. Toutefois, si

1

«Pi

— 1 — 0,9 — 0,8 — 0,7

0,395

-0,6 — 0,5 — 0,4

0,585

— 0,3 -0,2 — 0,1 0

10,2188 0,280 0,338 0,451 0,515 0,662 0,755 0,864
9a <Ps 0,2386 0,295 0,348 0,402 0,455 0,515 0,582 0,660 0,750 0,862 1

«Ps 0,2356 0,281 0,326 0,373 0,422 0,478 0,545 0,625 0,712 0,841 1

fi 1,4583 1,420 1,330 1,250 1,176 1,120 1,075 1,043 1,018 1,005 1

<Ps 1,6154 1,440 1,310 1,215 1,140 1,088 1,045 1,020 1,003 0,994 1

<p* 1,7500 1,548 1,396 1,275 1,195 1,129 1,080 1,044 1,019 1,005 1

99 0,8750 0,711 0,548 0,410 0,296 0,205 0,*83 0,076 0,035 0,009 0
<PlO 0,9375 0,743 0,558 0,422 0,303 0,209 0,134 0,077 0,036 0,009 0

1

«Pi

+ 0,1

1,169

+ 0,2

1,382

+ 0,3

1,670

+ 0,4

2,044

+ 0,5

2,585

+ 0,6

3,388

+ 0,7

4,655

0,8

6,84

+ 0,9

11,96

+ 1

00
<p« «p» 1,175 1,405 1,712 2,142 2,78 3,79 5,56 9,25 20,8 QO

<p« 1,206 u 1,510 1,905 2,522 3,52 5,32 9,12 19,5 73,2 30

<Ps 1,005 1,018 1,043 1,075 1,120 1,178 1,250 1,329 1,420 ; 1,4583
<Pb 1,012 ' 1,035 1,066 1,110 1,166 1,236 1,825 1,425 1,540 1,6154
<Ps 1,005 1,019 1,044 1,080 1,129 1,195 1,275 1,396 1,548 1,7500
<P» 0,011 0,048 0,124 0,254 0,475 0,845 1,485 2,66 5,12 14
<PlO 0,011 0,048 0,124 0,258 0,485 0,875 1,59 3,05 6,73 00
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dans certains cas particuliers on désire calculer des points
intermédiaires, on pourra avoir recours à la méthode exposée
aux pages 49 et 50 du B. V. 1945-1.

La courbe des moments fléchissants sera définie par les

deux valeurs M0 et Mx et par T0 et Tj représentant les

tangentes à la courbe des moments fléchissants aux endroits
O et D.

Pour tracer plus exactement cette courbe, on peut calculer
les moments aux endroits A, B et C en utilisant les formules
suivantes :

(43) MA M0iu. .„ + ,7> ,n + M1xi,,,lP—lT1Q. -INEi

(44) MB Mjv*. + lT0&xn + M^^—IT^ — IN£%.

(45) .Me M0t)/,/4„+ lTtß.l„+Mj!Vu0—lT1ei,0—im.u.

Dans ces formules, -i, 5 et 5 ont les valeurs ci-après :

-,2

(46)

(47)

(48)

(49)

(50)

(51)

(52)

(53)

(54)

IU,
324 + 27 ß — K

128 (3 — ß2)

vu.

12 + 3ß--4ß2
8(3 — ß2)

60 + 27 ß -20ß2
128 (3 -ß2)

108 + 2r
OKß 1'.

7ß — 27
\ Q2\

lu.

6 + 3-
"16 (3-

-ßS
ß2)

3 (12 + 9ß
256(2

9ß2

"256(3-^)
ß2

16 (3- ~ß2)

£•<•

V>. ca

V> ca

alculé en considérant ß

comme négatifs

calculé en considérant ß

comme positif.

Cette remarque s'applique à tous les autres coefficients
munis des indices n ou p,

Les coefficients Ç ne sont pas affectés de ces indices, car
pour leur calcul il n'y a pas lieu de faire la distinction entre
ß positif et ß négatif, cette valeur étant au carré dans les
formules des £.

Domaine de validité des formules.

Les formules ci-dessus ont été établies en supposant que
l'épaisseur de la paroi du tube varie linéairement et qu'elle
est relativement faible par rapport au rayon moyen du tube,
de façon que les coefficients g, <ft et yc figurant dans les

équations (89*) et (42*) puissent être considérés comme
égaux à l'unité.

Le rayon moyen du tube doit être constant.
Les coefficients k sont exprimés par les deux premiers

termes de séries convergentes ; pour que leur valeur soit
suffisamment exacte, il faut donc que le troisième terme
soit négligeable par rapport aux deux premiers. Pour se

faire une idée de l'ordre de grandeur de ces troisièmes termes,
il suffit de se reporter aux formules (372 bis*), page 48 du
B. V. 1945-1.

Pratiquement, la longueur du tronçon doit être telle que la
valeur «^Z ne soit pas supérieure à environ 1,5.

Si le tube étudié ne remplit pas cette condition, on le
divisera en autant de tronçons dont chacun y satisfera.

Si le tube est pratiquement illimité, ce qui suppose que
la conicité de la paroi est faible, il suffira de se rappeler
que la partie active du tube, autrement dit sa partie
déformable s'étend sur environ une demi-longueur d'onde (voir
figure 13*, page 36 du B. V. 1944). Le tube sera donc divisé
en trois tronçons : les deux premiers satisferont à la condition

aml é 1,5 et le dernier sera admis illimité et d'épaisseur
constante égale à l'épaisseur de la paroi du tube à l'endroit
de la jonction entre les deuxième et troisième tronçons.

Calcul des contraintes.

Ce calcul exige la connaissance de la flèche et du moment
fléchissant aux endroits où l'on désire déterminer les
contraintes.

Nous venons d'expliquer de quelle façon on calcule la
flèche et le moment fléchissant.

On sera ainsi en possession de tous les éléments pour
calculer les contraintes.

On peut en distinguer deux sortes : les tensions tangentielles

et longitudinales de comparaison qui sont égales aux
extensions correspondantes multipliées par le module d'élasticité

et que nous désignerons par <r, et o-j ; les tensions

principales tangentielles et longitudinales, qui seront
désignées par t et l.

Faut-il construire le tube sur la base des tensions de
comparaison ou sur celle des tensions principales

Nous ne voulons pas trancher cette question très controversée,

mais simplement nous borner à indiquer de quelle
façon ces tensions doivent être calculées.

La tension tangentielle de comparaison se calcule par la
formule (113*) :

.13*)
E
b

'

La tension longitudinale de comparaison est donnée par
la formule (120*) :

(120*) (Se -nrj,+ (l — n2
L (l—n2)6M
bh bh'

Dans cette formule, le signe + se rapporte à la tension
longitudinale de comparaison qui existe à l'extérieur du

tube, le signe — à celle qui existe à l'intérieur du tube.
Si l'on néglige le troisième terme du second membre, on

obtient la tension longitudinale de comparaison existant au

rayon moyen du tube.
Les tensions de comparaison et les tensions principales

'sont liées par les relations suivantes :

(55)

(56)

(T,

1

n Cf|

-n2
'

n Ot
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On en déduit

(57)
E

y
L 6M

WmÊmm

(bl bis) t ffi + ni.

(58) l L
bh

6M
Th2

Dans ces deux dernières formules, le signe + donne les

tensions principales agissant à l'extérieur du tube, le signe —
à l'intérieur. „^

Précisons que dans les formules (113*) et (57), y représente

la flèche totale du tube, c'est-à-dire celle qui est
produite par toutes les forces extérieures représentées sur la
figure 2.

Si, dans les formules (57) et (58) on supprime les derniers
termes des seconds membres, on obtient les tensions au

rayon moyen du tube1.
(A suivre.)

LES CONGRÈS

Association suisse pour l'aménagement des Eaux.

Assemblée générale du 7 septembre 1946, à Fribourg.

L'Association suisse pour l'aménagement des eaux a tenu,
le 7 septembre 1946, à Fribourg, sa 35e Assemblée générale
sous la présidence de M. Ringwald, ingénieur, remplaçant le

président de l'Association, M. Corrodi.
La partie administrative comportant l'approbation des

rapports du comité directeur, du secrétariat, des comptes
et du budget fut très rapidement terminée. Les membres de

l'Association avaient au préalable reçu le rapport annuel, qui,
en plus de tous renseignements utiles relatifs à l'administration

de l'Association, contient des textes sur l'état général
de l'économie de l'énergie en Suisse, la législation y relative,
l'économie hydraulique et électrique en temps de guerre, la
création de possibilités de travail dans le domaine de
l'électricité, la régularisation des lacs, 1'electrification des

chemins de fer, la navigation, etc.
A l'issue de l'assemblée générale, deux conférences

remarquables furent données, la première par M. P. Joye, directeur

des Entreprises électriques fribourgeoises, sur « L'utilisation

des forces hydrauliques du canton de Fribourg », la
seconde, par M. Bruttin, ingénieur, sur « L'Aménagement
de Rossens » plus spécialement.

Au cours de l'après-midi, les participants à ce congrès
visitèrent le chantier du barrage de Rossens. Le manque de

place ne nous permet pas de nous étendre, dans le cadre

1 Pour bien montrer l'importance du terme ni de la formule (57 bis),
citons l'exemple suivant, tiré de l'étude de M. R.-V. Baud, docteur es sciences,

publiée dans les Schweizer Archiv für angewandte Wissenschaft und Technik,
n08 3, 4, 9 et 10 de 1942. Cette étude très remarquable analyse les tensions
qui se produisent dans un autoclave. Au point de vue documentaire elle
est d'autant plus précieuse qu'elle permet la comparaison des tensions
calculées et des tensions déterminées expérimentalement.

Or, on remarque à l'examen du graphique de la figure 9 /, par exemple,

que la courbe des tensions calculées s'écarte très sensiblement de celle des

tensions déterminées expérimentalement.
Le résultat est surprenant et de nature à réjouir tous ceux qui, ne sachant

pas calculer, font 'fi de toute théorie et n'ont foi qu'en l'expérience.
La théorie est-elle effectivement en défaut Heureusement non. La difîc-

l'i
du second membre de la formule 57 bis.

de ce bref compte rendu, sur les caractéristiques de cet
aménagement et du barrage en construction1.

Nous jugeons opportun par contre de reproduire ici un
bref extrait du rapport annuel de l'Association, extrait qui
donne une idée claire de l'état de notre économie électrique.

Extrait du rapport de l'Association.

Usines hydroélectriques mises en service en 1945.

Date de la Puissance Production moyenneUsine et mise en maximum annuelle 106 kWh
service kW Hiver1) Eté | Total

Lucendro, sans
accumul. S.A.
Aar-Tessin Févr. 1945 19 000 19,0 18,0 37,0

Albula,
transformat. Ville
de Zurich Juin 1945 4 600a) 1 13,0 20,0 33,0»)

Wolfenschiessen
Forces Motr.
d'Unterwald-
le-Bas Sept. 1945 2 800 5,0 11,0 16,0

Rupperswil-
Auenstein
CFF et NOK Oct. 1945 31 155s) 88,0 114,7 202,7 8)

1) Six mois.
2) Sans tenir compte de l'ancienne installation.
3) Puissances réduites par suite d'une diminution du remous et de la

suppression d'autres usines. Puissance effective 33 700 kW, production
moyenne annuelle effective 225.10® kWh.

Un assez grand nombre d'usines ont subi des extensions.

Grandes usines hydroélectriques en construction

ou en transformation à fin 1945,

Date

Usine et propriétaire

probable
de la

mise en
exploitation

Puissance
maximum

kW

Production moyenne
annuelle 106 kWh

Hiver Eté Total

Obersaxen Tavanasa
(Tscharbach et
Petersbach) S.A.
Patvag 1946 3 700 5,0 13,0 18,0

Lucendro,
aménagement complet
S.A. Aar-Tessin 1947 46 000 78.01) — 78,0 »)

Julia
Ville de Zurich 1947 46 000 40,0 100,0 140,0

Plessur, 3° étape
Ville de Coire 1947 8,300 16,0 32,0 48,0

Russein
S. A. Patvag 1947 10 000 10,0 30,0 40,0

Letten, transform.
Ville de Zurich 1947 2 800 8,0 11,0 19,0

La Dernier, trans.
Cle F. M. Joux
et Orbe 1947 9 500 2,5 2,5 5,0

Rossens, (Sarine)
EEF 1948 50 000s) 80,0a) 108,0a) 188,0 2)

Lavey (Rhône)
Ville de Lausanne 1949 38 5008) 59,6») 132,0s) 191,6 8)

1) Sans tenir compte de la production supplémentaire des usines de Piottino

et de Biaschina.
2) Sans Hauterive, y compris augmentation de la production de l'usine de

l'Oelberg.
8) Sans Bois-Noir.

La puissance de pointe maximum possible aux bornes des

alternateurs de toutes les usines hydroélectriques aménagées
en Suisse atteignait :

1 Nos lecteurs trouveront au numéro de juillet-août 1946, de la revue
Cours d'eau et énergie, organe de l'Association suisse pour l'aménagement des

eaux, de très intéressantes données sur ce sujet (Réd.).
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