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DIVERS

Plantons des jalons.

L'article intitulé « Recherche de l'Elastique d'un tube
cylindrique de révolution à épaisseur variable » qui a paru
l'an dernier dans les numéros 15 et 16 de ce Bulletin, a sans
doute été très remarqué par tous ceux qui s'intéressent aux
problèmes de la résistance des matériaux. Au point de vue
mathématique, cette étude réalise une solution, sinon simple,
du moins très scientifique du calcul d'un tube cybndrique de

révolution à épaisseur de paroi variable. Aussi je me
permets d'en féliciter très sincèrement l'auteur qui a fait preuve
de flair et de connaissances mathématiques rarement
rencontrés chez un ingénieur.

M'occupant depuis un certain temps du même problème et
l'ayant résolu par une méthode toute différente de celle
suivie par M. J. Paschoud (l'exposé de cette méthode paraîtra
prochainement), cette étude était pour moi une occasion
inespérée de comparer les deux méthodes.

Pour les deux premiers exemples numériques tout
concordait à la perfection. Mais pour le troisième exemple,
celui du piston de pompe, les résultats furent très discordants.

Qu'on en juge :

Valeurs calculées par M. Paschoud :

MA — 45,815 kg mm/mm circonf.
NA -f- 5,740 kg/mm circonf.

Valeurs obtenues par ma méthode en négligeant l'élasticité

radiale de la plaque :

MÂ -(- 1,97 kg mm/mm circonf.
NA — 0,123 kg/mm circonf.

Mêmes valeurs, mais en tenant compte de l'élasticité radiale
de la plaque :

M, -\- 2,05 kg mm/mm circonf.
NA — 0,137 kg/mm circonf.

Pour savoir qui a raison, plantons des jalons, c'est-à-dire
cherchons par des calculs très simples le signe et l'ordre de

grandeur de MA et NA.

Signe et ordre de grandeur de MA.
Le tube ne peut que s'opposer à la déformation de la

plaque en réalisant un encastrement partiel de celle-ci. Le
moment d'encastrement est évidemment positif, c'est-à-dire
qu'il tend les fibres inférieures de la plaque.

Passons maintenant à la valeur de MA. On constate que la
formule tirée de l'ouvrage de Timoshenko et exprimant la

tangente à la ligne élastique de la plaque est entachée d'une
erreur de signe. La pression p et la force P étant de sens
différents, les termes dans lesquels figurent ces valeurs doivent
être de signe contraire.

L'équation de la tangente doit s'écrire :

(1)
dy
dx

px"
16D 8âr£>

(2 Lg x — 1) 6>
9

(On fait abstraction du dernier terme qui, dans le oas d'une
plaque, est toujours nul.)

Il est facile de se rendre compte de l'exactitude de cette
formule.

Dans ce but, supposons la plaque encastrée sur son pourtour.

dy
dxPour x r 0.

Cette condition nous permet de déterminer la valeur de

a constante Cx et l'équation 1 devient

dx
(2) px
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En dérivant cette équation on obtient

dh)
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(3)

16Z) ^ "' ' 4ttZ>

Le moment d'encastrement a pour valeur

A

1

M' D dx2
pr* P

ir + 41

La formule 3 est une formule générale valable quelles que
soient les valeurs attribuées à p et P.

Si l'on suppose P 0 on a le cas d'une plaque soumise à

une pression uniforme p appuyée et encastrée sur son pourtour.

La réaction d'appui est égale à —pnr2 et le moment

d'encastrement a pour valeur Pr
q-. Il est négatif, par

conséquent le signe attribué au premier terme de la formule 1

est exact. Si maintenant on suppose que p est nul et P pnr2,
la réaction d'appui sera égale à + pnr3 et le moment d'en-

pr2
castrement a pour valeur -|—j-. Il est positif, donc le signe

attribué au second terme de la formule 1 est exact.
Si p et P agissent simultanément, la réaction d'appui sera

nulle et le moment d'encastrement aura la valeur suivante :

:«) M'A — pr' pr"
T + 8 "

En introduisant les valeurs numériques on obtient

0,01 X 50*
M' + -+- 3,125 kg mm/mm.

On peut donc affirmer que le moment d'encastrement partiel

produit par le tube est plus grand que zéro, mais plus
petit que M'.

Donc
(6) 0 < MA < 3,125 kg mm/mm.

La val MÀ 45,815 kg mm/mm est par conséquent
manifestement erronée.

Signe et ordre de grandeur de NA.

L'auteur a admis que la déformation radiale de la plaque
était nulle. La flèche du tube à l'endroit de sa liaison avec la
plaque l'est aussi. Si MA agissait seul il produirait un évase-
ment du tube, autrement dit une flèche positive. L'effort
tranchant doit, par conséquent, produire une flèche négative

égale à la flèche positive produite par MA. L'effort
tranchant étrangle le tube ; il est donc négatif et sa réaction
sur la plaque est une force centrifuge. La plaque est, par
conséquent, soumise à une tension radiale et non pas à une
compression radiale comme l'indique l'auteur.

Cherchons l'ordre de grandeur de NA. Dans ce but utilisons

les formules de mon étude sur les tubes à paroi d'épaisseur

constante, parue dans le Bulletin des A. C M. V. de 1945.
Pour passer de ma notation à celle de M. Paschoud il faut
remplacer

M0 par — MAr
To Pör — NAr
b par r

Supposons que le tube ait une épaisseur constante égale
à 10 mm. La flèche produite par MA est donnée par la
formule 366

[') Je hE *MAk8
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La flèche produite par NA est donnée par la formule 364

(8) Jon l-^-N k
hE N*kl'-

En tenant compte que ces deux flèches doivent être égales
et de signe contraire, on peut écrire

MA lh
-NA- «V(9) L m

Dans cette formule kt et ka sont des coefficients qui dépendent
de la longueur du tube et dont la valeur est exprimée par
les relations 372 et »4. Le graphique de la figure 22 donne
la valeur de ces coefficiiästs en fonction de la longueur du
tube exprimée en degrés.

Si le tube est long, le rapport r-est égal à l'unité et la
«s

longueur L est égale à la longues! d'onde divisée par 2ir.

Ar, 2«Z 1

Si le tube est très court, le rapport y- est egal a -g— de

2
sorte que L est égal au q de la longueur du tube.

La valeur de a. est donnée par l'équation

Wm mm.
Si le tube a une épaisseur constante de 10 mm,

i'285 llll I_ m 0,0575 lmm.
\/ 10 x 50 '

La longueur du tube en degrés est égale à

180° x 0,0575 x 50 Ü
¦ | 165°.

Si l'on se réfère au graphique de la figure 22 on constate

que le rapport -r- est sensiblement égal à l'unité, de sorte

que

U Mt
Ne 17,4 mm.

Faisons les mêmes calculs en supposant que le tube ait
une épaisseur constante de 3 mm.

On obtient

L], 3

MÀ

— N
V^öO
1^285" 9,53 mm.

MÀ
On peut donc affirmer que le rapport »a— du tube étudié

est compris entre les limites 9,53 < Ma < 17,4illM. Paschoud obtient un rapport d'environ 8 mm. Ce

rapport est certainement trop petit. J'obtiens un rapport, de
16 mm, ce qui signifie que le tube d'épaisseur variable se

comporte au point de vue de la flèche à son extrémité comme
un tube d'une épaisseur constante égale à 8,4 mm, ce qui
paraît beaucoup plus exact, car la région active du tube
est située vers son extrémité la plus épaisse.

Bien entendu, les remarques ci-dessus ne diminuent en
aucune façon la valeur de la méthode de M. Paschoud, elles
montrent simplement qu'il est prudent, quand on entreprend
de longs calculs numériques, de planter des jalons afin de

pouvoir contrôler d'une façon approximative les résultats
obtenus.

J. Tâche,
ingénieur E. I. L.

Au sujet de l'article « Plantons des jalons »

de M. J. Tâche, ingénieur.
C'est avec un vif intérêt que j'ai pris connaissance de cet

article. Je ne saurais assez féliciter son auteur d'avoir mis
aussi clairement en évidence l'utilité de recoupements
propres à déterminer l'ordre de grandeur de la solution numérique

cherchée. Dans tous les cas pratiques, pour lesquels
le résultat numérique a par lui-même une importance
primordiale, cette manière de procéder est absolument de
rigueur.

M. Tâche considère le troisième exemple traité dans mon
exposé : « Recherche de l'élastique d'un tube de révolution à

épaisseur variable » (Bulletin technique n°s 15 et 16 du 28 juillet
1945) et montre par des recoupements que les résultats

numériques en sont aberrants. Il est de fait que plusieurs
erreurs de calcul numérique ont faussé les résultats numériques

de cet exemple.
Le but de mon travail était aussi de « planter un jalon »,;

mais, dans mon idée, d'une espèce trè3 différente, tendant
à mettre à la disposition de l'ingénieur les moyens de déterminer

la résistance de corps dont le calcul était encore
pratiquement inabordable. Ce premier jalon très général fut
depuis lors suivi de beaucoup d'autres, amenant des
simplifications essentielles qui, par exemple, permettent actuellement

de résoudre numériquement, à la règle à calcul et en
quelques vingt minutes, les exemples développés dans mon
exposé précité.

Dans ce travail, l'importance étant exclusivement attachée

à la méthode de calcul, je laissais au lecteur le soin
d'obtenir les résultats numériques pouvant l'intéresser dans chaque
cas pragBque. Les exemples traités étaient donc uniquement
des exemples de cheminement et le lecteur autorisé s'en sera
parfaitement rendu compte, en particulier par la forme du
piston de pompe calculé comme troisième exemple, forme
étrangère à tout spécialiste et très éloignée de celles réellement

utilisées. Aucun des résultats numériques de ces exemples

n'avait été vérifié par recoupement, ces résultats numériques

n'ayant absolument aucune espèce d'importance

Jacques Paschoud.

NECROLOGIE

Oscar Oulevey. architecte.
Oscar Oulevey, architecte, vient de s'éteindre peu après

avoir fêté son soixante-quinzième anniversaire.
Atteint par la maladie, il y a quelques semaines, il garda

jusqu'à la fin sa pleine activité, dirigeant ses travaux de son
lit et donnant ses ordres aux maîtres d'état le jour de sa mort.

Elevé à Chesalles s/Moudon, il fréquente l'école industrielle ;

bachelier à dix-sept ans, il est à vingt et un ans diplômé de
l'Ecole polytechnique de Zurich. Se rend à Paris, y fréquente
l'Ecole des Beaux-Arts et revient à Lausanne en 1894, où
il travaille dans divers" bureaux et s'établit en 1899.

Associé à l'architecte Bonjour, ils obtiennent ensemble
le premier prix au concours pour les prisons de district, au
Bois Mermet, qui sont inaugurées en 1902 et ils édifient la
synagogue de Lausanne, quelques années plus tard.

U obtient en 1912, le second prix pour l'Ecole de Commerce,
puis, en 1913, le premier prix pour les collèges classique et
scientifique au Champ de l'Air, dont la construction on fut
renvoyée à cause de la guerre de 1914-1918.
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