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Extrémité A (cp a 90° ; sin a

v — 0,11733 + 0,11734 ^ 0.

dh
dx — 0,11733 + 0,11734 ^ 0.

0.

cos a 0).

(1)

(2)

(3)

Equilibre général :

- 0,02439 + 0,56439 0,02439 + 0,56439 1,08 cm
1,08 1,08. (4)

Secti 'diaion mediane :

dx
0) + 0,02439—0,02439—0,56439+0,56439 0. (5)

La compression du sol atteint, sous la charge
ponctuelle (x 0 ; qp 0)

v + 0,02439.1.1 + 0,56439.1.1 0,58878 cm

et le moment fléchissant médian

M (EJ) dx2
5 451 100 cm k + 54,51 mt

un chiffre naturellement plus fort que sous la base

répartitrice.

Conclusions.

Supposant l'élasticité parfaite du sol comprimé, mais

abstraction faite de l'entraînement dû aux déformations

inégales, supposant donc la proportionalité des

enfoncements avec les efforts verticaux, qui les provoquent,

on montre que les conditions aux extrémités de

la poutre de longueur limitée, et celles aux affleurements
de la poutre de longueur illimitée, conduisent le calcul à

des fonctions trigonométriques amorties par des

exponentielles à exposants négatifs et positifs. Les

constantes d'intégration donnent aux puissances négatives
du nombre e une influence prépondérante, mais laissent
subsister dans tous les cas étudiés les termes à exposant
positif ; l'absence de ces derniers aurait empêché de

donner satisfaction simultanée à toutes les conditions
d'extrémités, de contiguïté et d'équilibre.

On remarque, en passant, que l'élasticité de la poutre
abaisse ses moments fléchissants maximums en concentrant

la pression du sol aux abords de la charge ; la

longueur de la cuvette de pénétration ne dépend toutefois

pas de la grandeur de la charge sur le sol censé

élastique linéairement, mais seulement de sa disposition.
On voit enfin, à travers un sommier armé, que la

transmission des charges se fait probablement sur une

largeur plus grande que ne le fait la répartition à 45°
généralement admise ; l'élasticité relative du sol et de la

poutre influencent cette largeur dans une proportion
que le laboratoire de statique pourrait aider à fixer
pratiquement.

Recherche de l'Elastique
d'un tube cylindrique de révolution

à épaisseur variable,

par Jacques PASCHOUD, ingénieur E. I. L.,
ingénieur aux Usines Paillard S. A., Sainte-Croix.

1. Introduction.

Dans son article paru dans ce même numéro, M. le

professeur A. Dumas expose les difficultés très grandes
qui s'opposent à l'intégration algébrique rigoureuse des

équations différentielles des enveloppes et il s'attache

particulièrement à l'étude du tube cylindrique de
révolution à épaisseur variable. Il montre comment, en

généralisant la solution de l'équation différentielle du
tube à épaisseur constante, on peut obtenir les

déformations dans la section origine du tube. Partant de ces

déformations, il est alors possible de trouver toute l'élastique

par une intégration numérique ou graphique point
par point. Cette méthode a l'avantage considérable d'être
immédiatement applicable à n'importe quel cas d'enveloppe

de révolution. Par contre, elle ne peut être utilisée

que pour des enveloppes axialement illimitées dans un
sens, ou du moins que l'on peut considérer comme telles

en vertu du principe de Saint-Venant. Enfin, pour trouver

la déformation en un point quelconque de cette

enveloppe, elle exige une intégration point par point
numérique ou graphique à partir de la section origine.

Nous attachant au seul cas du tube cylindrique de

révolution à épaisseur variable sollicité dans la section

origine par un moment fléchissant et un effort
tranchant répartis uniformément dans cette section, nous

avons cherché à mettre l'élastique de ce tube sous une
forme algébrique propre à permettre la détermination
suffisamment précise des déformations en un point
quelconque, et ceci par simple substitution de nombres

aux symboles algébriques. Notre but était encore
d'envisager non seulement le problème du tube illimité
axialement mais aussi toutes les conditions aux limites
possibles pour la section terminale du tube.

2. Principe de la méthode.

L'idée développée fut la suivante : chercher une loi
régissant la variation d'épaisseur du tube qui permette,
par l'intégration rigoureuse de l'équation différentielle

proposée d'obtenir l'élastique du tube sous la forme
d'une fonction connue ; puis généraliser cette fonction
de façon à pouvoir envisager d'autres lois de variation
d'épaisseur.

Avant de développer ce principe, nous voudrions
attirer l'attention sur le fait que les calculs effectués

pour obtenir le résultat algébrique paraîtront probablement

un peu longs ; néanmoins l'application de ce résultat,

acquis une fois pour toutes, à un problème numérique
donné sera beaucoup plus courte.
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3. Transformation de l'équation différentielle du tube.

Considérons l'équation du tube cylindrique de
révolution à épaisseur variable sollicité dans sa section
origine par un moment et un effort tranchant uniformément

répartis sur cette section. Cette équation a été

établie en détails par M. le professeur A. Dumas dans

son article précité, auquel le lecteur est prié de se reporter.

Notons en passant que pour établir cette équation
on envisage un rayon moyen constant du tube. Par

conséquent, en toute rigueur, l'épaisseur devra varier
symétriquement par rapport au cylindre moyen. Si ce

n'est pas le cas, les variations relatives de ce rayon
moyen devront tout au moins être faibles.

En utilisant les mêmes notations et les mêmes
conventions de signes que le professeur Dumas, l'équation
différentielle s'écrit :

y" + 6 x2/'" + 3 »ï h" „,A 0. (1)

y ordonnée courante de l'élastique cherchée ;

h épaisseur variable, suivant une loi quelconque ;

12 / 1
A constante -=¦ 1 5H \ mi

r rayon moyen du tube ;

m coefficient de contraction latérale ; 1/m 0,3

pour l'acier.
Les dérivées sont prises par rapport à l'abscisse

courante x.
Transformons cette équation différentielle en

changeant de variable ; posons :

f =63
d'où t' 3 h2h'

t" 3 [2hh'2 + h2h"]

et introduisons dans l'équation différentielle (1) après
l'avoir multipliée par t h3 ; il vient :

tyIV + 2t'y'" + t"y" + At^y 0. (2)

Mise sous cette forme, cette équation différentielle

rappelle, par la forme de ses trois premiers termes,
l'équation différentielle dite d'Euler :

xn.y(ri) _|_ plXn-lytn—l) _|_ + p„y 0

dont on connaît une solution particulière :

y xK où K est une constante.

4. Equation caractéristique généralisée.

Par analogie, posons

y t* où K est une constante à déterminer.

Il est fort probable que cette expression de y ne satisfera

pas à l'équation différentielle proposée quelle que
soit la fonction h h(x), mais on peut espérer que cette
transformation rendra possible la détermination de la

fonction h h(x) de façon que y tK hiK soit solution

rigoureuse de l'équation différentielle (1). Pour

simplifier l'écriture, remplaçons SX par a ; il vient
successivement :

ha ;y

y' aha
h'

y a/ia

ylll a6a

ylV aha

\2 h"

(a_1)(a_2)a) +3(a-l)^- +

(a_l)(a_2)(a-3)Q +
h'2h" 3A"2 4- ih'h" hIV+6(a_1)(a_2)^A+(a_1^ +4*A+^r

En introduisant ces expressions dans l'équation
différentielle (1), on trouve, après simplifications, ce que
nous pouvons appeler l'équation caractéristique généralisée

:

l\h'2h"/7>'2\2 / 1\/
(a+l)a»(a—1)/T J + 6(a+ l)a(a— ^J- +

f- 3a26"2 + 4( a + ^ )ah'h'" + ahhIV - A 0.
(3)

Ainsi, pour que la solution de notre équation différentielle

(1) soit de la forme y ha, il est nécessaire que
la fonction h h(x) satisfasse à l'équation iKéren-
tielle (3).

5. Recherche d'une loi de variation des épaisseurs.

Cherchons une solution particulière de cette équation
différentielle (3). Cette équation serait satisfaite en
particulier identiquement en x si chaque terme était par
exemple une constante et si nous calculons alors a de

façon que la somme de ces constantes soit égale à zéro.

Pour que chaque terme soit constant, il est nécessaire

qu'on ait simultanément :

h'2
— c constante et h" constante
h

ce qui suffit, puisque cette deuxième condition entraîne
h'" h17 0.

L'intégrale de h" constante est h o0+ axx + a^2

d'où h' ax + 2a%x,

en introduisant dans la première condition, on obtient
l'identité en x :

a2 + 4a1a2a; + 4a|a;a ca0 + caxx + ca%x2

d'où par identification terme à terme :

ax= dtz2\Jalpi.

Par conséquent, h sera de la forme

h (a + 6a:)2

a et 6 étant deux paramètres arbitraires quelconques.

0. Elastique rigoureuse du tube répondant à cette loi.

Ainsi donc lorsque h (a + 6a:)2 l'intégrale rigoureuse

de l'équation différentielle (1) est de la forme

y ha. Pour calculer la constante a, il sullit d'intro-
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duire cette expression de h dans l'équation différentielle

(3), qui devient alors une équation algébrique du

quatrième degré en a.
A

Posor c=6ï'
cette équation s'écrit après réduction :

(2a + 4) (2a + 3) 2a (2a — 1) + c 0. (4)

Remarquons qu'en posant, n — (2a + 3), l'équation
(4) ne change pas. La courbe représentative du membre
de gauche de l'équation est donc symétrique par rap-

3
port à la droite 2a — ^. Faisons donc une trans-

3
lation d'axe de coordonnées en posant S 2a + j= ',

A

on obtient alors l'équation bicarrée

16 g4 — 136 H2 + (225 + 16c) 0

d'où Ton tire :

2 ± 17
±\/4 — ¦

et y±Tl/17±4v/4
On obtient ainsi quatre valeurs de a qui sont racines

de l'équation (4). On a donc quatre intégrales particulières

indépendantes, et comme l'équation différentielle
(1) est linéaire, la solution générale s'écrit :

y Cxhai + C26a* + C3Aa* + CJia* (5)

où Cx, C2, C3 et C4 sont des constantes à déterminer

par les conditions aux limites. Nous rappelons que
h (a + 6a;)2.

7. Mise sous forme réelle de l'expression de l'élastique.

L'expression (5) ne fournira directement la solution
cherchée que si a est réel, c'est-à-dire lorsque c £^ 4,

ce qui, pratiquement, est tout à fait exceptionnel.
Dans le cas le plus courant, où les valeurs de a sont

complexes, il est donc nécessaire de transformer la
relation (5) de façon à ne faire apparaître que des valeurs
réelles. Ceci sera évidemment possible à priori puisque
l'élastique existe réellement Le calcul est très simple.

3

4
Mettons a forme a Y rt bi, où le

symbole i représente y — 1. Après élévation au carré
et identification des parties réelles et des parties
imaginaires (le double signe sous la \/ représente, outre la
valeur à considérer, une valeur étrangère que l'on peut
reconnaître en calculant le module de a) on obtient :

1
-V/17+v'225 + 16c

4y2

1
b -+, i /— 17 + v/225 + 16c

4y/2 V

a — 7±Y=tot

(6)

Introduisant ces résultats dans la relation (5), il vient :

y A—(T + î)[Cxh+bi+ C2h-bi]+ 6T—l[C3A+6i+C4A-ô£J

avec h (a + 6a;)2.

Or posons maintenant : t] A

On a successivement : bi LgA Lg r\ où le signe Lg
indique le logarithme népérien,

ri hbi etbh^h
d'où l'écriture

y A-(T+f)[cie+i'&Lgft+ C2e-£5LgA]+AT-i[c3e+!'&LSA +
+ cie—ibh«h].

Selon la méthode habituelle, chaque parenthèse est

identique à une expression de la forme

A cos (b Lg h) + B sin (b Lg h)

ce qui permet enfin d'écrire

y h~(T+!)[AlCos (bLgA) + 7^ sin (6LgA)] + |

+ AT-f[^2 cos (b Lg h) + B2 sin (b Lg h)]

avec h (a + 6a;)2.

Ax, Bx, A2 et B2 sont des constantes à déterminer au

moyen des conditions aux limites.
Cette expression (7) représente la solution cherchée

mise sous forme réelle.
Comme b est essentiellement positif et que A ne peut

évidemment pas devenir négatif, cette valeur de y sera
toujours réelle lorsque a est complexe.

8. Résumé des résultats obtenus jusqu'ici.
Lorsque la loi de variation d'épaisseur du tube est

donnée par
A (a + 6a;)2,

l'élastique du tube sera calculée rigoureusement par
l'une des deux expressions :

y CJfr + C.,/.01* + CsAa» + C4Aa* (5)

3 1
avec ai,2,3,4 — £±£^/l7±4 ^4

12
si c — -gâ-j 11

2 est plus petit ou égal à 4

y h~ ÏÏ+ïÎ[Ax cos (bLgA) + Bx sin (bLgA)] + (7)

+ AT-!|>2 cos (b LgA) + B2sin (bLgA)]

et b

4-W17 + v/225 + 16C

i r
c

4V/2V
12-

r264

17+^225+160

1
est plus grand que 4.

Cx, Ca, C3, G4 ; Ax, A% Bx et B3 étant des constantes
à déterminer par les conditions aux limites.
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9. Cas particulier du tube à épaisseur constante.

Si dans l'expression de l'épaisseur h (a + 6a:)2,

nous faisons tendre 6 vers zéro, A tend vers une
constante et il semble à première vue que l'expression trouvée

de l'élastique tend, elle aussi, à se réduire à une

constante, ce qui serait évidemment, paradoxal. Mais un
examen plus attentif révèle que c, donc aussi a, f et b,

tendent vers l'infini lorsque A tend vers une constante.
Les expressions (5) et (7) trouvées pour l'élastique du

tube à épaisseur variable perdent alors leur sens, mais

il est aisé de lever l'indétermination. Nous le montrerons

pour le cas de l'égalité (7), seule utilisée en

pratique.

constante
Nous avons c j-g ; par consequent, si 6 tend

vers zéro, f et b tendent tous deux vers la même va-
d 1,285 4

leur v^-r ou a constante - pour 1 acier. L ex-
26 vV

pression (7) s'écrit alors avec A (a + 6a;)2

d

A 2b

d [
A"1 2b

Ax cos \Lg A2V+ Bx sin \Lg A21

A2 cos \hghrb) + B2 sin (jLgA21

Développons A 2b (a + 6a;)

(a+6a:)

d_

~L/l
1!

d(d-i
b\b

2

b ^2
- X
a

et maintenant si 6 tend vers zéro, T tend vers l'infini,
b

donc vers la même valeur que -; — 1, T — 2,
b b

etc.,

qui permet d'écrire :

1±
d
— x
a

d
- x
a

d N3

a +1! ' 2! — 3!

L'expression contenue dans la parenthèse n'est pas

+ -x
autre chose que le développement de e~a qui est

convergent pour n'importe quelle valeur de x. Par

conséquent :

bx)±b-{c

En outre, Lglo6-ea /=Lga6-t- - x.
a

Si nous introduisons ces résultats dans l'expression
de l'élastique, il vient

d
— - x

y=e

Ax cos( t Lg« )+-Bism( Lg<

Ax sinl Lga l+^i cosf yLga
5

(d
;os - a

\a

d
sin | .i

a

d
+ -x

+ une expression semblable en e °

Les deux parenthèses-crochets contenant deux
constantes arbitraires peuvent elles-mêmes être considérées

comme des constantes arbitraires et l'on retrouve enfin

l'élastique du tube à épaisseur constante :

y
(d \ (d \1

«-'i cos -x + Cf sm -x)\u \a 1
- (d N Id M
G, COS [-X + «Ai sin l-x)\a i \a J]+ e"

10. Calcul des constantes par les conditions aux limites.
Les deux manières générales de fixer les conditions

aux limites sont de se donner dans deux sections du
tube soit la déformation radiale y et la rotation y', soit
le moment unitaire fléchissant M (par unité de longueur
de la circonférence du tube) et l'effort tranchant T
unitaire. On sait que ces deux sollicitations M et T sont
liées aux déformations par les relations :

y
M

J-Eb
1

y JEb
T- J'

7 M

où J moment d'inertie variable pour une longueur
A3

unité de la circonférence : J -tfl12

£^= module d'élasticité en sollicitation bi-axiale
m2

m2=T
Les moments sont comptés positivement lorsquf|||

tendent les fibres inférieures, les efforts tranchant
positivement dans le sens des y croissants.

Par ce qui précède, nous voyons qu'il est nécessaire
de connaître les dérivées successives de l'élastique y.

Posons pour cela successivement :

2 Y + 2 T

Cx ex(ex+1) 4b2

D, 25.(26,+ 1)

Fx Cx(ex+2) — 2Dxb

Gx Dx(ex + 2) + 2Cxb

El-3
C2 62(e2-l)--4b2
Z)2 2b.(2e2-L)
P2 C2(e2 —2) —2D2b

2\G2 D2(e2- 2Cab

Pour faciliter les calculs numériques, nous passons
dans t des logarithmes népériens (Lg) aux logsûjashmes

décimaux (log) :

t b Lg A 4,605-170-2 b log (a + 6a:).

On obtient :

y (a + bx)~€i [Ax cos t + Bx sin t] +
+ (a + 6a:)+6a[a42 cos t + B2 sin t]

y' - 6. (a + 6a;)—<€' + * [{A xex — 2Bxb) cos t +
+ (2a41b + ß1e1) sin t]+b-(a+bx)'*-i[(Aiei +
+ 2Bab) cos t — (2A2b — JS2e2) sin t].

Cette expression de y' permet de calculer la courbe
dérivée de l'élastique ; pour le calcul des constantes on
met ces constantes en évidence :
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— b-(a + 6a;)—<€i+1) LA^cos t + 2b sin l) +
+ Bx(zx sin t — 2b cos t)] +
+ 6 • (a + 6a;)e2—1 [^42(e2 cos t — 2b sin t) +
+ P2(e2 sin t + 2b cos ()]

' + b2-(a + 6a:)—(£l+2> [^(Cj. cos t + Dx sin i) +
+ BX(CX sin * — Dx cos t)] +
+ 62(a + 6a;)€2—2 [A2(C2 cos t — J>2 sin t) +
+ 52(C2 sin t + 7)2 cos t)]

"= — b3-(a+ bx)— (€i+3> [il^Fi cos « + Gx sin t) +
+ ß^ sin t — Gx cos «)] +
+ 63-(a + bxY*—\A2(Fe, cost-
+ B2(F2 sin f + G2 cos t)].

Posons encore successivement :

M 12

E~îh3

G2 sin t) +

Mr
JE*

¦ M
12

£V(a+6a;)
•M

Tr
1 J'

M

12

Eb-(a + bx)6
T

1?, b' ~

/'--3-r M
Ü4A3 A

66
M

a -\- bx

puis
IIx (a + 6a:)—El-cos t

Kx (a + 6a;)-ei • sin i
Pi — b-(a + 6a;)-C€l+r(e1cos < + 2 bsin t)

Qx =-b-(c ei+1)(e1 sin i — 2b cos t)
Rx + b2-(a+ 6a:)-<ei+2)(C1 cos t + Dx sin t)

5j + 62-(a+ bx)-iei+2\Cxsmt — Dxcost)
Vx — 63-(a+ 6a;)-(ei+3)(P1cos « + Gx sin t)

Wx= -b3-(a+bx)-«i+s\Fx sin t—Gxcost)
H2 (a + 6a;)+e2-cos t

'

#2
P,

+ 6a;)+62-sin t
b-(a + 6a;)62—^62 cos t — 2b sin t)

Q2 f- b-(a + 6x)e2-1(e2 sin f + 2b cos t)

B2 + 62 • (0+ 6a;)€2-2(C2 cos t — D2 sin t)

52 + 62-(a+ 6a:)e2-2(G2 sin t + D2 cos t)

V2 : + 63-(a+ 6a;)e2-3(F2cosi— G2sin «}

W2 =: + 63.(o+ bx)<t*-3(F2 sin t + G2 cos i)

Introduisons maintenant un mode simplifié d'écriture.
Pour cela, considérons quatre équations algébriques
linéaires à quatre inconnues :

axxx + a&2 + a3x3 + a^ a0

bxxx + 6^2 + 63a;3 + 64a;4 60

cxxx + c^ + c3x3 + c4a;4 c0

d^ + dj>3:2 + dsx3 + d4a;4 d0

Utilisant la règle bien connue de Cramer, nous
écrivons les racines symboliquement de la manière suivante :

a«

bx b

Clo

6,

a.

c

3

2 c8 *-4

i2 d3 d4

c.

Cela signifiera par convention que la valeur de chaque
variable est égale à une fraction dont le dénominateur
est le déterminant A et dont le numérateur est le
déterminant formé en remplaçant dans A la colonne repérée

par la variable, par la colonne séparée.

Supposons maintenant que tous ces coefficients a, b, c

et d soient fonctions d'un paramètre et que, par exemple,
les coefficients a et 6 sont à calculer pour la valeur l
du paramètre et les coefficients c et d pour une autre
valeur L du paramètre. Nous écrirons symboliquement :

h bj\/i

dx d2 d

xx x2 x,

'« L

mm
m\d0U

Supposons enfin que l'on sache à priori que les variables

x3 et x4 sont nulles ; il ne subsiste plus alors que
deux équations à deux variables dont la solution s'écrira

symboliquement par exemple :

bx b2i o'i

On peut faire entrer cette écriture dans la solution
générale en y encadrant la partie correspondant à

l'expression réduite, d'où l'écriture symbolique définitive :

bx 62 6, 6i/i

d, d« da di'L in 1L

Revenons maintenant à la détermination des

constantes Ax, A2, Bx et B2. Trois cas peuvent se présenter
suivant les conditions aux limites dans les sections,
d'abscisses l et L :

Sont donnés :

1-) {y> y')iet (y. y'h
2-) (Mr, Tr)i et (y,y')L ou inversement (y,y')iet (MT, Tr)i
3-) (Mr, TT)t et {M„ Tr)L

d'où le tableau des solutions :

!') (y> y')iet (y> y')t
croissant dôoroissant

Hx K'x B2 Kt\
Pi <?i Pi Qt\

Hx Kx i/s K2

Pi <?i P2 Q2

Ax Bx As B2

y
y'
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2") (Mr, Tr)i et (y, y')L — pour (y, y')i et (Mr, TT)L il suffira
d'intervertir les indices i et z-

croissant décroissant

Rx Sx

vxwx
R2 S2

v*w2 i Mr
Tr

HXKX

Pi Qx

H2 K2

Pi Qi l e
Az B2Ax Bx

3") (Mr, Tr)i et (MT, Tr)L

croissant décroissant

Rx Sx R2 S2 Mr

vxwx v2w2 \ Tr

Rx Sx R^ S2 f MT

vx wx v2 w2 )L { Tr

Ax Bx A2 B2

Remarques.

1. Ces expressions se simplifient considérablement
dans le cas du tube axialement illimité. Deux des
conditions aux limites sont à fixer pour la section x infini :

nous devons imposer que dans cette section l'ordonnée
HKMft l'élastique soit nulle. Considérons alors les deux

exposants ex et e2 introduits dans ce paragraphe. Il est
facile de voir que la plus petite valeur de y, obtenue pour
c 0, est égale à 1 et que par conséquent :

7
la plus petite valeur de ex + jr/t

1
la plus petite valeur de €2= + -x-

Ze

Les deux termes de l'élastique ont en facteur, l'un
(a + bx)~% l'autre (a + 6a;)+£a.

Lorsqu'il s'agit d'un tube à épaisseur croissante, la

quantité | a + 6a; I (valeur absolue croît avec x et pour
qu'à l'infini la valeur de y soit nulle, il est nécessaire que
m b2 o.

Par contre, pour le tube à épaisseur décroissante la quantité

|a+ bx\ décroît tout d'abord, passe par zéro, puis
croît de nouveau lorsque x croît. Mais un tube dont une
section aurait une épaisseur A (a + 6a;)2 nulle ne
saurait avoir de signification physique. Nous devons
donc nous limiter, même pour le raisonnement, à la

partie du tube où a + 6a; est positif. Dans cette partie,
le terme (a + 6a;) €l croîtrait avec x et, par exemple

pour une décroissance très lente telle que l'on puisse être
sûr que physiquement l'amortissement de la ligne
élastique est atteint avant la section théorique d'épaisseur
nulle, le terme de facteur (a + 6a;) 6l provoquerait une
valeur très grande de l'ordonnée y. Ceci montre que
dans le cas du tube à épaisseur décroissante on doit poser
Ax= Bx 0.

Dans un cas comme dans l'autre, il ne reste que deux
équations et nous n'utiliserons, des écritures générales

du tableau des solutions, que les valeurs encadrées. Les '

notations « croissant » et « décroissant » s'expliquent
par ce qui précède.

2. Il n'est peut-être pas inutile tjälnsister ici sur le
fait que la méthode de Silvester, permettant de calculer
les déterminants du troisième ordre par une généralisation

des produits croisés utilisés pour le deuxième ordre,
n'est applicable qu'à ces déterminants du troisième
ordre. Pour l'utiliser ici, il nous faudrait donc réduire
tout d'abord d'une unité l'ordre de nos déterminants.
Mais il est, à notre avis, plus judicieux de calculer ces

déterminants uniquement par les méthodes de soustraction

de lignes, par exempleSuivant le schéma de calcul
indiqué par C. Runge et Kcenig dans leur ouvrage,
Vorlesungen über numerisches Rechnen, Springer, Berlin.
Le calcul numérique des déterminants les plus compliqués

devient très rapide et très simple.

i 1. Généralisation à des lois quelconques de variations
d'épaisseur.

La solution trouvée précédemment :

y h 2 [Ax cos (b Lg A) + Bx sin (b Lg A)] +
+h

+ A 2 [At cos (b Lg A) + B2 sin (b Lg A)]

n'est solution rigoureuse de l'équation différentielle du
tube que si

A (a + 6x)a

a et 6 étant deux paramètres arbitraires quelconques.
Pour généraliser cette solution à des lois quelconques

de variations d'épaisseur, deux idées viennent naturellement

à l'esprit :

1. Choisir les deux paramètres o et 6 de façon que la
loi A (a + 6a;)2 se rapproche « le plus possible » de

la loi envisagée, et ne plus considérer que le tube répondant

à A (a + 6a;)2 dit « tube équivalent ».

2. Partir de la remarque évidente que l'expression ci-
dessus de l'élastique s'écrit en fonction de A seulement
à l'exclusion de x, et adopter la même expression quelle

que soit la fonction A A(a:).

La seconde méthode pourrait paraître la plus
plaisante à première vue. Mais en y regardant de plus près,
on s'aperçoit que le fait de remplacer A (o + 6a:)a par
une fonction quelconque A h(x) dans l'expression ci-
dessus de l'élastique et de considérer cette expression
comme une intégrale approchée revient à supposer
assez arbitrairement que cette fonction A A(a:) satisfait

avec une précision suffisante à l'équation différentielle

(3) dite équation caractéristique généralisée. Or
quel est le critère qui permettra de dire à priori que
cette précision est suffisante Au lieu d'être nulle, la
valeur du membre de gauche de cette équation sera
une fonction de x. L'approximation de la solution ne

dépend-elle que de la valeur de la plus grande limite
atteinte par cette fonction de x dans le domaine utile
pour a: Et à supposer — faussement à notre avis —
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que cela soit le cas, quelle valeur sera encore admissible
La réponse à ces deux questions serait un travail de

longue haleine que nous n'avons pas entrepris parce que
cette méthode présente par ailleurs d'autres difficultés
rebutantes :

Le calcul des constantes e et b nécessite l'introduction
de A(a;) dans l'équation caractéristique généralisée (3') et
nous venons de dire que le premier membre de cette
équation deviendra alors une fonction de x variant
pratiquement entre deux limites. Il paraîtrait judicieux de
choisir e et b (donc a) de façon que ces limites soient
les plus petites possibles en valeur absolue, ce qui
donnerait lieu à un calcul très long à recommencer pour
chaque nouvelle -loi de variations d'épaisseur.

Enfin, pour calculer les constantes Ax, A2, Bx et B2 par
les conditions aux limites, il est nécessaire de dériver
successivement l'expression de l'élastique. Ce calcul ne
pourrait, comme précédemment, être fait une fois pour
toutes qu'au prix de complications extrêmes, puisqu'il
diffère suivant la fonction A A(a:).

Toutes ces raisons nous font écarter cette deuxième
méthode.

La première méthode, au contraire, est d'une application

très simple et toujours la même quelle que soit la
fonction A A(a;) réelle, sitôt que l'on a calculé les
valeurs à choisir pour les paramètres a et 6. En outre,
les écarts entre les épaisseurs A (a + 6a:)2 « équivalentes

» et les épaisseurs A A(a;) réelles nous permettront

de nous faire à priori une idée de l'approximation
des résultats.

12. Choix des paramètres a et b pour l'approximation
d'une loi quelconque de variations d'épaisseur.

On pourrait être tenté de calculer a et 6 par la méthode
des moindres carrés, mais en plus du fait que les calculs
seraient très longs et parfois même inextricables,
ce principe présenterait une erreur fondamentale pour
le cas qui nous occupe. En effet, la méthode des membres

carrés donne, pour un même écart, une importance
égale à chaque section du tube, quelle que soit son
abscisse. Or, dans le cas du tube axialement illimité
par exemple, les sections situées très loin de la section
origine sollicitée par les efforts donnés ne jouent qu'un
rôle absolument négligeable sur la forme de l'élastique,
parce que l'amortissement des oscillations de la ligne
élastique est très rapide à partir de la section origine
et par conséquent les sections jouent ici un rôle d'autant

plus important qu'elles sont plus près de la section
origine.

Le procédé de calcul des paramètres doit donc être
assez souple pour permettre d'utiliser l'idée que l'on a
à priori de la marche du phénomène élastique. C'est
pourquoi le plus judicieux semble être de tracer à vue
la courbe y (a + 6a:)2 imitant le mieux, au sens
précédent, la courbe des épaisseurs réelles.

Nous indiquons maintenant deux manières de
surmonter la difficulté provenant du fait que la courbe

y (a + 6a;)2 dépend de deux paramètres arbitraires :

1. Nous écrivons y a2(l + pxWß avec p — puis

nous passons aux logarithmes :

n log y log a2 + 2 log 11 + px \.

Une simple translation le long de l'axe des rj
permettra de tenir compte du terme log a2 et il suffit par
conséquent de tracer le faisceau des courbes

r) 2 log 11 + px | ;

toutes ces courbes se coupent à l'origine des (rj, a:).
Ce faisceau étant tracé à une certaine échelle sur du

papier (logarithmique), on trace à la même échelle la
courbe r| log A(a;), où A h(x) est la courbe des

épaisseurs réelles, sur du papier transparent. Puis
superposant les deux dessins, les axes des n, étant maintenus
en coïncidence, on amène la courbe r) log A(a;) à se

superposer, dans la région la plus importante du tube,
à la courbe du faisceau dont l'allure se rapproche le
plus de cette courbe rj log A(a;) dans cette région.
On trouve ainsi la valeur de p (cote de la courbe considérée

du faisceau) et la valeur de l'épaisseur o2 à l'origine

du tube équivalent (ordonnée sur le graphique
r| log A(a;) de l'axe des abscisses relatif au faisceau
de courbes). Remarquons encore que la distance /\ des

deux courbes rj log (a + 6a;)2 et r| A(a;) mesure en
quelque sorte la précision relative puisque :

(a + 6a;)2 — h(x)
A log 1 + h(x)

Ce procédé présente l'inconvénient d'exiger le tracer,
une fois pour toutes il est vrai, d'un assez grand nombre
de courbes r) 21og(l + px). Il ne sera donc avantageux

que si l'on a un grand nombre de tubes à calculer.
2. Considérons la région du tube réel dont on peut

dire à priori qu'elle présente le maximum d'importance
pour la recherche de l'élastique. Prenons dans cette
région une section d'abscisse x L. Nous calculons a
et b de façon que le tube équivalent ait tout d'abord
même épaisseur et même pente dans cette région que
le tube réel. Il est facile de voir qu'alors

a \hz-
h'

b.L

6
2\lh\nL

où hz épaisseur du tube réel dans la section x L,
h'z, pente du tube réel dans cette section.

Donnons maintenant à a et 6, à partir de ces valeurs,
des accroissements da et d6. Ils entraînent une variation

de l'épaisseur du tube équivalent :

da^
dh 2(a + bx) x + -jr I .db.

La variation dh sera don c nulle en x
da
Tb'

Il n'y a en général pas de motif de déplacer la section
(admise en x L) où l'épaisseur réelle et l'épaisseur
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équivalente sont identiques. On posera par conséquent
da »,»--— L ce qui permet d écrire :
d6

dA 2(o + bx) (x — L) db,

ce qui dirige le choix de d6 tel que la courbe des épaisseurs

équivalentes s'approche ce le plus possible » de la

courbe des épaisseurs réelles.

Ainsi, grâce à l'une de ces deux méthodes, il est
possible de trouver rapidement le « tube équivalent » d'un
tube donné quelconque.

13. Résumé de la marche à suivre pour la recherche
de l'élastique d'un tube cylindrique de révolution

d'épaisseur variable quelconque.

Ce tube sera sollicité dans la section origine par des

efforts pouvant se réduire à l'action d'un moment
fléchissant et d'un effort tranchant répartis uniformément

sur toute la circonférence du tube.
On cherche tout d'abord le tube équivalent par l'un

des deux procédés du paragraphe 12, ce qui nous donne
les valeurs de a et 6. Ceci permet de calculer (§8) les

valeurs des constantes c, Y et b. Calculant alors
successivement (§ 10) les symboles nécessaires, de e,, e2,

Cx, C2, jusqu'à Vx, V2, Wx, W2, l'écriture symbolique
des déterminants (§ 10) permet de calculer les constantes

Ax, A2, Bx et B2 pour les conditions aux limites
envisagées. Introduisant les valeurs ainsi trouvées dans

l'expression générale (§ 10) de l'élastique, et s'il y a lieu
dans l'expression de sa première dérivée (§ 10), il est

possible de calculer directement les déformations radiales

et les rotations en des points quelconques du tube
équivalent. Les valeurs ainsi trouvées seront adoptées comme
valeurs approchées pour le tube réel. L'approximation
sera d'autant meilleure que les courbes des épaisseurs

équivalentes et réelles se confondront plus exactement
dans la région utile.

Le calcul de l'argument t b Lg A est simplifié par
les considérations faisant l'objet du paragraphe suivant.

14. Calcul numérique de l'argument t au moyen
de l'excédent fractionnaire.

La valeur de l'argument t telle que nous l'avons
donnée au paragraphe 10 :

t 4, 6 b log (a + 6a;)

est exprimée en radians et peut très souvent sortir du

a TT TT

domaine tabulaire —^ à +75. Les tables usuelles étant
it it

en degrés, grades ou minutes, il s'agit de transformer
l'expression de t de façon à donner en degrés, grades

TT TT

ou minutes la valeur comprise entre — -^ et + —, equi-
it A

valente pour le calcul de cos t et sin t.

Voici les résultats auxquels on est conduit :

Appelons ce excédent fractionnaire » d'un nombre (par
exemple 2,314 ou 3,827) :

a) sa partie fractionnaire elle-même si celle-ci est

inférieure à =¦ (exemple 0,314) ;
it

b) le complément à l'unité, changé de signe, de sa

partie fractionnaire si celle-ci est supérieure à ~ (exemple

— 1 + 0,827 — 0,173).
Posons ß 1,465-871-3.b.
Désignons par K l'excédent fractionnaire de la valeur

de

[ß log (a + bx)]

où le signe log indique le logarithme décimal.

La valeur équivalente de t, pour le calcul de cos t et
sin t est alors :

en radians : I | KI. tc

en degrés : t | K |. 180

en grades : t 1X1.200

en minutes : t IK |. 10 800

Le sinus (sin t) sera positif SU la partie entière du

nombre [ß log (a + 6a;)] est paiiäj et négatif dans le cas

contraire.
Le signe du cosinus (cos t) est celui de K si la partie

entière du nombre [ß log (a + 6a:)] est paire et le signe

contraire de K si cette partie entière est impaire.
Ces règles seront rendues au§»jmatiques par l'emploi

du tableau de calcul du paragraphe suivant.

15. Tableau pour le calcul des déformations à partir
de l'expression de l'élastique.

Le mode de calcul exposé dans les pages précédentes
est résumé dans un tableau. Une ligne intitulée parité

y figure, dans laquelle on marquera le signe + si la

partie entière du nombre [ß log (a + 6a:)] est paire et le

signe — si elle est impaire. Le signe de sin t est alors

le signe indiqué sous « parité » ; le signe de cos t est le

signe résultant du produit du signe indiqué sous « parité »

avec le signe de K.

a 6= ß e, €8

ou p
A, Bx Aa B2

x

a(\-\-px) a+bx
log (0 -f- bx)

ß.lgja + bx)
« parité »

K
t —

COS t —
sin /

— e-, lg (a + bx)

j (a+jliilli
\AX cos Z+Bi sin t

2/i
+ 6a lg (a + bx)

\a4a cos t-\-Bs sin t
2/a

y 2/x + 2/a



BULLETIN TECHNIQUE DE LA SUISSE ROMANDE 229

Remarque : Il est nécessaire de calculer avec précision
la valeur de [ß log (a + 6a:)], puisque seule la partie
fractionnaire de ce nombre sera utilisée.

Exemples numériques.

Afin que le lecteur puisse se faire une idée exacte de la
marche du calcul, nous développons maintenant trois exemples

numériques, dont deux seront exposés en détail, sans

omettre la moindre opération : il s'agit du premier exemple,
traitant du cas le plus simple, et du troisième exemple,
montrant l'application de la méthode au cas le plus
compliqué de calcul de tube. Nous avons choisi, pour les deuxième
et troisième exemples, deux cas de tubes à épaisseurs variables

limités axialement car ce sont là les problèmes pour
lesquels la méthode développée plus haut présente ses

principaux avantages.

16. Exemple 1 (avec exposé des calculs complets).

Tube cylindrique de révolution axialement illimité, de

rayon moyen r 50 cm, à épaisseur variant linéairement
suivant la loi

Ä™ 5 cm ± 0,02 a;0™

et sollicité dans la section origine soit par un moment
fléchissant uniformément réparti sur la section • et dont la
valeur est telle que Mor 1, soit par un effort tranchant
uniformément réparti sur la section et dont la valeur est
telle que Tor 1.

L'utilisation du deuxième procédé du paragraphe 12 est
ici tout indiqué pour trouver les valeurs de a et b. En effet,

par analogie avec la solution du tube à épaisseur constante
axialement illimité, on sait que la ligne élastique s'amortit
très rapidement à partir de la section origine. Calculons
donc le tube équivalent en exigeant simplement qu'il ait
même épaisseur et même pente à l'origine. La comparaison
des épaisseurs réelles et équivalentes fournit le tableau
suivant :

v\ 2,236.068 ; b

Tube croissant.

h

2 VA
£==±0,004.472.136.

cm 0

Epaisseur
réelle cm
équival. cm

10 15 20 30 50

5,000.0:5,100.0 5,200.0 5,300.0 5,400.0 5,600.0 6,000.0
5,000.015,100.5 5,202.0 5,304.515,408.0 5,618.0,6,050.0

Tube décroissant.

cm 0

Epaisseur
réelle cm
équival. cm

5,000.0
5,000.0

4,900.0
4,900.5

10 15 20

4,800.0 4,700.0 4,600.0 4,400.0
4,802.0,4,704.514,608.0 4,418.0

30 50

4,000.0
4,050.0

Ce tableau montre que même dans la section d'abscisse

x 50 cm, la différence relative des épaisseurs réelle et
équivalente ne dépasse pas 0,85 et 1,25 %. Or nous avons
des raisons de penser à priori que cette section est sans
influence sur la forme de l'élastique.

Adoptons donc ce tube équivalent. Nous effectuons les

calculs comme indiqué au paragraphe 13 :

a 2,236.068
b + 0,004.472.136

10 920
C -^g- 10,920.10« <pr l'acier)

1

4\/2
P/17+V/225 + 16c

20,337.14

6= |/-17 + V225 + 16c
4V2

20,311.00

ß log a 10,405.327
parité (de 10) +
K + 0,405.327
t0 \K\. 10.800' =4.377,53'
cos t0 + 0,293.059
sin t„ + 0,956.094

log a 0,349.485.0
ß 1,465.871 x & 29,773.32

A partir d'ici, nous devons (cf. Remarque 1 du § 10)
traiter séparément le cas du tube à épaisseur croissante et
celui du tube décroissant.

/. Tube croissant.

3\
42 Y 42,174.28 1 -133.297,3

+ 160.087,6

Cx + 170,697.2
D, + 3.467,030

Nous sommes dans le deuxième cas des conditions aux
limites du paragraphe 10, avec valeurs encadrées. Il ne nous
faut donc calculer que Rx, Sx, Vx, Wx, Mor et Tor •

— 15,438.249 Rx +0,245.326.3.10-16
16,561.751 Sx —0,062.179.7.10-w

Nombre correspondant Vx —0,016.622.5.10-18
3^645.449.10-16 Wx= +0,025.424.8.10-16

— (€j + 3) log a 16,212.266
nombre 1,630.294.10-16

/ A. Effort tranchant T„ 0 et M„ 1 :

Posons y -rj—, Ax M,

T ^ -6^M„ a

s-fe «

0,012.000

d'où la notation symbolique (§ 10) pour le calcul de Ax

et Bx:
A

1+ 0,245.326.3.10—16 —0,062.179.7.10-161
1—0,016.622.5.10-16 + 0,025.42g8.10-i6|

Ax Bx

ce qui donne :ce q

Aï**

m

1+1 — 0.062.1Ä7.10—16|
— 0,012.000 + 0,025.424.8.10-16

«!ï|p5.326.3.10-i6 +1
0,016.622.5.10-1* —0,012.000

+ 11

0,012.000

4,742.43.10+!6

+ 2,628.58.10+16

/ B. Moment fléchissant M0 — 0 et T„ 1 :

Seule la colonne séparée dans la notation symbolique
change :

0

+ 1

ce qui donne :

~ÂX + 11,948.9.10+ie bx + 47,143.8.10+"

A D
Remarqiie ; dans ce cas A1 -=— et B^ —-

¦'or * or
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II. Tube décroissant.

€2 ex — 3 39,174.28 D2 + 3.142,054
C2 -154,697.1 F 2 —133.387,3

G2 + 110.519,5

Nous ne devons calculer que R2, S2, V2 et W2 :

(ea — 2) log a 12,991.854 Ä, - 0,598.553.7.10i2
- 0,151.707.8.10i2
- 0,056.826.96.10i2

nombre 4,389.034.10+" W2 + 0,037.349.64.10"

nombre 9,814.180.10+" S2

(«s — 3) log a + 12,642.369 V2

0,012.000

// A. Effort tranchant T„ 0 et Mw 1.

1—0,598.553.7.10" +0,151.707.8.10" I

| + 0,056.826.96.10" + 0,037.349.64.1012 |

É B2
d'où

I2 —1,146.958.10-" B.t=+ 2,066.369.10-"

77 B. Moment fléchissant M„ 0 et T„ 1 :

Seule la colonne séparée dans la notation symbolique
change :

0

+ 1

d'où

Z2= + 4,897.456.10-" B2 + 19,322.61.10-"

Nous avons alors calculé un certain nombre de points de

l'élastique pour les cas A et seule la déformation à l'origine
pour les cas B. Nougsutilisons pour cela le tableau du
paragraphe 15.

A : T0 0 ; Mo, 1. (Voir le tableau au bas de la page).

B. en x 0 ; M0 0 ; T„ 1.

Tube croissant

A cos t + B sin t + 48,575.6.10"

+ 894,040II
T¦* en

Tube décroissant

19,909.5.10-"

+ 968,203

La figure 1 représente les deux élastiques des tubes croissant

et décroissant dans le cas de charge A : T0 — 0 ;

M„ 1. Le tracé de l'élastique du tube à épaisseur
constante 5 cm conduit à des comparaisons intéressantes.

Pour terminer cet exemple, indiquons, pour permettre la
comparaison des tubes croissant, décroissant et à épaisseur
constante 5 cm pour le cas de charge B : M0 0 ; T„ 1,

que la déformation radiale du tube à épaisseur constante a
la valeur :

Vo-
Vo_

T 930,589.

Fig. 1. — Comparaison des
élastiques de trois tubes de rayon
moyen 50 cm :

I tube à épaisseur croissante
II tube à épaisseur constante

III tube à épaisseur décroissante
de même épaisseur 5 cm
à l'origine, sollicités de
façon identique dans la
section origine par M0 et T0
unitaires, tels que

M„ 1 et T0 0.

y/Mot

\\\ffl

xcm

17. Exemple 2 (résumé).

Soit à calculer la ligne élastique d'un tube tel que le montre
la figure 2. Ce tube se compose d'une première partie
cylindrique de révolution dont l'épaisseur varie suivant la loi
h (a + bx)2 de 56 mm à 19 mm sur une longueur de
90 mm, et d'une deuxième partie cylindrique de révolution

à épaisseur constante 19 mm illimitée axialement. Le
rayon moyen du tube est r 1150 mm.

Les sollicitations dans la section origine du tube sont
telles que l'on ait

M0
Eh

t
¦"¦ mm /mm de circonf. et =- 1 mm /mm de circonf.

itlimité axialement'

L-90

Fig. 2. — Tube cylindrique de révolution à épaisseur variable,
objet du calcul de l'exemple 2.

a + bx
lg (a + 6a;).

ß.lg(a + bx)
parité

K
t

cos /
tin t

bx)
10+". nombre

10-". (À-, cos * +Bj sin *]

y M„

0

+2,236.068
0,349.385

10,405.327
+

+0,405.327
4.377,53'

+0,293.059
+0,956.094
15,264.938
18,405.110

+3,902.981

+71,834.8

2,258.429
0,353.807

10,533.992
+

—0,466.008
5.032,89'

—0,105.585
+0,994.303
T5,078.465
11,980.220

+ 2,112.876

+25,312.7

10

2,280.789
0,358.085

10,661.380
+

—0,338.620
3.657,10'

—0,485.547
+0,874.210
16,898.018
7,907.113

—0,004.742

—0,037.50

15

303.150
,362.322
,787.536
+

,212.464
294,61'
,785.387
,619.004
,719.317
,239.829
,097.541

—10,990.8

20

2,325.511
0,366.518

10,912.468
+

—0,087.532
945,35'

—0,962.426
+ 0,271.538
Ï6.542.350

3,486.178
—3,850.479

—13,428.5

Tube croissant

0

+ 2,236.068
0,349.385

10,405.327
+

+0,405.327
4.377,53'

+0,293.059
+0,956.094
13,686.907
48,630.26

+1,639.517

+79,730.1

5

2,213.707
0,345.120

10,275.372
+

+0,275.372
2.974,02'

+0,648.558
+0,761.164
13,519.836
33,100.62

+0,828.977

+27,489.7

10

2,191.347
0,340.711

10,144.102
+

+0,144.102
1.556,30'

+0,899.264
+0,437.403
13,347.117
22,239.07

—0,127.582

— 2,837.3

15

2,168.986
0,336.257

10,011.480
+

+0,011.480
123,98'

+0,999.349
+0,036.056
13,172.619
14,880.544

—1,071.706

-15,947.6

20

2,146.625
0,331.756
9,877.482

-0,122.518
1.323,19'

-0,926.835
—0,375.467

12,996.311
9,915.418

—1,838.894

—18,233.4

Tube décroissant
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Nous indiquons le principe de calcul et résumons les résultats

obtenus.
Le premier tube, à épaisseur variable, satisfait aux conditions

aux limites suivantes :

eni 0 M0,T„
où yL et y'L sont à considérer comme
deux variables paramétriques.

épaisseur constante, satisfait aux

mu.
<aoo

en x L Vl, y L

même remarque que ci-dessus.

Le deuxième tube, à

conditions aux limites :

en x L yL, y'L
en x infini y 0

On. écrira enfin que les sollicitations ML et TL dans la
section d'abscisse x L sont les mêmes pour les deux tubes,
ce qui permettra de calculer yL et y'L.

Le problème est ainsi complètement déterminé.
La marche du calcul est la même que pou'' l'exemple

suivant (exemple 3), qui est traité en détail. Nous n'indiquons

ici que les résultats des calculs.

x et y étant exprimés en mm, on obtient :

a 7,483.315 Les constantes du tube à épaisseur
variable sont :

Ax= + 7.967,041 ; Bx + 1.755,782
A, — 304,250

et si t 26 Lg
B, + 780,374

bx)

b =—»34.716
6l + 3,585
26 + 0,311
€2 ï + 0,585
l'élastifflÉie s'écrit :

y (a + 6a;)-*! [Ax cos t + Bx sin t] + (a + bx)+et
[A2 cos t + B2 sin t].

La ligne élastique du tube illimité à épaisseur constante
se calcule par l'expression :

y -o.oo8.69(«-w) [211,252 cos (0,008.69 a —90)-
— 306,871 sin (0,008.69 a; —90)]

Le calcul d'un certain nombre de points de l'élastique
fournit le tableau suivant :

x mm y mm

0 + 689,294
10 + 633,200
20 + 578,868
30 + 522,206
40 + 467,608
50 + 414,142
60 + 359,024
70 + 308,441
80 + 258,685

x mm y mm

90 + 211,251
100 + 168,526
110 + 130,199
120 + 96,229
130 + 66,336
140 + 40,423
150 + 18,110
200 — 49,523
250 — 65,734

La figure 3 permet la comparaison de la ligne élastique
de ce tube avec les lignes élastiques des tubes à épaisseurs
constantes :

h 19 mm h 56 mm
sollicités de façon identique dans la section origine.

18. Exemple 8 (avec exposé complet des détails du calcul).
Dans ce dernier exemple, nous nous proposons de calculer

le moment fléchissant et l'effort N radial agissant à l'angle A
d'une pièce dont la forme (fig. 4) rappelle celle de certains
pistons de pompe. La figure donne les dimensions et les
forces appliquées : le moment agissant à l'extrémité libre du
tube proviendrait, par exemple, d'un couple de frottement.

1° Calcul de la plaque :

Pour l'exposé du calcul des plaques, se reporter, par exemple,

à l'ouvrage de Timoshenko : Strength of Materials,

Fig. 3. — Comparaison des
élastiques de trois tubes de rayon
moyen 1150 mm :

I tube à épaisseur cons¬
tante 19 mm

II tube à épaisseur va¬
riant de 56 à 19 mm

III tube à épaisseur cons¬
tante 56 mm

sollicités de façon identique à
l'origine avec M0 et T0
unitaires,

M Ttels que Bgafl-fjn et ¦=? 1.

wi

IZDO

1100

1000

loo reo no isi^ï^.no 240 m 280 5M mm^—I0 20 »0 60

Mac Millan, London 1936, 3e édition, pages 488 ss., en
particulier l'équation 85, page 492.

L'équation de la ligne élastique de la plaque s'écrit :

nT4 p~i c ~ï

avec D Ë.
12' Eb 6,181.319.10e kg.mm

Lg symbole du logarithme népérien ;

Cx, C2, C3 constantes à déterminer par les conditions
aux limites.

10 mm

s mm

p=o,oi KÇ/mm

tlHUUH
"y plaque

x plaque

uuiuuut. Angle A

P-25. ITlrç

M-w ^""toiin drdnfirerence

2 r too mm.

t ç^"b.e

x hübe

Fig. 4.



232 BULLETIN TECHNIQUE DE LA SUISSE ROMANDE

En dérivant cette expression par rapport à x, on obtient :

dy pa? Px Cxx O.
dx==Ï6D + cHD{2LsX-i) 2 ¥
dh/ _ 3pa^ J>_
dx2~~ 16D + 8TtD[ gx l} 2 + x2

Notons que le moment fléchissant s'exprime par la rela-
t ion :

| tdhj 1 1 dy\ 1 -A |
M — i) (j4 H -p où — 0,3 pour l'acier.

\dar m a; ax] m r

Les conditions aux limites de la plaque sont :

n dy
en x 0 : -r- 0 ;

da;

dy
en a: r : -j- y et 2/ 0.

La valeur de i/' est à considérer comme un paramètre
variable. Nous avons choisi la valeur y 0 à l'angle A
(x r), car il faut bien choisir une origine des déformations

et le choix de cette origine facilite les calculs.
Conventions de signes :

les y sont comptés positivement vers l'intérieur de la

pièce ;

les moments fléchissants positivement lorsqu'ils tendent
les fibres inférieures de la plaque.

Calculs des constantes Cx, C2 et C3 :

en x 0 ; -r- 0.
dx

it C2 0On a (x Lg x) x o 0 par conséquent

en x r ; y 0 d'où une équation donnant :

C3 625 Cx + 3,522.48.10-3

dy
dx

Cx

y' d'où une équation fournissant Cx :

6,394.307.10-6 — 0,040.000 y'

et par élirnination de Cx, dans l'équation précéda t
celle-ci :

Cs — 478,96.10-8 _ 25,000.00 y'.

Calculons alors le moment MA, à l'angle A de la plaque,
en fonction de y :

-3^px2-~(2,6hgx-r-0,7) + 0,65.D.Cx~0,7D.^M

d'où : en x r 50 mm
MA — 64,820.326 —16,071.43.104 y' [I)

2° Calcul du tube :

Il s'agit tout d'abord de chercher le tube équivalent.
Le tube réel a une épaisseur :

h= 10 —0,14 a:.

Utilisons le deuxième procédé du paragraphe 12, en remarquant

que vu les forces appliquées sur la pièce, nous pouvons
considérer à priori que la section la plus importante du tube
est la section réelle de plus grande épaisseur, donc pour
x 7,5 mm. Dans cette section, l'épaisseur réelle est :

h 8,95 mm et h' -0,14
on trouve alors :

6
h'

2dh
0,023.398.4

Calculons l'épaisseur équivalente à l'extrémité libre du
tube : on trouve 3,989 (a + bx)2 à la place de l'épaisseur
réelle 3,000 mm. La différence nous paraît un peu grande.
Introduisons donc une variation db ; il vient :

dh 169,745 db dans la section x 50 mm.

A une variation db — 0,000.589 correspond une variation

dh — 0,1 mm.
Sur cette base, nous adoptons alors b •—0,027 d'où:

a + 3,194.160

ce qui permet de calci|l|||l
épaisseurs :

0,027.000

tableau de comparaison des

x mm 0 7,5 20 30 40 50
h réel mm 10,000 8,950 7,200 5,800 4,400 3,000
h équiva lent mm 10,202 8,950 7,045 5,684 4,470 3,401

La loi équivalente nous semble être suffisamment voisine
de la loi réelle ; les résultats du calcul confirmeront ce point
de vue, car ils montreront l'importance primordiale de la
section d'abscisse x 7,5 mm.

Calculons alors successivement, suivant le schéma habituel

:

.219,18: Eb
2.10*

6,891.56 ;

15,283.12

+ 75,877.6
Dx + 415,164.2
Fx — 4.148,904
Gx + 8.173,287

T

El

Cx

b~~ 0,91
6 6,576.08

2,197.802.10*

9,639.687
12,283.12

C2

F9

x 0

bx)
bx)-

+ 3,194.160
0,504.430.1
4,862.548

+
— 0,137.452
1.484,48'
— 0,908.205

+ 0,418.522
• 7,709.266

a yfh — fc.7,5 + 3,167.148

pour

a + bx

log (a +
ß.log (a
parité
K
t
COS t
sin t

-ejgfo+ i»)
nombre + 1.953.144.jHEjg

-(€!+l)lg (a+fexi*—8,213.696
nombre +6,113.701.10-9
+ €2lg (a + bx) + 6,195.975
nombre 1,570.274.106
+ (€f.—l)lg(o+6a:) =+5,691.545
nombre 4,915.247.106

H,= — 1,773.855 10-«
Kx + 0,817.434 10—8

Px —1,382.583.10-a
Qt + 3,027.577 10-^
Ht —1,426.130.106
K2 + 0,657.194 10"
P2 + 2,210.984 106

Q, + 0,902.984.106

(a + 6a:)8 1.062,038
{a + bx)*Eb

12

6

a + bx

.+194,512.4.10*

—0,050.717.6

— 34,387.4

+ 309,947.0
— 4.430,082.3

G2 + 2.734,953.6

pour x 50

a + bx 1,844.160
log (o + bx) 0,265.926
ßlg(a + bx)= 2,563.439
parité +
K —0,436.561
/ 4.714,86'
cos« —0,197.982
sin t + 0,980.204
—(61+2)lg(a+6;r) —4,596.022
nombre 2,534.998.10—6

—(6i+3)lg(o+te) —4,861.948
nombre 1,374.207.10—s

+ (e2— 2) lg(a+6.-K) +2,734.544
nombre 5,426.800.10"
+ (e2— 3)lg(a+6.-B) +2,468.618
nombre 2,941.835.10»

flj +0,724.279.10—8
S, + 0,289.345.10-6
Vx + 0,238.917.10-5
Wi —0,066.231.10-s
R% =.-1,174.985.10»
S2 —0,376.112.10»
Vs + 0,104.444.10»
iy2 +0,282.796.10»

(o + 6a:)« 39,336.13
utiles

_
12

plus £(,(a+6a:
loin 12 66

~ JS*(a+6x)»
"

a + bx ~
+ 0.012.193.19.10-4

MLr —0,694.018.5.10—6
TL, =—0,060.966.0.10—6

0,138.803.7.10-4
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Les conditions aux limites de ce tube sont les suivantes

0
dy
dx y', paramètre variable ; y 0.

En posant y 0, nous considérons que la rigidité radiale
de la plaque est si grande par rapport à la rigidité radiale
du tube que la déformation radiale de la plaque peut être

négligée.

dx2
50 Mu et da?~ lLr-

Rapportons-nous maintenant au tableau des conditions

aux limites du paragraphe 10. Nous voyons que nous sommes

dans le deuxième cas, avec inversion des indices. La solution
s'écrit symboliquement :

IHX Kx H2 K,\ (y\
\Pi <?i Pi <?2/o \y')o
IRX S1 Ä2 St\ (Mr\
\VX Wx y2 Wjso \Tr)oO
Ax Bx A2 B2

Nous calculons ce système de quatre équations à quatre
inconnues suivant le schéma de Runge et Kœnig (loc. cit.),
ce qui donne les réaultats du tableau ci-contre :

Calculons maintenant y0" et y0'" :

i/o" =R1A1 + SXBX + R2A2+S2B2 et

2/o VXAX + WXBX + V2.42 + W2B2.
0 0 0 0

Calculons successivement Rx

- lex + 2) log (a + bx)
—8,718.126

nombre 1,913.701. «H9
— (€, + 3) log (a + bx)

— 9,222.556
nombre 5,990.237.10-1»

iîj + 0,146.265.10-9
Sx + 0,570.327.10-9

W, 0

+ (% — 2) log (a + 6a;)

+ 5,187.115
nombre 1,538.563.105

+ (62 —3)log(a+6x)
4,682.685

nombre 4,815.984.10*

Vx =-
Wx

d'où :

yô
yô

Or

0,847.596.10-1"
0,670.485.10-1"

0,110.466.105
0,331.871.105

— 0,272.889.10*

W2= +0,411.211.10*

Bi
S2 -- - 0,331.871.106

—1,122.43.10-9 +0,199.170.y'
— 0,849.510. lO-io _ 0,014.853.2 y'

a«Eb
MA M0 2/o'0_ 12

— 2,183.26. IQ-« + 38,741.0.10* y'

Egalant maintenant les relations (I) (MA plaque) et
il vient :

yA' — 1,182.54.10-^ radians (=—24,39")
d'où j/0'"= + 1,756.37.10-e et enfin :

(II)

ri»

MÂ= -45,815 kg mm/mm circonférence

NA + 5,740 kg/mm circonférence

Le signe de NA correspond à une compression radiale de
la plaque.

Remarque :

On s'aperçoit ainsi que le moment agissant dans la section
origine du tube est environ 100 fois plus grand que le moment
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agissant sur l'extrémité libre. On peut donc penser que les
sollicitations dans la section x 50 mm du tube ne jouent
qu'un rôle négligeable sur l'élastique au voisinage de la
section x 0, et comme dans ce cas la ligne élastique s'amortit

très rapidement à partir de la section origine, il y a
lieu d'estimer que ce tube se comporte dans la section
origine, à très peu de chose près, comme tube illimité
axialement.

Le calcul vérifie d'ailleurs pleinement cette remarque. En
effet, nous avons vu (§ 10, Remarque 1) que pour un tube
décroissant illimité axialement, les contraintes Ax et Bx
étaient nulles.

Or introduisons la valeur de y' dans A2 et B2 •

A2= +2,835.569.10-io ;

B2 + 6,153.245.10-10 ;

recalculons y0" et y0'" en séparant les termes d'indices 1
des termes d'indice 2 :

yô' — [(0,000.067.197)T + (2,355.317)2].10-6
Vô" + [(—0,000.115.697)! + (1,756.485)2]. 10-6

Par conséquent, les termes d'indices « 1 » n'apportent
qu'une contribution égale à environ 0,03 °fw pour MA, et
environ 0,07 %0 pour NA, de la contribution des termes
d'indice ce 2 ». Les termes d'indices ce 1 » sont donc négligeables

par rapport aux termes d'indice « 2 », ce qui prouve
que le tube se comporte, dans la section origine, presque
parfaitement comme un tube axialement illimité.

19. Conclusions.

La méthode, exposée systématiquement dans les pages
qui précèdent, permet le calcul des déformations, et par
conséquent des contraintes, en tous points de tubes
cylindriques de révolution à variations quelconques d'épaisseur
(variations aussi bien lentes que rapides), les conditions aux
limites pouvant être absolument quelconques (par exemple :

tube limité axialement), à condition de présenter la symétrie
de révolution autour de l'axe du tube.

Les quelques exemples traités montrent la marche du
calcul numérique dans tous ses détails.

Bien que ces calculs soient singulièrement plus courts que
ceux qu'exige l'application des développements en série des

fonctions de Bessel ou de Legendre (seul moyen général
d'intégration de toutes les équations différentielles linéaires
à coefficients variables, dont celle du tube est un cas
particulier), les résultats obtenus sont néanmoins parfaitement
rigoureux lorsque la loi réelle de variation d'épaisseur est

parabolique. Les résultats ne sont qu'approchés pour toute
autre loi de variation d'épaisseur, mais cette approximation
dépend simplement de l'écart entre la loi réelle de variation
d'épaisseur et la loi parabolique admise pour le calcul. Il
sera presque toujours possible de trouver une loi parabolique

représentant, dans le domaine utile, les variations
réelles avec une approximation bien sullisante, sinon de
même ordre de grandeur que les tolérances de fabrication.

Sainte-Croix, le 9 février 1945.

LES CONGRÈS

Association suisse pour l'aménagement
des eaux.

Assemblée générale du 14 juillet, 1945 à Aarau.

L'Association suisse pour l'aménagement des eaux a tenu,
le 14 juillet 1945, à Aarau, sa trente-quatrième Assemblée

générale, sous la présidence de M. le Dr O. Wettstein.
Elle a approuvé les comptes et la gestion de l'exercice 1944

et le rapport annuel de l'Association et a procédé aux
nominations statutaires.

Après plus de trente années d'activité, M. le Dr Wettstein,
président, a annoncé son intention de céder sa place à une
force plus jeune. L'assemblée a désigné pour lui succéder
M. le Dr P. Corrodi, conseiller d'Etat à Zurich, jusqu'ici
deuxième vice-président. M. le conseiller d'Etat W. Buchs,
de Fribourg, a été nommé deuxième vicelrarésident. M. le
Dr R. Neeser, de Genève, a été nommé membre du comité
et du bureau.

Différents orateurs ont tenu à relever avec quel inlassable
dévouement et quelle compétence M. Wettstein s'est dépensé

pour la cause de l'aménagement des eaux en Suisse.

La partie administrative fut suivie d'une conférence de

M. J. Hug, géologue à Zurich, sur le sujet ce Problèmes
hydrologiques et juridiques que pose l'utilisation de nappes d'eaux
souterraines par les installations de thermopompage ».

Le conférencier exposa succinctement l'origine et la répartition

en Suisse des nappes souterraines, les sondages et
essais effectués pour déterminer leur température et les

variations de celle-ci, et indiqua les problèmes juridiques
que pourrait poser leur utilisation pour des thermopompages.

Une très belle série de projections lumineuses
agrémenta cet exposé.

Au cours du repas qui groupa ensuite les quelque cent

cinquante participants dont de nombreux représentants des

administrations fédérales et cantonales intéressées aux
problèmes de notre économie des eaux et des sociétés et entreprises

industrielles spécialisées dans l'aménagement de nos
forces hydroélectriques, M. le Dr h. c. A. Zwygart donna

quelques renseignements sur l'état actuel des travaux de

construction de l'usine hydroélectrique de Rupperswil-Auen-
stein. Ces travaux sont activement poussés et l'on espère

pouvoir mettre en service cette année encore cette importante

centrale qui fournira environ 200 millions de kWh
dont 90 en hiver et 110 en été.

L'orateur, faisant allusion à certaines résistances, rappela

que la création d'usines au fil de l'eau doit nécessairement

être accompagnée de celle de grands bassins d'accumulation
saisonniers si l'on veut que nos forces hydrauliques soient
rationnellement utilisées.

Dans l'après-midi, une visite de l'usine en construction de

Rupperswil-Auenstein permit aux participants de se rendre

compte des progrès réalisés dans les travaux depuis la visite
du 20 août 1943. Le gros œuvre est actuellement terminé et
la retenue d'eau atteint deux tiers de sa cote maximum. Un
des groupes turbo-alternateurs est entièrement monté,
l'autre est en cours de montage ; on travaille aux tableaux
de commande et canalisations électriques. Ceux de nos
lecteurs qui voudraient se remémorer les caractéristiques de

cette usine, qui comprend deux groupes de 25 000 CV, 1 un
destiné aux C. F. F., l'autre aux N. O. K., en trouveront une
description détaillée au numéro d'août 1943 de la revue Cours

d'eau et énergie ainsi qu'au numéro du 22 décembre 1944
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