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|

Eaxtrémité A (@ =a =90 ; sina =1 ; cosa = 0).

p=—0,11733 + 0,11734 > 0. (1)
d2o
152:%0,11733—#0,11734;\50. (2)
d3y
e 0. (3)

Equilibre général :

— 0,02439 + 0,56439 — 0,02439 + 0,56439 = 1,08 em
1,08 = 1,08. (4)

Section médiane :
dy

— =0)+0,02439—0,02439—0,56439+0,56439=0. (5
dx )

La compression du sol atteint, sous la charge ponc-
tuelle (z=0; ¢ =0)
p = + 0,02439.1.1 4 0,56439.1.1 = 0,58878 cm

et le moment fléchissant médian

20

M = —(EJ) ﬂ = -+ 5451100 cm k = + 54,51 mt
da?

un chiffre naturellement plus fort que sous la base

répartitrice.

Conclusions.

Supposant I'élasticité parfaite du sol comprimé, mais
abstraction faite de I’entrainement dit aux déforma-
tions inégales, supposant donc la proportionalité des
enfoncements avec les efforts verticaux, qui les provo-
quent, on montre que les conditions aux extrémités de
la poutre de longueur limitée, et celles aux affleurements
de la poutre de longueur illimitée, conduisent le calcul a
des fonctions trigonométriques amorties par des expo-
nentielles 4 exposants négatifs et positifs. Les cons-
tantes d’intégration donnent aux puissances négatives
du nombre e une influence prépondérante, mais laissent
subsister dans tous les cas étudiés les termes a exposant
positif ; Iabsence de ces derniers aurait empéché de
donner satisfaction simultanée & toutes les conditions
d’extrémités, de contiguité et d’équilibre.

On remarque, en passant, que I’¢lasticité de la poutre
abaisse ses moments fléchissants maximums en concen-
trant la pression du sol aux abords de la charge ; la
longueur de la cuvette de pénétration ne dépend toute-
fois pas de la grandeur de la charge sur le sol censé élas-
tique linéairement, mais seulement de sa disposition.

On voit enfin, & travers un sommier armé, que la trans-
mission des charges se fait probablement sur une lar-
geur plus grande que ne le fait la répartition a 459 géné-
ralement admise ; Pélasticité relative du sol et de la
poutre influencent cette largeur dans une proportion
que le laboratoire de statique pourrait aider a fixer pra-

tiquement.
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Recherche de I'Elastique

d'un tube cylindrique de révolution
a épaisseur variable,

par Jacques PASCHOUD, ingénieur E. I. L.,
ingénieur aux Usines Paillard S. A., Sainte-Croix.

1. Introduction.

Dans son article paru dans ce méme numéro, M. le
professeur A. Dumas expose les difficultés trés grandes
qui s’opposent & I'intégration algébrique rigoureuse des
équations différentielles des enveloppes et il s’attache
particulierement & I'¢tude du tube cylindrique de révo-
lution a épaisseur variable. II montre comment, en
généralisant la solution de 1'équation différentielle du
tube & épaisseur constante, on peut obtenir les défor-
mations dans la section origine du tube. Partant de ces
déformations, il est alors possible de trouver toute I’élas-
tique par une intégration numérique ou graphique point
par point. Cette méthode a I'avantage considérable d’étre
immédiatement applicable & n’importe quel cas d’enve-
loppe de révolution. Par contre, elle ne peut étre utilisée
que pour des enveloppes axialement illimitées dans un
sens, ou du moins que 'on peut considérer comme telles
en vertu du principe de Saint-Venant. Enfin, pour trou-
ver la déformation en un point quelconque de cette
enveloppe, elle exige une intégration point par point
rumérique ou graphique & partir de la section origine.

Nous attachant au seul cas du tube cylindrique de
révolution & épaisseur variable sollicité dans la section
origine par un moment fléchissant et un eflort tran-
chant répartis uniformément dans cette section, nous
avons cherché & mettre I’é¢lastique de ce tube sous une
forme algébrique propre 4 permettre la détermination
suflisamment précise des déformations en un point quel-
conque, et ceci par simple substitution de nombres
aux symboles algébriques. Notre but était encore d’en-
visager non seulement le probleme du tube illimité
axialement mais aussi toutes les conditions aux limites
possibles pour la section terminale du tube.

2. Principe de la méthode.
L’idée développée fut la suivante : chercher une loi
régissant la variation d’épaisseur du tube qui permette,
par lintégration rigoureuse de DPéquation différentielle
proposée d’obtenir I'élastique du tube sous la forme
d’une fonction connue ; puis généraliser cette fonction
de fagon A pouvoir emvisager d’autres lois de variation
d’épaisseur.

Avant de développer ce principe, nous youdrions
attirer Pattention sur le fait que les calculs effectués
pour obtenir le résultat algébrique paraitront probable-
ment un peu longs ; néanmoins Papplication de ce résul-
lat, acquis une [ois pour toutes, 3 un probleme numeérique

donné sera beaucoup plus courte.
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8. Transformation de I'équation différentielle du tube.

Considérons I’équation du tube cylindrique de révo-

lution &
gine par un moment et un effort tranchant uniformé-

épaisseur variable sollicité dans sa section ori-

ment répartis sur cette section. Cette équation a été
établie en détails par M. le professeur A. Dumas dans
son article précité, auquel le lecteur est prié de se repor-
ter. Notons en passant que pour établir cette équation
on envisage un rayon moyen constant du tube. Par
conséquent, en toute rigueur, I'épaisseur devra varier
symétriquement par rapport au cylindre moyen. Si ce
n’est pas le cas, les variations relatives de ce rayon
moyen devront tout au moins &tre faibles.

En utilisant les mémes notations et les mémes con-
ventions de signes que le professeur Dumas, I’équation
différentielle s’écrit :

. R, h RN, A y
y”+6,y’+3[<,> +;]y+,72y:0~ (1)

y = ordonnée courante de I'élastique cherchée ;
h = épaisseur variable, suivant une loi quelconque ;
! )
12 f 1
A = constante = — 1 — — |
r m
r = rayon moyen du tube ;

m = coeflicient de contraction latérale ; 1/m = 0,3
pour lacier.
Les dérivées sont prises par rapport a 'abscisse cou-
rante x.
Transformons cette équation différentielle en chan-

geant de variable ; posons :
t = h®
d’ou t' = 3 h2h'

t" = 3 [2hh’2 + h2h"]

et introduisons dans I’équation différentielle (1) apres
I'avoir multipliée par ¢ = h%; il vient :
ty'V + 2t'y" + "y" + Aty = 0. (2)
Mise sous cette forme, cette équation différentielle
rappelle, par la forme de ses trois premiers termes,
Iéquation différentielle dite d’Euler :

zny(n) + plx"‘ly‘"—‘) + Ko + Py = 0
dont on connait une solution particuliére :

y = af ou K est une constante.

4, Equation caractéristique généralisée.
Par analogie, posons
— (X o K est une constante & déterminer.

11 est fort probable que cette expression de y ne salis-
fera pas a I’équation différentielle proposée quelle que
soit la fonction h = h(z), mais on peul espérer que cetle
transformation rendra possible la détermination de la
fonction h = h(z) de facon que y = (" = h*% soil solu-
tion rigoureuse de Péquation différentielle (1). Pour
simplifier I’écriture, remplagons 3K par o; il vient

successivement :

y = h*;

’

y o o—asl
y' = oth“[(a—1)<h> + H

y" = o] (@ —1) 0—2) () +3a—
g7 =it e— 1) @—2 =3 (7 ) +

, 12] " 3] ”2 /hl] " hIV
+6(a—1) (a—2) 0 (o) P L }

KRR
D +7{}

En introduisant ces expressions dans I’équation diffé-
rentielle (1), on trouve, aprés simplifications, ce que
nous pouvons appeler I'équation caractéristique génera-
lusée :

h'? 1\h"2h"
(a+1)a2(a—1)< ) +6(a+ Haa—g ) + l

+ 3a2h"? 4 4<a + %) ah'h" + ahh'V + A = 0.

/

(3)

Ainsi, pour que la solution de notre équation différen-
tielle (1) soit de la forme y = A% il est nécessaire que
la fonction h = h(x) satisfasse & I’équation différen-

tielle (3).

5. Recherche d'une loi de variation des épaisseurs.

Cherchons une solution particuliére de cette équation
différentielle (3). Cette équation serait satisfaite en par-
ticulier identiquement en a si chaque terme était par
exemple une constante et si nous calculons alors a de
fagon que la somme de ces constantes soit égale a zéro.
Pour que chaque terme soit constant, il est nécessaire
qu’on ait simultanément :

h'?

T
ce qui suflit, puisque cette deuxiéme condition entraine
hl// — llIV —

— ¢ = constante et A" = constante

L’intégrale de h" = constante est h = ay+ a;x + x>
d’ou K = a; + 2ayz,
en introduisant dans la premiére condition, on obtient
I'identité en a :
a} + hdaa,r + 4a3a® = cay + cax + caz®
d’ou par identification terme a terme :
a; = == 2y/aga,
Par conséquent, h sera de la forme
h = (a + bx)?

a et b étant deux parametres arbitraires quelconques.

8. Elastique rigoureuse du tube répondant a cette loi.

Ainsi donc lorsque h = (a + ba)?

reuse de DPéquation différentielle (1) est de la forme

Iinté .
intégrale rigou-

y = h®% Pour calculer la constante a, il suflit d’intro-




BULLETIN TECHNIQUE DE LA SUISSE ROMANDE 223

duire cette expression de h dans I’équation différen-
tielle (3), qui devient alors une équation algébrique du
quatrieme degré en o.

Posons c==,

A
bh
cette équation s’écrit apreés réduction :

(20 4+ 4) (2a + 3) 2a (20— 1) + ¢ = 0. (4)

Remarquons qu’en posant n = — (2a + 3), I'équation
(4) ne change pas. La courbe représentative du membre
de gauche de I'équation est donc symétrique par rap-

. 3 .
port & la droite 20 = —5- Faisons donc¢ une trans-
5 3
lation d’axe de coordonnées en posant &= 2a - 5 ;
on obtient alors I'équation bicarrée

16 28— 13682 + (225 + 16¢) = 0

E—"‘\/ \/4—0

et a=— 2i4\/17+4\/4~c

On obtient ainsi quatre valeurs de o qui sont racines

d’ou I'on tire :

de Iéquation (4). On a donc quatre intégrales particu-
licres indépendantes, et comme I’équation différentielle
(1) est linéaire, la solution générale s’écrit :

y = Ch% 4 Coh® + C3h% - C,h% (5)

ou Cy, Cy, Cg et C, sont des constantes a déterminer
par les conditions aux limites. Nous rappelons que

h=(a+ ba)2

7. Mise sous forme réelle de I’expression de I’élastique.

L’expression (5) ne fournira directement la solution
cherchée que si a est réel, c’est-a-dire lorsque ¢ =4,
ce qui, pratiquement, est tout a fait exceptionnel.

Dans le cas le plus courant, ou les valeurs de a sont
complexes, il est donc nécessaire de transformer la
relation (5) de facon & ne faire apparaitre que des valeurs
réelles. Ceci sera évidemment possible & priori puisque
Iélastique existe réellement ! Le calcul est trés simple.

3 N
Mettons o sous la forme o = = =y b1, ot le
2

symbole i représente y — 1. Aprés élévation au carré
et identification des parties réelles et des parties ima-

ginaires (le double signe sous la y/ représente, outre la

valeur & considérer, une valeur étrangere que 'on peut
reconnaitre en calculant le module de a) on obtient :

1 R
Y= —— /17 4225 + 16¢
WiV
— 17 4+-/225 + 16¢ | G
M\/ 3 (6)
o= — *I*T*FbL

Introduisant ces résultats dans la relation (5), il vient :
y =h 03[0 h+¥ 4 C ¥4 BT Csh T 4 C 0]
avec h = (a + bz)2

Or posons maintenant : 1 = A%

On a successivement : d¢ Lgh = Lg n ou le signe Lg
indique le logarithme népérien,

N — hdi — GidLgh
d’ou D’écriture
Y= h—(T+§)[Cle+ib Lg/l+ Cze_ibLgll]+llT—%[C3e+ibLgl' e
4 C—idLeh),
Selon la méthode habituelle, chaque parenthese est
identique & une expression de la forme
A cos (dLgh) + Bsin (dLgh)
ce qui permet enfin d’écrire
y = k(13[4 cos (d Lgh) + B, sin (dLgh)] + |
4+ R [ o cos (dLgh) 4 Bysin (dLg h)] ’
avec h = (a + ba)2

—
~1
~

Ay, By, A, et By sont des constantes a4 déterminer au
moyen des conditions aux limites.

Cette expression (7) représente la solution cherchée
mise sous forme réelle.

Comme d est essentiellement positif et que h ne peut
évidemment pas devenir négatif, cette valeur de y sera
toujours réelle lorsque a est complexe.

8. Résumé des résultats obtenus jusqu’ici.

Lorsque la loi de variation d’épaisseur du tube est
donnée par

h=(a + ba),

Iélastique du tube sera calculée rigoureusement par
P'une des deux expressions :

y = Cih% 4 Coh® + C3h% 4 C h% (5)
3,1
avec 0y, 23,4 = _/Ii/I \/'17 b yb—c

il gEs % <l—niz2> est plus petit ou égal & 4

ou

y = k(T[4 cos (0 Lgh) + Bysin (dLgh)]+ (7)
+ RY 4[4, cos (d Lgh) + Bysin (dLgh)]

1
avee if= 0 \/17 ‘*‘\")20 - 16 ¢
: 4

t/ T 7
el b:—ﬁ\/—l + /225 —{—l()C

sl ¢

12- 1
= = Il — — ) est plus grand que 4.
r2ht < m2 plus 8 1

Cy, Cy, Cy, Cy5 Ay, Ay By et By étant des constantes
a déterminer par les conditions aux limites.
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9. Cas particulier du tube a épaisseur constante.

Si dans l’expression de I’épaisseur h = (¢ + ba)?
nous faisons tendre b vers zéro, h tend vers une cons-
tante et il semble & premiére vue que I'expression trou-
vée de D'élastique tend, elle aussi, & se réduire 4 une
constante, ce qui serait évidemment paradoxal. Mais un
examen plus attentif révele que ¢, donc aussi o, Y et d,
tendent vers I'infin1 lorsque A tend vers une constante.
Les expressions (5) et (7) trouvées pour I'élastique du
tube & épaisseur variable perdent alors leur sens, mais
il est aisé de lever I'indétermination. Nous le montre-
rons pour le cas de I'égalité (7), seule utilisée en pra-

tique.
constante , .
Nous avons ¢ = — ; par conséquent, si b tend
vers zéro, Y et d tendent tous deux vers la méme va-
1,285 4 .
leur — ot d = constante = ———— pour 'acier. L’ex-
2b Vr

pression (7) s’écrit alors avee h = (a + bax)?:

d d" d
Y - R [Al cos (,Lg h'—’”)—}- By sin (Lg h"-’_l’)] +

| &

©

4 ¢
z |:A2 cos (Lg h‘-’“) -+ B, sin (‘Lg /L“,)J-
d L a

Développons  h 2 = (a + ba) °:

-+ A

H

+

a

H

——

(a+bx) b=a *| 1 ) !

d d(d 1>
d d 5 7
+ - % b >_1_ b\b <b'r)2+

/

o R

et maintenant si b tend vers zére, - tend vers I'infini,

donc vers la méme valeur que - — 1, - —2, ... etc,

b b

ce qui permet d’écrire :

\ 2 / \ 3
(@ +bz) °—>a | 12—+ 7T j—_*B! I

[expression contenue dans la parenthese n’est pas
d
s +oe
autre chose que le développement de e—* qui est
convergent pour n’importe quelle valeur de a. Par
conséquent :
d d d
+ + +-z
(¢ + bx) ~P—a b-.e7* .
d d d l
Lgehs ™) 5y 0
En outre, Lgla’-e* )= Lga’+ 2
Si nous introduisons ces résultats dans I'expression

de Pélastique, il vient

TA 1 COS El Lga )+ Bysin d Lg a> .
b ° b d
= cos (f 1)—|—
d a
B al
y=e * 1
. [d d
-4, sm(bLg((.)Jr/fl(-()s(»l;l,g(L) /d >
. —2. |sin{ -
g (u,
[ aY

. +-x
+ une expression semblable en e .

Les deux parentheéses-crochets contenant deux cons-
tantes arbitraires peuvent elles-mémes étre considérées
comme des constantes arbilraires et 'on retrouve enfin
Iélastique du tube & épaisseur constante :

o d . fid 3
y=e a |‘C1cos<(—£1>+ C2sln<5:c)J—|—
a
+etad” [03 cos (r—lx>—i— Cysin <@x>]
a a

10. Calcul des constantes par les conditions aux limites.

Les deux maniéres générales de fixer les conditions
aux limites sont de se donner dans deux sections du
tube soit la déformation radiale y et la rotation y’, soit
le moment unitaire fléchissant M (par unité de longueur
de la circonférence du tube) et I’effort tranchant 7' uni-
taire. On sait que ces deux sollicitations M et 7 sont
lices aux déformations par les relations :

M i 1 J’
y'=—; y'=-—|T—=M
Yy ]Eb ) Y J-Ep < g :
ot J = moment d’inertie variable pour une longueur
. . h?
unité de la circonférence ; J = 0
Ey=module d’élasticité en sollicitation bhi-axiale =
m2
m2—1

Les moments sont comptés positivement lorsqu’ils
tendent les fibres inférieures, les efforts tranchant posi-
tivement dans le sens des y croissants.

Par ce qui précede, nous voyons qu’il est nécessaire
de connaitre les dérivées successives de I'élastique y.

Posons pour cela successivement :

€ :2<‘f—i— ?L) €y :2< *Z>:el——3
C, =€ (e + 1) — 402 Cy = €9(€5 — 1) — 402
Dy = 2b.(2¢; + 1) Dy, = 25.(2¢,— 1)

Fi=C,(e;+ 2)—2D;d Fy = Cy(eg— 2) — 2Dyd
Gy =Dy(e; + 2) + 2C:d Gy = Dy (€5— 2) + 2030
Pour faciliter les caleuls numériques, nous passons
dans ¢ des logarithmes népériens (Lg) aux logarithmes

décimaux (log) :

t = d Lg h = 4,605-170-2 d log (@ + bx).

On obtient :

y = (a + bx) €1 [A; cos t + Bysin t]+
+ (a + ba) "H‘-’[.»lz cos L + By sin t]

y' = —b.(a + ba)—(@TV[(Ae, — 2Bd) cos t +
+ (24,54 Byey) sin 1]+ b-(a+ ba) 1 [(Aye, +
+ 2B,d) cos t — (24,0 — Byey) sin ).
Cette expression de y" permet de calculer la courbe
dérivée de Pélastique 5 pour le caleul des constantes on

met ces constantes en évidence :
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—b-(a + bay— (&t A, (e;cos t + 20 sint) +
+ By(e;sin t — 2d cos )] +
+ b (a—rba) —1 [Ay(egcos t — 20sin 1) +
1 By(€y sin t + 20 cos ¢)]
=+ b2 (a + ba)— (e2+2) [A4(Cycost + Dysint)
+ B(Cysint— D cos )] +
+ b2(a + bx)ee 2 [A4(C, cos t — Dy sin 1) +
By(Cysint 4 Dy cos t)]
y" =—"5b%(a + ba)— (&1+3) [A(Ficost+ Gysint) +
+ By(Fysint— G, cost)] +
+ b3-(a + ba)f23[Ay(Fycos t — Gysin t) +
+ By(Fysint + Gycost)].

—

Posons encore successivement :

M 12 12
M= — 2 M= = _ .
IE, Ehg M Ey-(a+ bx)® M
il Vg 12 '
12 6bh ,
~ Ey-(a + bz)® |:T—a + bz ]W:',
puis
H, = (a + bx) % .cost
K, = (a + bx) f1-sin ¢
P, =—b-(a+ ba) &t (e, cos ¢ + 2 dsint

)

sint — 29 cos 1)
1 €08t + Dysin i)
)

(€1
Q; = —b-(a+ bx)~&tl(

)
)~ €
Ry = + b (a+ bl)—(€1+ Xc
S; = + b2 (a+ bx) &+t C,sint— D 1€05 {
V, = — b3-(a+ bx)~&+3(F cos t + G;sin )
Wi = —b3(a +bx) &+ [ sin t — Gy cos 1)
Hy = (a + bx)T®2.cost
Kz = (a + ba)™€2.sin ¢
Py = + b-(a + bx)®'(e; cos t— 20 sin ()
()2 =4 b:(a + bz 62_1(62 sin ¢ 4 20 cos 1)
2 = + b2 (a+ ba)%2*(Cycos t — Dy sin t)
= + b2-(a+ bq)el *(Cysint + Dy cos t)
V2 = + b3-(a+ ba)s2*(Fycost — Gysin i)
Wy = + b3.(a+ bx)€2*(Fysin t + G, cos i)

2

Introduisons maintenant un mode simplifié d’écriture.
Pour cela, considérons quatre équations algébriques
linéaires & quatre inconnues :

AT + Aoy + (3T3 + ayTy = G
by + bory + byrg + byzy = by
C1Ty + CoTy - €323 + €474 = ¢
dixy 4 dozy + dyvg + dyzy = d

Utilisant la régle bien connue de Cramer, nous écri-
vons les racines symboliquement de la maniére suivante :

A
a; Gy Gz G4 y
by by by b, b
01 ¢g G Gy o
di dg. dyg dy dy

Ty Ty Ty Ty

Cela signifiera par convention que la valeur de chaque
variable est égale 4 une fraction dont le dénominateur
est le déterminant A et dont le numérateur est le déter-
minant formé en remplacant dans A la colonne repérée
par la variable, par la colonne séparée.

Supposons maintenant que tous ces coeflicients a, b, ¢
et d soient fonctions d’un paramétre et que, par exemple,
les coefficients @ et b sont a calculer pour la valeur [
du parametre et les coellicients ¢ et d pour une autre
valeur L du parametre. Nous écrirons symboliquement :

‘a;  ay  as a4) g
<b1 by by by/s <I7O>’
654 cy 3 ('4> (‘0>
((ll dy dy dyyz <d0 7

T, Ty Ty Ty

Supposons enfin que 1’on sache & priori que les varia-
bles @3 et x, sont nulles ; il ne subsiste plus alors que
deux équations 4 deux variables dont la solution s’écrira

(3)

0!

symboliquement par exemple :

@y a,2>
<b1 bz l

Ty Xy

On peut faire entrer cette écriture dans la solution
générale en y encadrant la partie correspondant & I'ex-

pression réduite, d’ott 1’écriture symbolique définitive :
( sy a4> ( a, >

by b4 l bo !

< ¢, €y C3 Q) Co >
(ll 1{2 ({3 (14 L (lo v

&y Ty L3 Ty
Revenons maintenant a la détermination des cons-

@y Qg

by by

tantes A,, A,, B, et B, Trois cas peuvent se présenter
suivant les conditions aux limites dans les sections
d’abscisses [ et L :

Sont donnés :

L) (v, yhiet (y, y')e
29 (M,, T)) et (y,y')r ouinversement (y,y')et (M,, Ty)z
3 (M., Ti)iet (M,, T,z

d’ou le tableau des solutions :

1) (s y')et (y, y')e

croissant  décroissant
( >l

H, K,| |H, K,
. h ()1 ]2 02
I, K, Hy K, y
<1)1 (A Py Qs >L < Yy’ >L
A, B, A, B,
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2°) (M,, T et (y, y') — pour (y,y)i et (My, T,z il suffira
d’intervertir les indices ; et ;.

croissant décroissant

<R1$1 stz> <M,>

VoW, | Vs Wal/u T 1/:
H, Ky H, Ky > < y >
Py 0, P, 0y /1 ¥y /o
A4, B, A, B,

3) (M,, To)y et (M,, T))z

croissant décroissant

<R1 S, | |Ry S, > <M,)
v, Wyl |V, Wal/i T3 | by
<B1 S, Ry S, ) <M,>

V. W, V, W, /s T, )1

Ay By A, By
Remarques.

1. Ces expressions se simplifient considérablement
dans le cas du tube axialement illimité. Deux des con-
ditions aux limites sont & fixer pour la section x = infini :
nous devons imposer que dans cette section I'ordonnée
y de D’élastique soit nulle. Considérons alors les deux
exposants €; et € introduits dans ce paragraphe. Il est
facile de voir que la plus petite valeur de ¥, obtenue pour
¢ =0, est égale & 1 et que par conséquent :

la plus petite valeur de €; = + %
; 1
la plus petite valeur de €, = -+ 3

Les deux termes de I’élastique ont en facteur, I'un
(a + ba)™4, lautre (a + bx)TC.

Lorsqu’il s’agit d’un tube a épaisseur croissante, la
quantité |a + bz | (valeur absolue !) croit avec et pour
qu’a P’infini la valeur de y soit nulle, 1l est nécessaire que
Ay = B, = 0.

Par contre, pour le tube a épaisseur décroissante la quan-
tité |a + ba| décroit tout d’abord, passe par zéro, puis
croit de nouveau lorsque @ croit. Mais un tube dont une
section aurail une épaisseur h = (a 4 bx)? nulle ne
saurait avoir de signification physique. Nous devons
done nous limiter, méme pour le raisonnement, a la
partie du tube ou a + bz est positif. Dans cette partie,
le terme (a + bx)™ € croitrait avec a et, par exemple
pour une décroissance trées lente telle que 'on puisse étre
str que physiquement 'amortissement de la ligne élas-
tique est atteint avant la section théorique d’épaisseur
nulle, le terme de facteur (a - ba)™ € provoquerait une
valeur trés grande de 'ordonnée y. Ceci montre que
dans le cas du tube a épaisseur décroissante on doit poser
Ay = B=0.

Dans un cas comme dans 'autre, il ne reste que deux
équations et nous n’utiliserons, des écritures générales

du tableau des solutions, que les valeurs encadrées. Les
notations «croissant» et «décroissant» s’expliquent
par ce qui précede.

2. 11 n’est peut-&tre pas inutile d’insister ici sur le
fait que la méthode de Silvester, permettant de calculer
les déterminants du troisitme ordre par une généralisa-
tion des produits croisés utilisés pour le deuxieéme ordre,
n’est applicable qu’a ces déterminants du troisiéme
ordre. Pour D'utiliser ici, il nous faudrait donc réduire
tout d’abord d’une unité I'ordre de nos déterminants.
Mais 1l est, & notre avis, plus judicieux de calculer ces
déterminants uniquement par les méthodes de soustrac-
tion de lignes, par exemple suivant le schéma de calcul
indiqué par C. Runge et Keenig dans leur ouvrage,
Vorlesungen iiber numertsches Rechnen, Springer, Berlin.
Le calcul numérique des déterminants les plus compli-
qués devient trés rapide et trés simple.

11. Généralisation a des lois quelconques de variations
d’épaisseur.

La solution trouvée précédemment :

m

=1
y="h *[A cos(dLgh) + Bjsin (b Lg h)J 4+
&

+ BT [A;cos (b Lg k) 4+ By sin (b Lg )]

n’est solution rigoureuse de I’équation différentielle du
tube que si

h = (a + bx)?
a et b étant deux paramétres arbitraires quelconques.

Pour généraliser cette solution & des lois quelconques
de variations d’épaisseur, deux idées viennent naturel-
lement & Pesprit :

1. Choisir les deux paramétres a et b de facon que la
loi h = (a + bx)* se rapproche «le plus possible» de
la loi envisagée, et ne plus considérer que le tube répon-
dant & h = (a 4 ba)? dit «tube équivalent ».

2. Partir de la remarque évidente que Iexpression ci-
dessus de I’élastique s’écrit en fonction de h seulement
a Iexclusion de @, et adopter la méme expression quelle
que soit la fonction h = h(x).

La seconde méthode pourrait paraitre la plus plai-
sante & premiére vue. Mais en y regardant de plus pres,
on s’apercoit que le fait de remplacer h = (a + ba)? par
une fonction quelconque h = h(2) dans Pexpression ci-
dessus de I’élastique et de considérer cette expression
comme une intégrale approchée revient A supposer
assez arbitratrement que cette fonction h = h(x) satis-
fait avec une précision suflisante a I’équation différen-
tielle (3) dite équation caractéristique généralisée. Or
quel est le critére qui permettra de dire a priort que
cette précision est suflisante ? Au lieu d’&tre nulle, la
valeur du membre de gauche de cette équation sera
une fonction de a. L’approximation de la solution ne
dépend-elle que de la valeur de la plus grande limite
atteinte par cette fonction de a dans le domaine utile
pour @ ? Et & supposer — faussemenl & notre avis —
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que cela soit le cas, quelle valeur sera encore admissible ?
La réponse & ces deux questions serait un travail de
longue haleine que nous n’avons pas entrepris parce que
cette méthode présente par ailleurs d’autres difficultés
rebutantes :

Le calcul des constantes € et d nécessite I'introduction
de h(x) dans P’équation caractéristique généralisée (3°) et
nous venons de dire que le premier membre de cette
équation deviendra alors une fonction de x variant pra-
tiquement entre deux limites. Il paraitrait judicieux de
choisir € et d (donc a) de facon que ces limites soient
les plus petites possibles en valeur absolue, ce qui don-
nerait lieu & un calcul trés long a4 recommencer pour
chaque nouvelle loi de variations d’épaisseur.

Enfin, pour calculer les constantes A,, A,, B, et B, par
les conditions aux limites, il est nécessaire de dériver
successivement ’expression de ’élastique. Ce calcul ne
pourrait, comme précédemment, étre fait une fois pour
toutes qu’au prix de complications extrémes, puisqu’il
differe suivant la fonction h = h(z).

Toutes ces raisons nous font écarter cette deuxiéme
méthode.

La premiére méthode, au contraire, est d’une applica-
tion trés simple et toujours la méme quelle que soit la
fonction h = h(x) réelle, sitét que Pon a calculé les
valeurs & choisir pour les paramétres a et b. En outre,
les écarts entre les épaisseurs h = (a -+ ba)? «équiva-
lentes » et les épaisseurs h = h(x) réelles nous permet-
tront de nous faire & priori une idée de I'approximation
des résultats.

12. Choix des parameétres a et b pour I'approximation
d’une loi quelconque de variations d’épaisseur.

On pourrait &tre tenté de calculer @ et b par la méthode
des moindres carrés, mais en plus du fait que les calculs
seraient trés longs et parfois méme inextricables,
ce principe présenterait une erreur fondamentale pour
le cas qui nous occupe. En effet, la méthode des moin-
bres carrés donne, pour un méme écart, une importance
égale a chaque section du tube, quelle que soit son
abscisse. Or, dans le cas du tube axialement illimité
par exemple, les sections situées trés loin de la section
origine sollicitée par les efforts donnés ne jouent qu’un
role absolument négligeable sur la forme de Iélastique,
parce que I'amortissement des oscillations de la ligne
élastique est trés rapide & partiv de la section origine
et par conséquent les sections jouent ici un réle d’au-
tant plus important qu’elles sont plus prés de la section
origine.

Le procédé de calcul des parametres doit done é&tre
assez souple pour permettre d’utiliser I'idée que 1'on a
a priori de la marche du phénomene élastique. C’est
pourquoi le plus judicieux semble é&tre de tracer & vue
la courbe y = (a + bx)? imitant le mieux, au sens pré-
cédent, la courbe des épaisseurs réelles.

Nous indiquons maintenant deux maniéres de sur-

monter la difficulté provenant du fait que la courbe

y = (a + bx)?* dépend de deux paramétres arbitraires :
1. Nous écrivons y = a*1 + pa)® avec p = g puis
nous passons aux logarithmes :
n=logy =loga®+ 2log |1 + pz|.

Une simple translation le long de I'axe des n per-
mettra de tenir compte du terme log a® et il suffit par
conséquent de tracer le faisceau des courbes

n=2log |1+ pz|;
toutes ces courbes se coupent & origine des (n, 2).

Ce faisceau étant tracé & une certaine échelle sur du
papier (logarithmique), on trace a la méme échelle la
courbe n = log h(x), ot h = h(xz) est la courbe des
épaisseurs réelles, sur du papier transparent. Puis super-
posant les deux dessins, les axes des 1 étant maintenus
en coincidence, on améne la courbe 1 = log h(z) a se
superposer, dans la région la plus importante du tube,
a la courbe du faisceau dont I’allure se rapproche le
plus de cette courbe n = log h(z) dans cette région.
On trouve ainsi la valeur de p (cote de la courbe consi-
dérée du faisceau) et la valeur de I’épaisseur a2 & 1’ori-
gine du tube équivalent (ordonnée sur le graphique
n = log h(xz) de I’axe des abscisses relatif au faisceau
de courbes). Remarquons encore que la distance A des
deux courbes n = log (a + bz)? et n = h(z) mesure en
quelque sorte la précision relative puisque :

2
A = log [1 + (@ + bo)® — h(z) b;f()x) h(x)}.
Ce procédé présente I'inconvénient d’exiger le tracer,
une fois pour toutes il est vrai, d’un assez grand nombre
de courbes n = 2log (1 4 pa). Il ne sera donc avanta-
geux que si I’on a un grand nombre de tubes & calculer.
2. Considérons la région du tube réel dont on peut
dire @ priori qu’elle présente le maximum d’importance
pour la recherche de I’élastique. Prenons dans cette
région une section d’abscisse @ = L. Nous calculons a
et b de fagon que le tube équivalent ait tout d’abord
méme épaisseur et méme pente dans cette région que
le tube réel. Il est facile de voir qu’alors

a= \Vh,—b.L
) b— h'
| 2k

ou h; = épaisseur du tube réel dans la section @ = L,
h', = pente du tube réel dans cette section.
Donnons maintenant & a et b, & partir de ces valeurs,
des accroissements da et db. Ils entrainent une varia-
tion de I’épaisseur du tube équivalent :

dh = 2(a + bz) <;1> -+ ?) .db.

i s da
La variation dh sera donc nulle en 2 = — b
¢

Il 0’y a en général pas de motif de déplacer la section
(admise en a = L) ot I’épaisseur réelle et I’épaisseur
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équivalente sont identiques. On posera par conséquent
da . o
— == — L ce qui permet d’écrire :

db
dh = 2(a + bzx) (x — L) db,

ce qui dirige le choix de db tel que la courbe des épais-
seurs équivalentes s’approche «le plus possible » de la
courbe des épaisseurs réelles.

Ainsi, grace & I'une de ces deux méthodes, il est pos-
sible de trouver rapidement le « tube équivalent » d’un
tube donné quelconque.

18. Résumé de la marche a suivre pour la recherche
de I’élastique d'un tube cylindrique de révolution
d’épaisseur variable queleconque.

Ce tube sera sollicité dans la section origine par des
efforts pouvant se réduire & I'action d’un moment flé-
chissant et d’un effort tranchant répartis uniformément
sur toute la circonférence du tube.

On cherche tout d’abord le tube équivalent par I'un
des deux procédés du paragraphe 12, ce qui nous donne
les valeurs de @ et b. Ceci permet de calculer (§ 8) les
valeurs des constantes ¢, ¥ et d. Calculant alors sue-
cessivement (§ 10) les symboles nécessaires, de €, €,
Cy, Cyy ... Jusqu’a Vo, Vo, W, Wy, Pécriture symbolique
des déterminants (§ 10) permet de calculer les constantes
A, A, By et B, pour les conditions aux limites envi-
sagées. Introduisant les valeurs ainsi trouvées dans
Iexpression générale (§ 10) de I'élastique, et s’il y a lieu
dans Dexpression de sa premiére dérivée (§ 10), 1l est
possible de calculer directement les déformations radiales
et les rotations en des points quelconques du tube équi-
valent. Les valeurs ainsi trouvées seront adoptées comme
valeurs approchées pour le tube réel. L’approximation
sera d’autant meilleure que les courbes des épaisseurs
équivalentes et réelles se confondront plus exactement
dans la région utile.

Le calcul de I’argument ¢ = d Lg h est simplifié par
les considérations faisant I’objet du paragraphe suivant.

14. Calcul numérique de l'argument ¢ au moyen
de I'excédent fractionnaire.
La valeur de Pargument ¢ telle que mnous Pavons
donnée au paragraphe 10 :

t=4,6...0dlog (a + ba)

est exprimée en radians et pcul tres souvent sortir du

domaine tabulaire _i | + 5 Les tables usuelles étant

en degrés, grades ou minutes, il s’agit de transformer
Pexpression de ¢ de facon & donner en degrés, grades
ou minutes la valeur comprise entre —g et + g, équi-
valente pour le calcul de cos ¢ et sin ¢
Voici les résultats auxquels on est conduit :
Appelons « excédent fractionnaire » d’un nombre (par

exemple 2,314 ou 3,827) :
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a) sa partie fractionnaire elle-méme si celle-ci est

inférieure a L (exemple 0,314) ;

2

b) le complément & I'unité, changé de signe, de sa
partie fractionnaire si celle-ci est supérieure a 3 (exem-

ple —1 + 0,827 = — 0,173).

Posons B = 1,465-871-3.%.

Désignons par K I'excédent fractionnaire de la valeur
de

[Blog (a + b)]
ot le signe log indique le logarithme décimal.

La valeur équivalente de ¢, pour le calcul de cost et
sin ¢t est alors :

en radians : (= |K|.®

en degrés : t==|K|.180
en grades : t=|K|.200
en minutes : ¢ = |K|.10800

Le sinus (sin{) sera positif si la partie entiére du
nombre [Blog (a + ba)] est paire, et négatif dans le cas
contraire.

Le signe du cosinus (cos ) est celui de K si la partie
entiére du nombre [flog (a + bz)] est paire et le signe
contraire de K si cette partie entiere est impaire.

Ces régles seront rendues automatiques par I’emploi
du tableau de calcul du paragraphe suivant.

15, Tableau pour le calcul des déformations & partir
de ’expression de I'élastique.

Le mode de calcul exposé dans les pages précédentes
est résumé dans un tableau. Une ligne intitulée parité
y figure, dans laquelle on marquera le signe | si la
partie entiére du nombre [Blog (a 4 bx)] est paire et le
signe — si elle est impaire. Le signe de sin ¢ est alors
le signe indiqué sous « parité » ; le signe de cost est le
signe résultant du produit du signe indiqué sous « parité »
avec le signe de K.

= b
ou p

Ay = Bl =

1l
-

I

I

I

a(l4+pz) = a+bax =
log (a + bx) =
g.lg (@ + ba) =
« parité » =
K =
t =
cos tl =
sin { = | [
— € lg (@ + ba) = \
(@ + ba) 1 =
Aj cos t4By sin t

Yy = ‘

+ e lg (@ + ba) = |
J (a + ba) i P
1/12 cos (4B, sin { = ‘
Ya - |

y=y1+ys= 1
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Remarque : 1l est nécessaire de calculer avec précision

la valeur de [Blog (a + bm)], puisque seule la partie
fractionnaire de ce nombre sera utilisée.

Exemples numériques.

Afin que le lecteur puisse se faire une idée exacte de la
marche du calcul, nous développons maintenant trois exem-
ples numériques, dont deux seront exposés en détail, sans
omettre la moindre opération : il s’agit du premier exemple,
traitant du cas le plus simple, et du troisitme exemple,
montrant J'application de la méthode au cas le plus com-
pliqué de calcul de tube. Nous avons choisi, pour les deuxiéme
et troisitme exemples, deux cas de tubes & épaisseurs varia-
bles limités axialement car ce sont la les problemes pour
lesquels la méthode développée plus haut présente ses prin-
cipaux avantages.

16. Exemple 1 (avec exposé des calculs complets).

Tube cylindrique de révolution axialement illimité, de
rayon moyen r = 50 cm, a épaisseur variant linéairement
suivant la loi

hem =5 em + 0,02 gem

et sollicité dans la section origine soit par un moment flé-
chissant uniformément réparti sur la section et dont la
valeur est telle que M, =1, soit par un effort tranchant
uniformément réparti sur la section et dont la valeur est
telle que Tor = 1.

L’utilisation du deuxiéme procédé du paragraphe 12 est
ici tout indiqué pour trouver les valeurs de a et b. En effet,
par analogie avec la solution du tube & épaisseur constante
axialement illimité, on sait que la ligne élastique s’amortit
trés rapidement a partir de la section origine. Calculons
donc le tube équivalent en exigeant simplement qu’il ait
méme épaisseur et méme pente & 'origine. La comparaison
des épaisseurs réelles et équivalentes fournit le tableau
suivant :

’
W,

a=\h,= 2236068 ; b= — +0,004.472.136.

2 vk,

Tube croissant.

‘Ai 30 | 50
|

T cm

0‘5)

Epaisseur
réelle cm | 5,000.015,100.0 5,200.
équival. cm\S,OO0.0{S,’lOO 5 5,202.

05,3000 5,400.0 5,600.0 6,000.0
0'5,304.5/5,408.0|5,618.0,6,050.0

Tube décroissant.

T cm 0 S 710 15 20

Epaisseur
réelle  cm|5,000.0/4,900.0 4,800.0 4,700.0/4,600.0
équival. em |5,000.0/4,900. 5|4 802.0 4,704.5

— |
l/. £00.0,4,000.0
4,418.0/4.050.0

Ce tableau montre que méme dans la section d’abscisse
2 =50 cm, la différence relative des épaisseurs réelle el
équivalente ne dépasse pas 0,85 et 1,25 9. Or nous avons
des raisons de penser A priori que celle seclion esl sans
influence sur la forme de I'¢lastique.

Adoptons donc ce tube équivalent. Nous effectuons les
calculs comme indiqué au paragraphe 13 :
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a = 2,236.068
b = +0,004.472.136

10,92
e —’_;MO = 10,920.108 (p* Vacier)
{  ,————  |Bloga = 10,405.327
=75 V17 4325 + 16c = |parité (de 10) = -+
V2 — ohnms RS — 4 0,405.327
“Hool iRy K] 10.800 = 4.377,53
—————  |eost, =+ 0,293.059
4\/_ I/—i/ + \/_)25 +16c = | t, = + 0,956.094
— 20,311.00

log a = 0,349.485.0
B = 1,465.871 x d = 29,773.32

A partir d’ici, nous devons (cf. Remarque 1 du §10)
traiter séparément le cas du tube a épaisseur croissante et
celui du tube décroissant.

1. Tube croissant.
) 3 o I, = —133.297,3
- (f + Z.) = E1ghes G, — -+ 160.087.6
C, = + 170,697.2
D, = -+ 3.467,030

Nous sommes dans le deuxiéme cas des conditions aux
limites du paragraphe 10, avec valeurs encadrées. Il ne nous
faut donc calculer que Ry, Sy, Vy, Wi, M, et T :

. | —15,438.249 R, = 4-0,245.326.3.10—16

—{e+2)loga= { 16,561.751 S, = —0,062.179.7.10—16

Nombre correspondant = V,=—0,016.622.5.10—1¢
= 3,645.449.10—16 W, = +0,025.424.8.10—16

— (& + 3)log a = 16,212.266

nombre = 1,630.294.10—16

1 A. Effort tranchant T,=0 et M,=1:
— 4, = B,

OB e s o R
Posons y = M, Ay - M, B, M, =
m 7‘0/‘ b
== — = T it 12
P, i 6 = 0,012.000

d’ott la notation symbolique (§ 10) pour le calcul de A,
et BI:
A
+ 0,245.326.3.10—16 —0,062.179.7.10—16
~0,016,62%5.1U—1“ +0,025.42ﬁ.8.10—15
A4 B,

=4
— 0,012.000

ce qui donne :

+ 0,025.424.8.10—16
A

+ 0,245.326.3.10—16 1
[—0,016.622.5.10—16  — 0,012.000

A
I B. Moment fléchissant M, =0 et 7, =1:

Seule la colonne séparée dans la notation symbolique
change :

—0,062.179.7.10—16
— 0 012.000

A= = -+ 4,742.43.10+16

1

B, = 8.10+1

e

|44l

ce qui donne :
A, = + 11,948.9.10+16 B, = + 47,143.8.10+16
Remarque : dans ce cas A, = 1/11 et B, = 5}1
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11. Tube décroissant. Fig. 1. — Comparaison des élas-
W | : .
€ = € — 3 = 39,174.28 Dy = + 3.142,054 U/NorI ::1?);2; dzes‘z)rcéiz :tubes de rayon
Cy = —154,697.1 Fy = —133.387,3 [ an? g ) I tube a épaisseur croissante
G, = + 110.519,5 ‘ IT tube & épaisseur constante
\ )i IIT tube a épaisseur décroissante
Nous ne devons calculer que Ry, Sy, V, et Wy ‘ 60 deméme - épaisseur = 5 cm
(e2—2)log a = + 12,991.854 R, = —0,598.553.7 . 1012 1\ a l'origine, sollicités de fa-
nombre — 9,814.180.10+12 S, = + 0,151.707.8.1012 | gox identique daps;laedes
50 = = tion origine par M, et T,
(e2—3) log @ = + 12,642.369 Vy = 4 0,056.826.96 . 1012 unitaires, tels que
nombre = 4,389.034.10+12 W, = 4 0,037.349.64. 1012 i My =1 et Ty =0.
} 2
II A. Effort tranchant 7,=0 et M, = 1. \
—0,598.553.7.1012 4+ 0,151.707.8 .1012 1 \ 30
+ 0,056.8_26.96 L1012 + 0,037.3_/{9.64 .1012 -+ 0,012.000 [ \
A By | 2 \
d’ot f
A, = —1,146.958.10—12 B, — -+ 2,066.369.10—12 | -
II B. Moment fléchissant M, =0 et T, —1: i X
Seule la colonne séparée dans la notation symbolique | 04— j A 2
change : l ] \
I 0 I ’ -10
4 el
d’ou -0 —II

A, = + 4,897.456. 1012 B, = 4+ 19,322.61.10—12

Nous avons alors calculé un certain nombre de points de
I’élastique pour les cas A et seule la déformation a I'origine
pour les cas B. Nous utilisons pour cela le tableau du para-

graphe 15.

17. Exemple 2 (résumé).

Soit & calculer la ligne élastique d’un tube tel que le montre
la figure 2. Ce tube se compose d’une premiére partie cylin-
A:T,=0; M, =1 (Voirletableau au bas de la page). | drique de révolution dont I’épaisseur varie suivant la loi

h = (a+ bx)* de 56 mm a 19 mm sur une longueur de
B.ena=0; M,=0; Tp=1 90 mm, et d’une deuxiéme partie cylindrique de révolu-

Tube eroiseans Tube Zdiendissant tion & épaisseur constante 19 mm illimitée axialement. Le
= S ot 4 L rayon moyen du tube est r = 1150 mm.
Acost+ Bsint = + 48,575.6.10 19,909.5.10—12 Les sollicitations dans la section origine du tube sont
= 1 . :
Yo = 7{1 = - 894,040 -+ 968,203 telles que I'on ait
7 M T
: - 3 ; 2 !
La figure 1 représente les deux élastiques des tubes crois- | Eﬁ = 1mm /mm de circonf. et FZ — 1 mm /mm de circonf.
sant et décroissant dans le cas de charge A: 7,=0; ‘
M,, = 1. Le tracé de I'élastique du tube & épaisseur cons- |
tante = 5 cm conduit a des comparaisons intéressantes. ‘ 'i _ illimité axialement
Pour terminer cet exemple, indiquons, pour permettre la ‘ e W H—- = — — — - e —
comparaison des tubes croissant, décroissant et & épaisseur ‘
constante = 5 cm pour le cas de charge B: M, =0; 7', = 1, | L=90 8
que la déformation radiale du tube a épaisseur constante a v
la valeur: ‘
= Yo Fig. 2. — Tube cylindrique de révolution & épaisseur variable
7 — 2o _ 1 930.589. g ylindriq p a ;
Yo Ly - 990,58 ‘ objet du calcul de I'exemple 2.
x cm 0 5 10 15 20 0 5 10 15 20
a + bz +2,236.068| 2,258.429| 2,280.789| 2,303.150| 2,325.511||+2,236.068| 2,213.707| 2,191.347| 2,168.986| 2,146.625
lg (a + bx) 0,349.385| 0,353.807| 0,358.085| 0,362.322| 0,366.518|| 0,349.385| 0,345.120| 0,340.711| 0,336.257| 0,331.756
B.lg (a + ba) 10,405.327) 10,533.992| 10,661.380| 10,787.536( 10,912.468|| 10,405.327| 10,275.372| 10,144.102| 10,011.480| 9,877.482
parité -+ + = + + + = I i s
K +0,405.327|—0,466.008|—0,338.620|—0,212.464—0,087.532|| 4-0,405.327(+0,275.372| 4-0,144.102(+0,011.480{—0,122.518
! 4.377,53’ 5.032,89’ 3.657,10’ 2.294,61’ 945,35’ 4.377,58' 2.974,02’ | 1.556,30° 123,98’ | -1.323,19’
cos L +0,293.059|—0,105.585—0,485.547|—0,785.387(—0,962.426|( 4 0,293.059|+0,648.558| 4 0,899.264| +0,999.349| 4-0,926.835
sin / +0,956.094(-0,994.303(-4-0,874.210{4-0,619.004| +0,271.538|| +0,956.094| +0,761.164| +0,437.403| +0,036.056—0,375.467
—¢.1g (a + ba) 15,264.938| 15,078.465| 16,898.018| 16,719.317| 16,542.350|| 13,686.907| 13,519.836| 13,347.117| 13,172.619| 12,996.311
’lOilU.nomb!‘f 18,405.110( 11,980.220| 7,907.113| 5,239.829| 3,486.178| 48,630.26 | 33,100.62 | 22,239.07 | 14,880.544| 9,915.418
10—16. (4, cos lJ+ Bysini)|4-3,902.981|+2,112.876|—0,004.742|—2,097.541|—3,850.479|| +1,639.517| 4-0,828.977|—0,127.582|—1,071.706|—1,838.894
y:M‘ +71,834.8 |-25,312.7 |—0,037.50 |—10,990.8 [—13,423.5 |[+79,730.1 |427,439.7 |— 2,837.3 [—15,947.6 |—18,233.4
or
Tube croissant Tube décroissant
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Nous indiquons le principe de calcul et résumons les résul-
tats obtenus.
Le premier tube, & épaisseur variable, satisfait aux condi-
tions aux limites suivantes :
M;; T,
Yo, Y’z

en z =10
enz =1 oy et y'; sont & considérer comme

deux variables paramétriques.
Le deuxiéme tube, & épaisseur constante, satisfait aux
conditions aux limites :
enax =1L Y, Y1
en v = infini y =0

— méme remarque que ci-dessus.

On écrira enfin que les sollicitations M, et 7, dans la
section d’abscisse @ = L sont les mémes pour les deux tubes,
ce qui permettra de calculer y, et y';.

Le probleme est ainsi complétement déterminé.

La marche du calcul est la méme que pour Iexemple
suivant (exemple 3), qui est traité en détail. Nous n’indi-
quons ici que les résultats des calculs.

2 et y étant exprimés en mm, on obtient :

a = 7,483.315

Les constantes du tube a épaisseur

b = —0,034.716 variable sont :

€. = -} 3,585 Ay =+ 7.967,041 ; B; = 1+ 1.755,782
25 = + 0,311 A, = — 304,250 ; B, = + 780,374
€ = -+ 0,585 et sit =23 Lg (a + ba)

Iélastique s’écrit :
y = (a+ by~ 1[A;cost + Bysint] + (a 4 ba)*E
[Aycos t + Bysin t].
La ligne élastique du tube illimité a épaisseur constante
se calcule par 'expression :
y = e—0,008:69 (x—90) [211,252 cos (0,008.69 2 — 90)—
— 306,871 sin (0,008.69 22— 90)]
Le calcul d’un certain nombre de points de I’élastique
fournit le tableau suivant :

& mm ’ y mm £ mm y mm

0 -+ 689,294 90 | + 211,251
10 -+ 633,200 100 | + 168,526
20 -+ 578,868 110 | 4+ 130,199
30 -+ 522,206 120 | + 96,229
40 -+ 467,608 130 | + 66,336
50 + 414,142 140 | 4+ 40,423
60 + 359,024 150 | 4+ 18,110
70 + 308,441 200 | — 49,523
80 -+ 258,685 250 | — 65,734

La figure 3 permet la comparaison de la ligne élastique
de ce tube avec les lignes élastiques des tubes a épaisseurs
constantes :

h =19 mm h = 56 mm

sollicités de fagon identique dans la section origine.

18. Exemple 3 (avec exposé complet des détails du caleul).

Dans ce dernier exemple, nous nous proposons de calculer
le moment fléchissant et I'effort NV radial agissant a I'angle A
d’une piéce dont la forme (fig. 4) rappelle celle de certains
pistons de pompe. La figure donne les dimensions et les
forces appliquées : le moment agissant a lextrémité libre du
tube proviendrait, par exemple, d’'un couple de frottement.
10 Calcul de la plaque :

Pour I'exposé du calcul des plaques, se reporter, par exem-

ple, a TPouvrage de Timosnenko : Strength of Materials,
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mm.
1400
300
1 Fig. 3. — Comparaison des élas-
tiques de trois tubes de rayon
Y1 o moyen = 1150 mm :
1 I = tube & épaisseur cons-
tante =19 mm
100 IT = tube a épaisseur va-
riant de 56 &4 19 mm
] IIT = tube & épaisseur cons-
1000 tante = 56 mm
sollicités de fagon identique a
Iorigine avec M, et T, uni-
900 taires,
M,
tels que:fl”):l et %’): 1
800
00
600 \
500 {
N
400 - \ \
LN
_\ il
N
\\
N
) o~
[~
3 \ \\K X
0 == T
0 20 4 6 80 100 (20 10 6 20 240 260 280 300 MM
I

I

Mac Millan, London 1936, 3¢ ¢édition, pages 488 ss., en par-
ticulier I’équation 85, page 492.
L’équation de la ligne élastique de la plaque s’écrit :

2t P2 C. 22
_ PE . EE g el e B p
y=%ptgapller———7 —Glga+ G
h3

avec D = 5+ Ey = 6,181.319. 106 kg. mm ;

4

Lg = symbole du logarithme népérien ;
Cy, Cy, Cy3 = constantes a déterminer par les conditions
aux limites.

L x plaque
p=00t kg/mm'  ¢———= Angle A
€ ii!i&ili#i&‘é#&#i#é&&i{/‘——_
€ y plaque J{ _ylube
£ . . : g
] 4 ’
1 | P-25.1kg ‘ x fube
el |-
gl | |
M-- Mnin. ci fi
L as kg™ hin cxrcherence
3

2r = 100 M. |
J

Fig. 4.
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En dérivant cette expl‘cssion par rapport a x, on obtient :

zly pa® Gz C;
= Ep+epelee—— 4 —3
(l2y 3pz? P €y . Cy
&=16p0 teplert—g T

Notons que le moment fléchissant s’exprime par la rela-
tion :

Zy 1 Ldy, 1 "
M= _—D([]_”Lz_}_a;d—l) ou — = 0,3 pour I'acier.
Les conditions aux limites de Ja plaque sont :
dy
en z=20: I = 0 ;
dy

dx

’

en £="7: =y et y=0.

La valeur de y" est a considérer comme un parameétre
variable. Nous avons choisi la valeur y = 0 & Dangle A
(z = r), car il faut bien choisir une origine des déformations
et le choix de cette origine facilite les calculs.

Conventions de signes :

les y sont comptés positivement vers l'intérieur de la
piéce ;

les moments fléchissants positivement lorsqu’ils tendent
les fibres inférieures de la plaque.

Calculs des constantes Cy, Cy et Cy:
d
Yo

en. =10 ; 3 =
On a (zLgz)z=0=0
y=20 d’ott une équation donnant :

Cy = 625 C; + 3,522.48.10—3
dy

enxzr;ﬁ%:y

€, — — 6,394.307..10—6 — 0,040.000 y’

par conséquent Cy =0

en w=r7" ;

d’ott une équation fournissant Cy:

et par élimination de Cy, dans Péquation précéda t
celle-ci :

Cy = — 478,96. 10— — 25,000.00 y".

Calculons alors le moment M ,, a 'angle A de la plaque,
en fonction de y':

33 P J C
M=—7% pat —g- (26Lga +0,/)+0,65.D.Cl~0,7l).;§
d’ot1: en 2 = r = 50 mm

M, = — 64,820.326 — 16,071.43 . 10* y' (1.

20 Calcul du tube :
Il s’agit tout d’abord de chercher le tube équivalent.
Le tube réel a une épaisseur :
h=10—0,14 2.
Utilisons le deuxiéme procédé du paragraphe 12, en remar-
quant que vu les forces appliquées sur la piece, nous pouvons
considérer a priori que la section la plus importante du tube

est la section réelle de plus grande épaisseur, donc pour

z = 7,5 mm. Dans cette section, I'épaisseur réelle est :
h=2895mm et I =-—0/14

on trouve alors :

/
el
\//L

_b.75 = 4+ 3,167.148

-0,023.398.4

a = \h

BULLETIN TECHNIQUE DE LA SUISSE RO\[/\NDE

Calculons D'épaisseur équivalente & I’extrémité libre du
tube : on trouve 3,989 = (a + bx)? a la place de I'épaisseur
réelle = 3,000 mm. La différence nous parait un peu grande.

Introduisons donc une variation db ; il vient :
dh = 169,745 db dans la section z = 50 mm.
A une variation db = — 0,000.589 correspond une varia-
tion dh = — 0,1 mm.
Sur cette base, nous adoptons alors b = —0,027 d’ou :

a = -+ 3,194.160 b = —0,027.000

ce qui permet de calculer le tableau de comparaison des
épaisseurs :

@ mm 0 755 20 30 ‘ 40 50
h réel mm |10,000| 8, 950 7,200 | 5,800 @ 4,400 | 3,000
h équivalent mm [10,202| 8,950 | 7,045 | 5,684 l 4,470 | 3,401

La loi équivalente nous semble étre suflisamment voisine
de la loi réelle ; les résultats du calcul confirmeront ce point
de vue, car ils montreront I'importance primordiale de la
section d’abscisse = 7,5 mm.

Calculons alors successivement, suivant le schéma habi-

tuel :
4
¢ = 82918 ; H;= 20—,3)(1)— = 2,197.802. 10
v =6,891.56 ; &=6576.08; B = 9,639.687
€y = 15,283.12 e = 12,283.12
C, = + 75,877.6 C, = — 34,387.4
Dy = + 415,164.2 D, = + 309,947.0
F,=— 44148,90/1 Fy = — 4.430,082.3

G, = + 8.173,287 = + 2.734,953.6

pour x = 0 pour & = 50
a + bx = -+ 3,194.160 a + ba = 1,844.160
log (a + bx) = 0,504.430.1 log (a + bx) = 0,265.926
B.log (a + bx)= 4,862.548 Blg (@ + bx)= 2,563.439
parité = = parité — +
K = —0,137.452 K = —0,436.561
l = 1.484,48’ t = 4.714,86’
cos ( = —0,908.205 cost = —0,197.982
sin ¢ = -+ 0,418.522  sin ¢ = + 0,980.204
—€ lg(atbx) = —7,709.266  —(€;+2) ( a+-ba) = —4,596.022
nombre = -+ 1,953.144.10—8 nombre 2 534 998.10—3
—(€;+1)lg (a+ba) =—8,213.696 —(€;+43)1 g( a+br) = —4,861.948
nombre = -+ 6,113.701.10—9 nombre = 1,374.207.10—5
+elg (@ + ba) = + 6,195.975 +(e,—2) Ig (a+ba) = +2,734.544
nombre = 1,570.274.108 nombre = 5,426.800.10%

1 (eg—1)lg(a+ba) =—+5,691.545 + (e;—3) lg (a+ba) = +2,468.618

nombre = 4,915.247.10° nombre = 2,941.835.102
H, = —1,773.855 10— R, = + 0,724.279.10—5
K, = + 0,817.434 10—S Sy + 0,289.345.10—5
P, = —1,382.583.10—9 V, = + 0,238.917.10—5
Q1 = 43,027.577 10— W, = —0,066.231.10—3
H, = —1,426.130.10¢ R, = —1,174.985.102
K, = + 0,657.194 108 S, =—10,376.112.10%
P, = + 2,210.984 105 l'2 = 4 0,104.444 .10
0, = + 0,902.984.10% W, = + 0,282.796.102

(a + bx)® = 1.062,038 (@ 4 h..)v = 39,336.13
(”'1';";)””‘ 194,512,410 l ;:;xlu? Eb(ulilmﬁ:0,133.303.7.10—4
6 —2  — 0,050.717.6 l L 12 el e
a -+ ba . ’ ’ B, b : Llnj" a + bx
+0,012.193.19 10—
AI,_, = —0,694.018.5.10—"
Ty = — 0,060.966.0.10—5
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Les conditions aux limites de ce tube sont les sulvantes :

4y _

dx
En posant y = 0, nous considérons que la rigidité radiale
de la plaque est si grande par rapport a la rigidité radiale

ahd—0 y', paramétre variable ; y = 0.

du tube que la déformation radiale de la plaque peut étre

négligée.
d* 3y
en x = 50 ﬁé=ML,- et #ZTL,.

Rapportons-nous maintenant au tableau des conditions
aux limites du paragraphe 10. Nous voyons que nous sommes

dans le deuxiéme cas, avec
| s’écrit symboliquement :

inversion des indices. La solution

(Hl K, H, K2> (y )

Py Qy Py Qz)0 Yy /o

(’Bl S; Ry, S, ) (1\/1,.)
V, Wi Vy, Wy/s0 Ty)50
A, B; A, B,

Nous calculons ce systéme de quatre équations a quatre
inconnues suivant le schéma de Runce et Kaenic (loc. cit.),
ce qui donne les récultats du tableau ci-contre :

Calculons maintenant vy, et ¥, :
0 0

Yo = R},Al + Snl)Bl + R%Az + Sg By et
0
¥ = V1A + W B+ V4, + W, B,.
0 0 0 0
Calculons successivement Ry ... Wy~ en @ = 0
—le; + 2) log (a + bx) + (e —2) log (a + ba)
= —8,718.126 = 4 5,187.115

nombre = 1,913.701.10—° nombre = 1,538.563.10°

— (&1 + 3) log (a + ba)

+ (e, — 3) log (a + ba)

= =
~ &>
0 3 | =
o || | © =
> =3 o | =t
‘ -~ Crd —_- o Ve St
5r) el o ! D
< @ L Lo
=} =3 Og m A
o < R FH 0 L
Bs = <
| i 25 =1
~— —
I b= —+ 3
Il =
Cu = =5 I
=
| B = s
|
0 0 o o - |~
S | a ® © 0| -
10 A0 o S elles
o o | o0 O S S|l
<~ <4 =) (=32 S DO >
S o B 8 o &
S o m -“c o &3 o
| + A I I 3 R "
| |
S o |2 n 0 n
223
79717 T LLL |
— === 2SS ===
SEUS SRS n | S
~ |~ DRI 0 S| >
- > == = = ©|®
< b oY f O} % 2| < 29 e
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0 N | B | o & |
10 0. o | o & S| © w10
~ o o8| o3 &= S o|lo
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w 5
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% 5 «
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< < © o =
> > S B >
2 @ —
L ® o~
o o~
. [ St
|
&)}
| o = w2 el =
? < 0 < ® © =
© © - © - © &
3 = < S o S & ™
: 2 B 2t 2 ]
Ll 2 2 s 2|52 g
| x 2 S o= Qe =
=z < o o S <o =)
T + o+ |+ |
o )
[ 2 &
S S @® in S S - > >
- -~ a1 i -~ - =4 s o -
N 2 o @ ~ o~ . &S ~
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ea] > » © w & O % a8 o0
- o >~ o9 =8 = & IYe)
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= 2, % oS © © S - o
S & o o » & ™ - © 0
T S o R
o
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2 . %S| . . . | 83
s e N e S O @ ==
£ = oag @l S TR | @ g
o S ¥ 8 I ) ; ™
F A ! 2, D, <8 2
N = 2 ¥ 2|28 3| =23
s S = S A @®» S 0| S
- = - -— Lo 4 4 H .
¥ 5 o2 =28 8 8 | @B
i [ (=] (=1 [~} el - -t a1
| + T + |+ 1 T [ Il]
o0 w >©
o o | = ol | =
L | (=7 |
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L[ o~ -
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- ¢ o
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= —9,222.556 = 4,682.685
nombre = 5,990.237.10—1°  nombre = 4,815.984.104
R, = 4 0,146.265.10—° R, = —0,110.466.10°
S, = + 0,570.327.10—9 S, = —0,331.871.10°
V, = -+ 0,847.596.10—10 V, = —0,272.889.10*
W, = + 0,670.485.10—10 W, = + 0,411.211.10%

d’ou :
Y, = —1,122.43.10— 4 0,199.170.y'
¥ = — 0,849.510.10—10 — 0,014.853.2 '
SE
Or My=My="5"y"

— —2,183.26.10— + 38,741.0.10% y’ (I1).

Fgalant maintenant les relations (I) (M, plaque) et (II),
il vient :
y, = —1,182.54.10—* radians (= — 24,39")
" = 4 1,756.37.10—°¢

dott y, et enfin :

1 — EQir ko . ,
M, = — 45,815 kg mm/mm circonférence
N X < : ,

Ny =+ 5,740 l‘g/mm circonférence

Le signe de N, correspond & une compression radiale de
la plaque.

Remarque :

On s’apercoit ainsi que le moment agissant dans la section
origine du tube est environ 100 fois plus grand que le moment
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agissant sur I'extrémité libre. On peut donc penser que les
sollicitations dans la section 2 = 50 mm du tube ne jouent
qu'un role négligeable sur DPélastique au voisinage de la
section = 0, et comme dans ce cas la ligne élastique s’amor-
tit trés rapidement a partir de la section origine, il y a
lieu d’estimer que ce tube se comporte dans la section
origine, & trés peu de chose prés, comme tube illimité
axialement.

Le calcul vérifie d’ailleurs pleinement cette remarque. En
effet, nous avons vu (§ 10, Remarque 1) que pour un tube
décroissant illimité axialement, les contraintes A, et B,
étaient nulles.

Or introduisons la valeur de y' dans A, et B, :

A,
BZ

i

+2,835.569.10—10 ;
+ 6,153.245.10—10

I

recalculons yy"" et y,”" en séparant les termes d’indices 1
des termes d’indice 2 :

Yo" = — [(0,000.067.197), + (2,355.317),].10—5
Yo' = + [(— 0,000.115.697), + (1,756.485),].10—5

Par conséquent, les termes d’indices «1» n’apportent
qu'une contribution égale a environ 0,03 /5, pour M, et
environ 0,07°/ pour N4, de la contribution des termes
d’indice «2». Les termes d’indices «1» sont donc négligea-
bles par rapport aux termes d’indice «2», ce qui prouve
que le tube se comporte, dans la section origine, presque
parfaitement comme un tube axialement illimité.

19. Conclusions.

La méthode, exposée systématiquement dans les pages
qui précédent, permet le calcul des déformations, et par
conséquent des contraintes, en tous points de tubes cylin-
driques de révolution & variations quelconques d’épaisseur
(variations aussi bien lentes que rapides), les conditions aux
limites pouvant étre absolument quelconques (par exemple :
tube limité axialement), & condition de présenter la symétrie
de révolution autour de I'axe du tube.

Les quelques exemples traités montrent la
calcul numérique dans tous ses détails.

marche du

Bien que ces calculs soient singuliérement plus courts que
ceux qu’exige 'application des développements en série des
fonctions de Bessel ou de Legendre (seul moyen général
d’intégration de toutes les équations différentielles linéaires
a coellicients variables, dont celle du tube est un cas parti-

culier), les résultats obtenus sont néanmoins parfaitement
rigoureux lorsque la loi réelle de variation d’épaisseur est
parabohique. Les résultats ne sont qu’approchés pour toute
autre loi de variation d’épaisseur, mais celle approximation
dépend simplement de I'écart entre la loi réelle de variation
d’épaisseur et la loi parabolique admise pour le calcul. Il
sera presque toujours possible de trouver une loi parabo-
lique représentant, dans le domaine utile, les variations
réelles avec une approximation bien sullisante, sinon de
méme ordre de grandeur que les tolérances de fabrication.

Sainte-Croix, le 9 février 1945,

DE LA SUISSE ROMANDE

LES CONGRES

Association suisse pour I'aménagement
des eaux.

Assemblée générale du 14 juillet, 1945 a Aarau.

I’Association suisse pour I'aménagement des eaux a tenu,
le 14 juillet 1945, 4 Aarau, sa trente-quatriéme Assemblée
générale, sous la présidence de M. le D O. Wettstein.

Elle a approuvé les comptes et la gestion de I’exercice 1944
et le rapport annuel de I’Association et a procédé aux nomi-
nations statutaires.

Apres plus de trente années d’activité, M. le DT Wettstein,
président, a annoncé son intention de céder sa place a une
force plus jeune. L’assemblée a désigné pour lui succéder
M. le Dr P. Corrodi, conseiller d’Etat & Zurich, jusqu’ici
deuxie¢me vice-président. M. le conseiller d’Etat W. Buchs,
de Fribourg, a été nommé deuxiéme vice-président. M. le
Dr R. Neeser, de Genéve, a été nommé membre du comité
et du bureau.

Différents orateurs ont tenu a relever avec quel inlassable
dévouement et quelle compétence M. Wettstein s’est dépensé
pour la cause de 'aménagement des eaux en Suisse.

La partie administrative fut suivie d'une conférence de
M. J. Hug, géologue a Zurich, sur le sujet « Problémes hydro-
logiques et juridiques que pose I'utilisation de nappes d’eaux
souterraines par les installations de thermopompage ».

Le conférencier exposa succinctement 'origine et la répar-
tition en Suisse des nappes souterraines, les sondages et
essais effectués pour déterminer leur température et les
variations de celle-ci, et indiqua les problémes juridiques
que pourrait poser leur utilisation pour des thermopom-
pages. Une trés belle série de projections lumineuses agré-
menta cel exposé.

Au cours du repas qui groupa ensuite les quelque cent
cinquante participants dont de nombreux représentants des
administrations fédérales et cantonales intéressées aux pro-
bléemes de notre économie des eaux et des sociétés et entre-
prises industrielles spécialisées dans I'aménagement de nos
forces hydroélectriques, M. le DT h.c. A. Zwygart donna
quelques renseignements sur I'état actuel des travaux de
construction de I'usine hydroélectrique de Rupperswil-Auen-
stein. Ces travaux sont activement poussés et l'on espére
pouvoir mettre en service celte année encore cette impor-
tante centrale qui fournira environ 200 millions de kWh
dont 90 en hiver et 110 en été.

Lorateur, faisant allusion a certaines résistances, rappela
que la création d’usines au fil de I'eau doit nécessairement
étre accompagnée de celle de grands bassins d’accumulation
saisonniers si 'on veut que nos forces hydrauliques soient
rationnellement utilisées.

Dans I'aprés-midi, une visite de I'usine en constrnction de
Rupperswil-Auenstein permit aux participants de se rendre
compte des progres réalisés dans les travaux depuis la visite
du 20 aoit 1943. Le gros cuvre est actuellement terminé et
la retenue d’eau atteint deux tiers de sa cote maximum. Un
des groupes turbo-alternateurs est entiérement monté,
'autre est en cours de montage ; on travaille aux tableaux
de commande et canalisations électriques. Ceux de nos lec-
teurs qui voudraient se remémorer les caractéristiques de
cette usine, qui comprend deux groupes de 25000 CV, I'un
destiné aux C. F. I, 'autre aux N. O. K., en trouveront une
description détaillée au numéro d’aot 1943 de la revue Cours
d’eaw et énergie ainsi qu’au numéro du 22 décembre 1944
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