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sollicitations au gel, les déchets provoqués par celui-ci
n’ont que trés rarement atteint 25 gr/dem?, souvent ils
ont été inférieurs & 1 gr. Or 25 gr/dem? correspondent
a une pellicule de béton de 1 mm d’épaisseur. En met-
tant les choses au pire, le béton sera détérioré sur une
épaisseur de 2 4 3 c¢cm aprés une trentaine d’années. A
ce moment, il suffira de munir le parement amont d’un
enduit gunite pour le restaurer complétement. Quant a
la chute de résistance a la compression, de 10 a 20 9,
elle sera largement compensée par le durcissement nor-
mal du béton.

Les plus beaux raisonnements ne tiennent pas devant
la réalité. Le gel peut attaquer le béton dans toute la
masse gelée, c’est-d-dire sur une épaisseur dépassant
0,80 a 1,00 m.

graviers, une fissuration, souvent imperceptible, de

Il provoque le déchaussement des

la pate liante, ce qui a pour conséquence de diminuer
trés sensiblement, non pas la résistance & la compression
qui est peu modifiée, mais la résistance a la traction
et le module d’élasticité apparent.

Depuis 1931, nous avons modifié en conséquence
Iessal de gélivité ; ce que nous déterminons maintenant
c’est la chute de la résistance a la flexion et du module
d’élasticité du béton sous I'action du gel. Cette méthode,
mise au point par le Laboratoire de Lausanne, a été
aussi adoptée depuis par le Laboratoire fédéral de Zurich.

Les recherches entreprises sur ces nouvelles bases ont
abouti aux conclusions suivantes :

Contrairement & ce que l'on croit généralement, la
gélivité d’un béton ne dépend ni de sa porosité, ni de
sa résistance, mais essentiellement de sa fissuration,
souvent microscopique, due au retrait et aux variations
locales de température, ainsi qu’aux vides laissés sous
les gros graviers par la remontée de l'exces d’eau de
gachage. A égalité de résistance un mortier sera moins
gélif qu’un béton contenant des gros graviers. Toute
fissure est une amorce d’attaque par le gell.

Pour réaliser un béton non gélif, il faut le gécher
avec peu d’eau pour réduire le retrait et les effets de
la remontée d’eau de gichage. Pour atténuer les incon-
vénients de cette derniére, il ne faut pas utiliser, pour
les bétons exposés au gel, un gravier dont les grains
dépassent 30 mm de diametre.

Par analogie, les briques et les tuiles, bien que tou-
jours trés poreuses el a résistance modérée, ne sont
gélives que si elles ont une texture feuilletée due & un
défaut dans le rebattage de Iargile.

Il y a encore une autre forme trés importante de la
gélivite du béton que nous avons conslatée, en 1938,
lors des essais d’un bloc¢ de béton au dosage de 300 kg

! Voir : « Etude des parements des barrages en béton el en maconneric »,
par J. Boromey. Publication du « Second congress on large dams », Washing-
ton, 1936. — « Module d’élasticité du béton », par J. Boromey. Bulletin
technique n° 17 et 18, 1939. — « Destruction des bétons par voie chimique,
physique ou mécanique », par J. Boromey. Bulletin technique n° 21, 1940.

prélevé dans le parement du barrage de Barberine.

Le béton altéré tend & se détacher en feuillets verticaux
paralléles au parement ;les graviers ne sont pas déchaus-
sés comme cela paraitrait normal, mais certains ont été
cisaillés par des efforts tangentiels paralléles au parement.
Tandis que la résistance & la flexion reste notable pour
les prismes horizontaux ou verticaux paralléles au
parement, elle est tombée & zéro pour les prismes nor-
maux & celui-ci.

Cette fissuration spéciale dans des plans paralleles
au parement, alors que la péte liante n’est pas détruite,
est due au gonflement du béton gelé par rapport au
méme béton non gelé. I se produit des efforts tangen-
tiels intenses au point de contact du béton gelé avec
celui qui ne l'est pas encore, efforts qui peuvent pro-
voquer le cisaillement du béton. A mesure que le gel
pénetre dans la masse du béton, 1l se forme une série
de fissures paralléles au parement. Ces fissures s’élar-
gissent progressivement sous I'action du gel et du dégel
jusqu’a ce que se produise la chute de feuillets de béton.

Ce phénomene de dilatation du béton gelé est tres
étroitement apparenté au soulévement des chaussées.
Dans certains cas, suivant la nature du sous-sol et du
revétement, celui-ci peut se dilater sous 'action du gel.
Il se produit des compressions tangentielles dans le plan
du revétement qui peuvent provoquer son soulévement
par flambage. C’est pour cette raison que le souléevement
est généralement plus marqué au milieu de la chaussée
que sur ses bords.

La dilatation du béton gelé peut atteindre 0,1 a
0,2 mm/m! pour du béton coulé, comme celui du bar-
rage de Barberine ; elle est pratiquement nulle pour du
béton vibré.

Lausanne, février 1945.

Poutres formant radier
sur sol compressible

par A. PARIS, professeur a 1’Ecole d’ingénieurs
de I’Université de Lausanne.

Les phénomenes de déformation des sols de fondation,
sollicités par la charge des batiments ou autres ouvrages,
sont affectés de deux facteurs qui influencent défavo-
rablement la fidélité des efforts a la loi de Navier. D’une
part 'homogénéité, généralement locale, empéche I'élas-
ticité supposée de se manifester par une lo1 simple,
qu’on admet quand méme par nécessité de caleul. D’autre
part, cette élasticité, jointe & 'impossibilité de réactions
négatives sous les ondes de soulévement, fait que la
déformation se manifeste par des cuveltes localisées,
que le caleul suppose finir brusquement a leur point
d’émergence, tandis qu’un raccordement s’impose en
réalité avece les surfaces primitives du sol, demeurées

telles dans les régions non aflfectées.
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Adapter I'analyse des déformations & ces faits réels
corduirait & des complications sans proportion avec les
avantages théoriques, restés hypothétiques en présence
d’une élasticité imparfaite.

On base donc les calculs habituels sur la condition
des déformations linéaires

s = (B)o 1)

qui lie entre eux, sur le sol de fondation, les réactions
spécifiques s toujours positives, I'indice de compressi-
bilité (B) du terrain et les ordonnées ¢ des surfaces
d’enfoncement élastique de contact. Ce probléeme a déja
été fort étudié ; nous croyons néanmoins utile de recher-
cher ici une solution mathématique capable de satis-
faire & toutes les conditions, que la nature des faits
mmpose aux limites du radier.

Considérons une poutre rectangulaire de section cons-
tante /= d.e; on connait sa raideur (E.J), produit
du module d’élasticité du béton par le moment d’inertie
censé constant malgré la solidarité avec les bases mono-
lithes des colonnes solidaires. La résistance du fonde-
ment aux déformations élastiques s’incarne dans la
caractéristique du professeur D M. Ritter

_ By
k=] i

indice simple de la solidarité de déformation entre sol
et poutre.

o
—

Nous admettons pouvoir négliger Peffet du poids
propre du sommier en béton, portion de la charge totale
faible en soi et capable de s’équilibrer par une réaction
immédiate. Restent les charges de construction.

Celles-ci se présentent localement comme charges
concentrées P agissant sur une largeur 2b censée négli-
geable ; ailleurs, les charges réparties p uniformes ou
variables aflectent des espaces finis tels que « (fig. 1).
Le sol leur répond par des réactions montantes

q=s.d=d.(B).v

qui ont un diagramme continu sur toute la longueur
de la poutre, si I'on suppose momentanément Pabsence
de soulévement.

Il se forme ainsi deux sortes de sollicitations de la
poutre :

Les régions I, telles que A — B,, By— C, elc., on
agissent seulement les réactions du sol, ot la poulre
tend donc & remonter et qui peuvent donner lieu a

P
d
‘l‘“"" mﬁHHH
3

{r B, B2 C, ~+0 x F 3
L LN O N N LI B O LR
.q=d.s s S
- région 1 ~- regionX
Y Niveau| originel |
b
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des soulévements locaux ; la réaction du sol, seule en
cause, introduit en analyse une équation différentielle
homogene, ot la déformation élastique ¢ apparait sim-
plement proportionnelle a la réaction g.

dty
q=—(EJ) il;"i:d'(B)'v 3)
Les régions II, telles que CD, se placent entre les
domaines de pure réaction ; la résultante variable
r=q—p=4d.(B).e— 57
conduit & une équation différentielle avec membre de
charge du type
r——(Fl)fli':d(B) g — 4
o U dat ks p- )
Ces régions I et II ne sont nettement tranchées que
dans la conception théorique ; en réalité, la poutre,
résistante au cisaillement, répartit les charges P ou p.a
sur des longueurs difliciles & préciser, et pour lesquelles
I’Ordonnance donne des mesures, arbitraires du reste
puisqu’elles ne font pas intervenir le rapport des rai-
deurs de la poutre et du sol. En réalité, I’action trans-
mise par la poutre au sol s’efface progressivement en
dehors des charges, et sur des longueurs que des mesures
au laboratoire de statique permettraient de comparer
aux résultats du calcul théorique ; une conception plus
claire en résulterait peut-étre.
Ceci admis, les conditions d’élasticité s’expriment par
les formules habituelles de réaction et de moment

d2M Lo d?e
Fe= g ]\]z—(bJ)‘m
c’est-a-dire
d4e
r=—(EJ) e

Les deux régions de charge, constatées ci-dessus, se
comportent comme suit dans 'analyse de la stabilité.
Convenant du symbole

¢ =k.x 5)

qui remplace I'abscisse linéaire @ par le nombre pur k.z,
on établit les équations différentielles et leurs dérivées.
Régions I (sans charge directe). L’équation homogéne

dte
Byd.o,— (EJ) - =
( ){ ‘l ( ) 11‘1,4
que la caractéristique (équation 2) permet d’écrire
o1 | i, =0 6
gt T A= )
admet Pintégrale
v =+ Aet?Pcos @ + Be P cos ¢ + l 7
+ Ce™Psin@ + LePsing [
avec les dérivées
1y
(7‘11 =kletPcosp(+A+C)+e P cose (—B+D)+ [
da

+et®Psin@ (—A+ C) + e ~®sin @ (—B—D)] |




2, i

= 92 eT?® —D.ec%e g

e [+ C.et®cosp—D.ePcoso l 9)
— A.e"Psin g + B.e Psin @]

d )

d‘a 2k3 [ePcosp (—A 4 C) + ‘
+e Pcos @ (+ B+ D) + 10)
4etPsing (—A—C)+ e Psing (—B+D) l

dont la quatriéme

d—ﬁ)l:fk‘*[—k;'l e cos @ + B.em P cos @+ I

ot : ; : 1)
+ C.et®sin @ + D.e P sin @] = — 4k, ‘

satisfait & la condition 6.

L’amortissement des ondes de déformation réduit en
général les facteurs A et C des puissances positives de e
a de petites fractions de B et D, dans les régions exté-
rieures aux charges du moins ; les conditions aux limites
les empéchent toutefois de s’annuler réguliérement.

Régions II (sous charge répartie). Les charges dites
concentrées ne l’étant jamais que relativement, on
traitera d’une maniere analogue les secteurs II, qui
supportent une charge fortement localisée ; nous en
étudierons néanmoins le passage a la limite 20 = 0.

L’équation 4 devient

d(z

+4/\4 Vo = (F[‘)J)

Elle admet, si la charge est uniforme, I'intégrale

= g ()
ot ¢ représente 'intégrale générale de I'équation homo-
géne ; on écrit done 'équation de I'élastique
vp=—+ E.e*Pcosp+ F.ePcosp + G.et®sing + l
+ H. e‘q’sm(p—i—/]\l() o0 |

puis ses dérivées

o,

[d‘ =k[etPcoso (+E+G)+e Pcosop(— F+]l+|

4 14)
+ etPsing (— E+ G) + ¢ Psing (— F— H)]

Ay

ﬁzl [+ G.etPcosp—H.e P cosp — l 15)

— E.etPsing + F.e P sin @] l
d3y

dz3 2=2I3[e*Pcos@(—E+ G)Fe Peoso(+ -+ 1)+

+ etPsing (—

l 16)
E—G)+ e ®Psing (— F + H)] I

dio,

T = G4 [+ E.etPcos@ + F.em P cosp + \
' 1t 17)
G.ot%si ~Psin ] —=— 4l N 1
+G.e"Psingp+ 1. Psing)| fl —}—‘2 AR H
4
c’est-a-dire ((ll—:f + ko, — (/’])T) =0

résultat conforme a I’équation 12.
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Ces développements s’appliquent a divers cas parti-
culiers, dont nous examinerons deux formes habituelles.

1. Poutre de fondation de longueur limitée.

Si la poutre supporte des charges théoriquement
concentrées, donc de largeur réputée nulle, toutes les
régions sont du type I & équation homogéne ; ainsi les
deux secteurs terminaux et les intervalles, qui séparent
les charges. Chaque secteur introduit quatre constantes
d’intégration, les seules inconnues du probleme.

a) Deux charges égales et symétriques.

Considérons le support de deux charges égales et symé-
triques. La verticale médiane M, sur laquelle nous
placons lorigine 0, divise la poutre en deux parties
équivalentes ; chacune d’elles comporte deux domaines
d’intégration du premier type, sans charge extérieure.
Les équations différentielles appartiennent au groupe 7
a 11 ; nous les rapportons néanmoins a des ordonnées y;
el vy, et désignons les constantes par A..D et E..H.
Deux d’entre elles, E et G dans les régions extérieures,
coeflicients de puissances & exposants positifs, sont
trés petites mais non nulles, car elles doivent contribuer
a satisfaire aux huit conditions d’extrémités exprimées
par ordonnées ¢, tangentes dv/dx, moment M ou effort
tranchart Q

en A M,=0 (1) 0, =0 (2)
en B ¢y = ¢ (3) lg vy = 1g vy (4)

My=M, () P+0Q—Q=0 (6
en M tg horizont. (7) 0,=0 (8)

Nous trouvons ainsi, conformément aux équations 7 a 11,
les conditions aux limites (simplifiées par les facteurs
communs).

Extrémité A (x=a ; @ =k.a=a connu) :

2y =4+ C.et%cosa—H.e%cosa—E. 0*“\111(1—5—]

da?
+ F.ee%sina = 0. I
‘f;‘ — ¢+ cosa(—E+ G)+ e %cosa(+ F+H) + [ )
+ et®sina (— E— G) + ¢ ®*sina ( l’—}—]l):OI
Section B (sous charge) (x=1b; @ =kb=8) :
P =9, c’est-a-dire (3)
et cosp(+ A—E)+ e PcosB(+ B—F) +
+ ¢tBsinB (+ C— G) + ¢ PsinB(+ D—H) =
%‘71 = ‘%‘lﬁ soit (4)
etBeosp(+A4+C—E—G)+eBcosp (—B+D+F—H)+

+ ¢tBsinp (—A+C+E—G)+

+ ¢ Psinp(—B—D+ F+ H)=0.
2, 20y
‘_'h‘z‘ ‘%‘2 est-a-dire &)
or ax=

"B('(NB(—F C - ')—Fu‘ cosB(—D 4+ H) +
+¢Psinp(— A+ E) + ¢ Psinp (+ B—F) =0.




—d. /I;s.dat—d. /?s.d;vz 0 (6)

> [

0 b

Equilibre général
c’est-a-dire la condition

b @
+P—d.(B)[/vldx+/v2dx} —0
: ;

que D'équation générale (3) transforme en

+P-}—-'(E.I)[/d0 i +/‘fl"2d1_0

0 b

ou bien
; l[d‘l Poal*| _y
+ P+ (EJ ] }Jr[%‘]b[_o’
+ P+ (EJ) l d1 ] [dﬂ'aJI:“_F [dl :l a

3o, |
AL
Des quatre efforts tranchants de la grande accolade,

ceux du milieu (2 = 0) et de Iextrémité (v = a)
nulent ;

¢\
s’an-
il reste ainsi

d3v;] 3o,
e | =

c’est-a-dire P — Q; + 0y = 0
expression de I’équilibre de la section B o Peffort tran-
chant du coté A est négatif, puisqu’on le compte en sens

des a décroissants. Le développement de ces dérivées
troisiémes conduit a

+ P+ ()[4

P
+m+2k3[+MCOSB(-A+(‘)+fﬂcoss(+3+n)+
+ e BsinB (— A —C) + ¢ PFsinB(— B + D)] —
—2k3 [+ eth cosB(— L+ G) + B cosB (+ I+ H) +
+ ¢t Rsinp (—E—G)+ B smB (—F+H)] =0.

2k P B
B +e cos B ( G) +
4 e~ (-0\ B(+B+D—F—H)+
+ etPsinp(—A —C+ E+ G) +
+ e Psinp(—B+D+F—H)=0
Section M médiane (x =0 ; @ =k.a=0) ;
sing =03 cosp=1; ¢"?=¢P=1
((ll‘;l =0 cest-a-dire + A4+ C—B+D=0 (7
d3v, ot g . ¢
i 0 c’est-a-dire — A +C+ B+ D=0 (8

Les équations (7) et (8) donnent les solutions

+ A=+ B +C=—D
qui permettent d’écrire; en mettant en évidence les
inconnues A a [,
—et%sina.F + e ®*sina. lF + et®cosa. G — |

— ¢

|
Y eosa. =0 ’ (1)
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(—et%cosa—et%sina) E + (+ ¢
(+ e™® cosa— et

+ (+ e ®*coso+ e *sina) H=0

—e¢ %sina) I+ sina) G+ L (2)

o
|

(+etPcosBt-ePeosp) A+ (+etPsin—ePsinp)C— | 3
—etBeosB. E—ePBeosp. F—etPsinB.G—ePBsinp. H=0 f )

+ (+etBcos p—ePcosp—etPsinp—ePsinp) A +
+ (+etBcosB—ePcos B+ etPsinp+ e Psin B)C +
+ (—etBcos B+ etPsinB) E + (4 ¢ Pcos B+

+ e PsinB) F 4+ (—etPcosp—etPsing) G +

+(—ePcosp+ ePsing) H =0

(4)

(—etBsinBreBsinB) A+ (+etPcosB+ePBeosB)C+ |
+etPsinB E—ePBsinB. F—etPcosB.G+ePeosp.H =0 } )
(—etPcosB+ e Pcosp—etPsing—ePsinB) A +
+(+etPcosp—ePcosp—etPsinp—ePsinB) C+
+ (+ etBcosB + e Psin B) E + (— ePcosp +
+ e+Bsin B) F + (— etPcosp + eBsin B) G +

2k P

+ (—ePcosp—e BsmB)H—|—( Bd =0

Les racines de ces équations, encore littérales, résol-
vent le probleme.

Exemple numérique. — Deux colonnes distantes de 450 cm
chargent chacune de P = 90 t une poutre, dont voici les
dimensions :

longueur [ = 2a = 650 cm ; Jargeur d = 75 cm ;

épaisseur ¢ = 50 em ;  moment d’inertie J = 780 000 ¢m?*

module d’élasticité E = 293 100 kg/cm? ;

raideur (EJ) = 2286.108 kg.cm?2

Le sol de fondation répond par un indice de compressi-
bilité (B) = 5 kg/em?® qui conduit a la caractéristique

1
p 5 kg/em® X 75 em A
TV 4 x 2286.108 kg.em?

Les deux nombres @ donnent aux produits des fonctions
trigonométriques et exponentielles les grandeurs suivantes :

a = 1,4625 = 830 48’
et®sin a = 4 4,2912!
e %sin a = 4 0,2302!
125 = 580 10
etBsin B = + 2,33850
eBsin B = + 0,30866

,50.10—3 ¢m—1 = 0,0045 cm—1,

z=a=325cm
et®eos a = - 0,46621
e~%cos a = ++ 0,02501
x=>b=225cm
e+tBcos B = + 1,45181
eBeos B = + 0,19162

B=1,0

2k . : .,
__P=2,16 intervient dans la sixiéme

d.(B)

Le terme de charge

condition.
Les six équations d’élasticité se chiffrent deés lors facile-
ment et leurs racines sont :
A = 4 0,26337 C = + 0,20601
F = —0,21546 G = 4+ 0,14281

E = —0,00677
H = + 1,84074
auxquelles on ajoute les deux solutions antérieures

B = A + 0,26337 + D = —C = —0,20601

Cet ensemble conduit aux équations des élastiques  des

; au secteur intérteur d’abord :

deux secteurs et a leurs dérivées
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g = -+ 0,26337 et P cos @ + 0,26337 e~ P cos ¢ -
+ 0,20601 et sin @ — 0,20601 ¢~ sin @

490 00045 (4- 0,46938 ¢+ cos @ — 0,46938 ¢—% cos @ —
L
—0,05736 TP sin @ — 0,05736 ¢—P sin @)
2
% — 9.0,00452 (+ 020601 e+® cos @ + 0,20601 ¢ cos @ —
026337 ¢+ sin @ -+ 0,26337 — sin @)
3
% — 2.0,0045° (— 0,05736 e+® cos @ -+ 0,05736 e cos @ —

— 0,46938 ¢+ P sin @ — 0,46938 e~ P sin @)
puis au secteur extérieur :
p, = — 0,00677 e*® cos @ — 0,21546 ¢~ cos @ +
+ 0,14281 e+ P sin @ + 1,84074 ¢~ P sin @

% — 0,0045 (-+0,13604 e+ cos @ + 2,05622 =P cos @ -+
4+ 0,14958 e+ ® sin @ — 1,62528 ¢~ sin @)
2
% = 2.0,00452(+ 0,14281 ¢+® cos @ — 1,84074 ¢ cos @ -

+ 0,00677 e*®sin @ — 0,21546 ¢~P sin @)

=

Y2
da’

= 2.0,0045% (+ 0,14958 TP cos @ 4 1,62528 =P cos ¢ —
— 0,13604 eT®Psin @ + 2,05622 ¢ P sin @).

Ces expressions satisfont aux conditions d’extrémités et
de contiguité des deux secteurs ; on trouve en ellet :

Eatrémité A (9 = a) M=0 0=0

ce qui donne :

2

cf,—;f = 202 (+ 0,09563 — 0,09565) >0 ;
3

% = 2}3 (4 0,58383 — 0,58378) ~ 0.

Pied de la charge (¢ = B)

) tg v, =tg v, M, =M, 01— Qy—P=0
c’est-a-dire :

91 =9y ™ 4 0,85100 cm ;

%— — %c. a.d. apres division par k: + 0,43967 ~ + 0,43964 ;

oy dPp,

TE=gp o d. pour k?=20,25.10-F6:

— 7,93922 .10—6 oo — 794044 .10—6 ;

3) 2,
Qi—Q,— P =0 donc —(EJ) (’{7‘1—’—[3—‘2> =P =1

da® da’

c’est-a-dire pour 243 = 18225.10—9, et
Q=+ 54778 kg Qy=—235211 kg
donne I'équilibre - 89 989 —- 90 000 ™ 0.

Section médiane (p = 0).

g, = + 0,52674 cm ;

49 _ (4 0,46938 — 0,46038) — 0 ;
dz
20
Por_ 4 16,68681.10— ;
dz?
[3
‘TL‘;' = 2/ (— 0,05736 -+ 0,05736) = 0.

wom,  P=joot 2,25 M. T
e |A ‘g Raideur constante (E.J) M
Réactions |q= d.(B).v .
¥ T T % F ¥ ¥ % F § ¥ §
i 1= B.SDEL{
P 0,526
tg.= K-g-=+ 0Q44- 0,4396 = +0,0020 v=toem

f_““c\g Qz[= 35,2"

o0 yrande™=

o

Qi|= 548

Fig. 2. — Charges symétriques d'une poutre de longueur limitée.

La poutre en béton armé, qui établit ainsi Iéquilibre
général en satisfaisant a toutes les conditions d’extrémités,
subit les moments fléchissants caractéristiques suivants :

sous la charge : contrainte du sol (B)y =5 k/em?®.0,851 em =
= 4,25 k/em? ;

d?p

da?

My= — (EJ)

41815000 kg.cm = + 18,150 mt

au milieu de la portée :

M, = —2286.108 x 16,68681.10—6 —

38,146 mt.

Si Pon supposait la poutre rigide, sollicitant le sol d’une
maniére uniforme par p = 90¢: 3,25 m = 27,7 t/m, donc
3,7 kg/em?, on trouverait sous la charge un moment

Mg=+27,7t/m. 1T0- = + 13,85 mt

et au milieu de la poutre

3,25
2

M, — 90t ( fis 2,25) m = — 56,3 mt

une sollicitation sensiblement plus défavorable du profil de
béton armé.

b) Les deux colonnes se confondent.

Si maintenant les deux colonnes se confondent en une
seule, faisant 2P = 180 t, annulation de I'espacement,

2b = 0, conduit &
etB=eP =cosp=1

sinf =0

ce qui donne aux équations la forme simplifice

— ptasino.FE + e—asin a. F + e+® o5 . G — 1
|
— ¢ %cosa.H = 0. | ()

(—et%cos o —et%sin a) E (4 ¢ %cos a — l
— e %sina) F + (+ et®cosa—et%sina) G+ | (2)
+ (+ ¢ cosa+ e ®*sina) H = 0. I

+ 24 —E—F=0. (3)
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E4+F—G—H=N0. (4) Extrémité A (x=a ; @ = o= ka).
+2C— G-+ H=0. (5) g, =0) +A.e+acosa+B‘e*acosa—l—C.e”Wsina—l—l(])
% —a
+E—F 0_11+(‘T’;>Pl=o. ® | e e I l
‘ oy +a > o
On évalue E, I, G, I en fonction de A et C : da? 0) +C.e"cosa—D. e cosa—A.e sma—l—}(‘z)
: 1 7 1 %P + B.e%sina = 0.
2 4 d—31: O) g+acosa(—A+C)+e_acosa(+B~|—])) +l(3)
1. kP : 1 kP Z : - 3
G=+4+C + 3 (B)d H=—C+ 3 (B)d + et*sina(—A—C)+e “sma(—B—i—D):Oj

expressions qu’on introduit dans les deux équations en a,
ce qui donne la solution finale du probleme numérique.

2. Poutre-radier de longueur illimitée.

Dans le cas le plus simple, ot Pon suppose que la
proximité des charges exclut entre elles la possibilité
d’un souléevement du sommier, la courbe élastique en
contact permanent avec le sol s’exprime, pour chaque
charge prise isolément, par les seules puissances néga-
tives du nombre e, car 'amortissement commence au
pied de la charge considérée et se continue indéfiniment 1.

Si par contre la charge reste isolée, les demi-ondes
bombées dépassent le niveau du sol et, interrompant le
contact, rendent fragmentaire le diagramme des réac-
tions ; la pénétration de Iélastique dans le sol se bor-
nant a une cuvette de longueur finie, mais inconnue au
préalable, le nombre des conditions aux limites du
diagramme demande le retour des termes a exposants
positifs. On fait alors abstraction de la possibilité d’ondes
d’enfoncement subséquentes.

a) Charge localisée.

Une charge localisée de longueur donnée conditionnera
une région du groupe II (équat. 13 & 17), qui se con-
tinuera par deux régions I (équations homogeénes 7 a 11)
jusqu’a une émergence A, dont I'abscisse o = k.a cons-
titue une nouvelle inconnue. Seule la partie de la courbe
théorique comprise entre ces deux limites A compte
comme réaction du sol et participe a Péquilibre de la
charge localisée (fig. 3).

Supposons que la force P,localisée sur une longueur 25,
la charge d’une maniere uniforme. La solution du pro-
bleme doit alors satisfaire aux conditions suivantes :
py =03 [Wl: 0; ()1: 0.
Bord B de la charge : ¢0p= 0y 5 tg 9= lg ¢, ; My— M,.

a

Eaxtrémité A de la cuvette :

s e o P '
Equilibre général : 5 / q.dv = 0.
0

Miliew M : tge, =103 (Qy=0,

ce qui fait neuf conditions pour les neul inconnues :
deux fois quatre constantes d’intégration et Pamplitude
2a de la cuvelte.

Nous (lis])()snns ainsi des neuf équations suivantes, ot
les constantes sont analogues aux précédentes mais dont
seule la premitre a une forme nouvelle :

! Voir notre Coyrs de béton armé, volume 1, Tid. Rouge & C'¢, Lausanne.

Jonction B des régions (v =1b ; ¢ =B = kb).

o, =v;) etPeosB(+A—E)+ePcosp(+B F) +
+ e*Psin B (+C—G) +-ePsinB(+D—H) —
P

et

GR(ET)

d_‘l:ﬁ) ePeosp(+ A+ C—E— G+
dx dx

+e¢Pcosp(—B+D+ F—H)+ (5)
+ etPsinB(— A+ CH+E— G+
+e¢Psing(—B—D+ F+ H)=0.

2 2
d?,  d?v,

HTZ—W) etBcosB(+ C— G) +

+ePcosp(—D+H)+etPsinp (—A+E)+ (6)
+ePsing (4 B—F)=0.

b)

4

: J p
Equilibre général : / g.dv — 5 =0,
0

équation que ¢ = (B)d.¢ transforme en

b a
2 ) 2 P
/ vodr + / vlda‘] — 5 =0.

0 b

(B).d [

&
=] 7 5
. N
@
qe0 oo ' ’q‘ PO ek YT X qe0
Za4 355, 3am.
charge! P: 2%
q=0 AR AR KRR q-0
V=0 Schemg V= [osscm  vsl0S8cm. FROB
des repctions \"\que
bg=- k.03 000t T tlas
M=0

207, XS

e b o)

Qs Me4f33, et e
4290 cmt,

H-
\*_—/
Efforts tramchants ’
/|Q=D

\ o

Fig. 3. — Poutre de longueur illimitée.



Les deux intégrales définies se résolvent par rem-
placement des pénétrations ¢; et ¢, en fonction des
. 1 (EJ)
relations 6 et 12 et du rapport (équat. 2) — = =2
pport (bquat- 2) - 773 = (pyq

(EJ) d*,

177 (B)d dx*
k! d4e,
2= (Bya [‘f‘ p—(EJ) ELLA}
ce qui donne sous ‘a charge

B)d. /vzdx— /pd:v— EJ‘/d‘zdx_

d3p

- + 7 (i} [(11'32]1=b+ (B) [lfi: ];:o

et en région extérieure a la charge

B)d. / oy da = >[dz; 1La+(FJ) [‘2 "3]

L’effort tranchant s’annulant aux limites 2 = 0 et
@ = a, deux parenthéses s’effacent, et I'on écrit I’équa-
tion d’équilibre (7) :

[+ —En[Z2] L+ e S ==

condition qui se réduit 4 la simple égalité des efforts
tranchants en B :

3o, d3v,
[ da® J o + [ da? ],:,, ik

Section médiane (x =0 ; @ = 0).
5(11‘7*0) 1 (+E+ G +1.(—F+H =0 (8
{3 . ; .
‘(1%32:0) 1 (—E+ G)+1.(+F+H =0 (9

Les deux derniéres équations donnent irmmédiatement
deux solutions

+E=4F + G=—H
que nous introduisons dans les sept autres ; nous obte-

nons ainsi quatre équations algébriques ot paraissent les
constantes d’intégration comme seules inconnues ; ce

sont :
+ A.etPcos B+ B.cPcos B+ C.etPsin B -+
+D.ePsinpg + E(— e*Bcos p— e Pcos B) + ()
) = —B o i -1
-+ (1(—e+ﬁsmﬁ+¢, Bsin B) — 7|I4(I§J) = i

+ A(+ etPcos p— etPsin B) + B(— e*Pcos p—
— e Psin B) + C(+ etBeos B 4 etPsin B) +
+ D (+ e Peosp—ePsing) + E (—eBeosp+ 1 (5)
+ ¢ P cos B+ etPsin B+ ¢ Psin B) +
+G(—etPeosptePeosp—etPsinp—e Psin B)=0

— A.etPsin B+ B.ePBsin B+ C.etPcos B— I
—D.cPeos B+ E(+ etPsinp— e Psin B) + (6)
+ G(—etPcos B— ¢ P cos B) = 0. l
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A(—etPcos p—eBsin B) + B(+ e Pcosp—
— e PBsinB) + C(+ etPcosp—etPsin ) + l
—{—])(—ke“ﬁcosB#—e"Bsin B) + E(+ e+BcosB— (7)
— e PeosptetPsinptePsinpg)+ G(—e*Bcosp+
+ e Pcos B 4 etPsinB 4+ ¢ Psin ) = 0.
On a ensuite trois équations transcendantes & cing

inconnues A & D et a, et que nous classons suivant les
constantes :

+ A.et®cosa + B.e%cosa + C.et%sin a + |

1)
+ D.e%sina = 0. | (
— A.et%ina 4+ B.e®*sina + C.et%cos o — l )
—D.e®cosa = 0. s
+ A(—et%cosa—eT%sina) + B(4 e

— e %sina) + C(+ e ®cos a— e™%sin a) +
+D(+e®

cos o — l
cos o + ¢ %*sin a) = 0. I
Nous simplifions Pécriture des quatre équations algé-
briques en symbolisant les grandeurs connues :

n P . P
[N = 4K4(EJ)  2b(B)d

r=ePBcosp

t = etBsin B

s = ¢ PBcos B

u=¢Psin g
ce qui conduit a

+rA4+s.B+t.C+uD+ E(—r—s)+ l
+G6G(—t+u) — [N =0.

A4+r—t)+B(—s—u) 4+ C(+r+1) + ‘
+D(+s—u)+E(—r+s+t—u)+
+ G(—r 4+ s—t—u)=0. ’

—t A+ uB+rC—s.D+E(+t—u)+ |
+G(—r—s)=0.

A(—r—t) 4+ B(+s—u) + C(+r—1t) + l
+D(+s+uw+ E(+r—s+t+u) +
4+ G(—r—+s+t+4+ u)=0. I

Les quatre constantes ainsi obtenues en fonction des
deux restantes raménent les trois équations transcen-
dantes & trois inconnues.

La résolution littérale des équations algébriques (4) a
(7) conduit & des calculs disproportionnés avee leur
utilité pratique. Cette résolution aurait un seul intérét,
celui de montrer que la longueur 2a de la cuvette est
indépendante de la grandeur de la charge, dans la sup-
position d’élasticité linéaire mise a la base des dévelop-
pements théoriques. Cette indépendance parait du reste
évidente.

[exemple numérique, qui suit, le montre. L’équa-
tion (4) étant seule & contenir le terme de charge, tous
les facteurs numériques des solutions ultérieures résul-

tent proportionnels & ce seul terme de charge ; c’est
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donc le cas également des constantes d’intégration, que
donne la résolution.

Par contre, I’équation homogéne issue de I’équation (3)
donnera une grandeur o indépendante de ce terme de
charge, puisque la proportionnalité des facteurs numeé-
riques en affecte également chaque terme.

Exemple numériqgue. — Nous reprenons les données de
Iexemple précédent en les appliquant a une poutre sans
poids notable, de longueur illimitée et de profil

d=175cm e =50 cm
supportant la charge unique

P =90 000 k.

Sa raideur
(EJ) = 2286.108 kg.cm?
conduit avec
(B) = 5 kg/em?
a la caractéristique
k= 0,0045 em—1.

On admet, selon Ordonnance, une répartition de la charge
de la colonne de 60 cm de base sur
2b = 60 + 50 = 110 cm.

La section limite entre les régions I, hors charge, et II
sous la charge, se place a

g = kb = 0,0045 cm—1.55 cm = 0,2475 = 140 11’
a quoi correspondent
Sh B = 0,2500 Ch B = 1,0308 etB =1,2808 B =0,7808

Les symboles introduits ci-dessus se chifirent par :
N — 90 000 kg
(W] = 110 em % 5 k/em® X 75 em
r=e*P cos p= + 1,24176

t = etB sin = + 0,31382
s=eB cos p= + 0,75700 w=e¢B sin p= -+ 0,19131

= 2,18181 em ;

D’ou résultent les quatre équations algébriques (4), (5), (6)
et (7), dont on tire les solutions provisoires :

A=+ B—0,52831 C =—D + 0,55102
E = + B —1,35460 G = —D 4 0,34233
L’élimination de ces constantes donne aux trois équations
transcendantes la forme
B(+et® cos a+ e cos a) 4D (—et®sin o+ e %sin @)
—0,52881 et%cos a + 0,55102 et % sin a0 = 0.

B(—et%sin a4 ¢ %sin @) + D(— et cos a — e % cos a) -|—l
4+ 0,55102 et % cos a 4 0,52881 et %sin a = 0. [

B(— et®cos a 4 =% cos a — eT%sin a — ¢~ %sin )
4D (—et%cos a4 ¢ % cos a 4 eT%sin o ¢~ sin a)
+ 1,07983 et® cos @ — 0,02221 ¢+8 sin a = 0.
Les équations (1) et (2) donnent
+ 0,52881 e+2¢ — 0,55102 sin 2a + 0,52881 cos 2
4 et20 4 e—20 4 9 o5 2a

B =

+ 0,55102 e+2¢ 4 (0,52881 sin 2a -+ 0,55102 cos 2a
4 et20 =20 1 9 cos 2a

D=

réduisant la (3) a la forme simple
e+ (- 1,07983 cos @ -} 0,02221 sin a) +
+ e (+ 1,07983 cos @ — 0,02221 sin o) = 0

dont la solution

o= 91005’ = 1,56897
correspond & une amplitude de la cuvette de
89
fo=Ye =2 aEag e,

A 0,0045 cm—1

On trouve conséquemment par les fonctions de I'angle
B = 4 0,55270
D = 4 0,57402

et par rétrogression

A = 4 0,02389 ¢ = —0,02300
E = —10,80190 G = —0,23169
F = —0,80190 H = + 0,23169

Les deux fractions de la ligne élastique se figurent des lors
comme voicl :
Région I (sans charge, entre 2 =0b et 2 =a):
p; = -+ 0,02389 e*? cos @ + 0,055270 =P cos ¢ —
— 0,02300 et ® sin @ 4+ 0,57402 =P sin @

avec les dérivées

‘fl‘; — - 0,0045 (4 0,00089 e+ cos @ + 0,02132 e—® cos @ —
—0,04689 e+ ® sin @ — 1,12674 e~ sin @) ;

2

‘Z—;; — 4 2.20,25.10—6 (— 0,02300 e+ cos ¢ —
— 0,54702 e=® cos @ — 0,02389 e+ P sin @ +
+ 0,55270 e P sin @) ;

3

% — 2.91,125.10—9 (— 0,04689 e*® cos @ -+

+ 1,12674 ¢—® cos @ — 0,00089 e+ P sin @ 4
+ 0,02132 ¢=? sin ).

Région I (sous charge, entre # =0 et = b):
py = — 0,80190 e*® cos @ — 0,80190 e=P cos ¢ —
— 0,23169 e*® sin @ + 0,23169 e=Psin @ 4 2,18181

avec

% = +4,5.10—3(—1,03359 e+ P cos ¢ 4-1,03359 e~ P cos @ +
+0,57021 et® sin ¢ + 0,57021 =P sin @) ;

d?p, o B0, q e

T2 =2 .20,25.10—6 (— 0,23169 e*® cos @ —
—0,23169 ¢ cos ¢ + 0,80190 e*?P sin ¢ —
— 0,80190 =P sin @) ;

A3y,

5 = 2.91,125.10—° (4 0,57021 et® cos @ —
— 0,57021 ¢ cos @ + 1,03359 et P sin @
+ 1,03359 =P sin @).

da

Ces équations satisfont comme suil aux conditions posées.
Miliew M o= 0 ; = 0.

vy = + 0,57801 cm

tgop =05  Qy=0.

Section B de jonction -1l (x=1b; @ =8):
P = V) -+ 0,55066 — 0,55081 >0 ;
tg ¢y = tg v,) — 0,21303 4 0,21294 22 0 ;
M,=M,) —0,36485 + 0,36485 =0 ;
0y = 0y) -+ 0,79851 — 0,79851 = 0.
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Section A (extrémité de la cuvette, 2 =0; ¢ = a = 91005")

et® cos a = —0,09270 et® sin o = 4 4,90126
e~ % cos o = — 0,00386 e % sin o = + 0,20417
ce qui fait
o = + 0,11720 — 0,11707 >0 ;
M, =0) + 0,11719 —0,11709 >0 ;
Q,=10) -+ 0,00870 — 0,00871 = 0.

Les constantes d’intégration répondant exactement aux
conditions du probléme, on constate les sollicitations sui-
vantes le long de la cuvette :

au miliew M (z=0):

vo = + 0,57801 cm ;
s = (B)y =5 kg/em?.0,57801 ¢cm = 2,89 kg/em? ;

d2
M =— (EJ) 5.2 = 4290 111 em kg = + 42,90 mt. ;

a la limite B de la charge transmise sur le sol :
s = 2,75 kg/em? ;
= + 3377890 cmhg = + 33,78 mt.

b) Charge ponctuelle.

On simplifie volontiers le calcul de la poutre en sup-
posant la charge extérieure P concentrée sur un espace
infiniment petit

2b —— zéro.
Cela n’a pas d’importance dans le cas d’une poutre
reposant sur des appuis extérieurs fixes ; il pourrait
n’en é&tre pas de méme ici, puisque I'équilibre du sec-
teur II chargé traduit des efforts unitaires infiniment
grands sur ce court espace ou

sSinBB=kb—>0; eP=e¢P=1;

cos B = 1.
[équation différentielle de I'élastique
v =+ EetPcoso + Fe®Pcosp + GePsing +

P
—P 51 — = o
+ He S]n(p+2b(B)(l
satisfait & ces limites aux mémes conditions, quelle que
soit la longueur 2b (équat. 8 et 9 de la section médiane),
donc aux égalités
+E=+4+F + G=—H

ce qui conduit a I"équation simplifiée

vo=L(+ P+ e P cosp + G(+ e —eP) sin @ +
p

T 9By
avec ses dérivées
dl; =k[(+ E+ G)(+ et?—e ) cos ¢ +
dx
+(—E+ G)(+ P 4 e P)sin @] ;
2
%42/%}— G(et® 4 P cos @ + E(— et P+
+ ¢~ ) sin @] ;
d?y

ﬁ =23[(— E + G) (+ ¢ ) cos ¢ —
—(+ E+ G) (+ ¢*® + %) sin 9]

La limite 2b—— 0 réduit I'équation de I’élastique &

2bvy = 2bE(+ L+ 1)1 4+ 2b G(+ 1 —1)kb +&
c’est-a-dire a
0=4bE + e
X (B)d
ce qui donne & la constante £ une grandeur infinie
P
E=—mma ~~

La constante G reste, par contre, finle en méme temps |
que le moment fléchissant, inconnu du reste avant ‘

calcul
My =— (EJ)‘iZ —(E)2R} [+ G(1 + 1)1 —
P
4b( H— 1—1)kb] = —4k%(EJ) G.

La tangente au bord extérieur du secteur II intro-
duit 'indétermination (voir ci-dessus) :

+ E(+ e —e®Pcose—E(+14+Dkb=
P 2 —_—
= B [(+e+q’—e P)—2k b =
4 4P —t@
_2(B)d[ 2b +k}

qu’on résoudra en développant les exponentielles

o o

e+¢:+1+%+ P =l fee +,),...

ce qui fait
P —etP=—20=—2kb

et conduit i
dvy 3 P
de " 2B)d

(—k+ k=0

Les efforts locaux infiniment grands n’empéchent
donc pas le secteur I de partir sur une tangente hori-
zontale. On peut désormais I'étudier indépendamment
en tenant compte de 1’équilibre général et des conditions
aux limites

insertion B=M 2 =10 ; — =20 ;
da
_—— F=a . d%p 0 ddy
extrémité 3 —— —
v =0 da? 2 dad

[équation différentielle (7)
o=+ Aet®cos @ + Be P cos @ + Ce™® sin @ +
+ De® sin @

avec ses dérivées (expressions comme 8 & 11) nous donne
les cing équations nécessaires :

Extrémité A de la cuvette ax=a; @ =a=k.a.
p=0) 4 Aet%cosa+ Be*cosa+ Cet®sina —}—](1)
4+ De®*sin o = 0. |
d?o v a —a +a
Feh )+ Cet®cosa— De % cosa— Aet*sina ~|—l(9)

+ Be%sin o = 0. l
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3
= 0) e eosa(—A—O)+ P eosa(+BHD)+ | g

+ Hsingl—A— ) dsingl- BLDI=0 |

Equilibre général :

_ » -
+ 35— / d.s.de =+ 5 —d.(B) / .t =
5 ;
P 1o P B
—+5+ [t = 5+ @[ E] -
0

P iy
=t j"‘(EJ)[JEQL’”

puisque Deffort tranchant s’annule a la limite @ = a ;
on a ainsi la quatrieéme condition, ot 2 = 0 fait ¢ = 0.

+ ];*(EJ) US(—A+C+B+D)=0

c’est-a-dire

 ALBLEED— p ik A5

4(EJ) (B)d

donc
: Pk
— ) = = —_ 4
A4+ B+ CH1 +[0] s1 (0] +(B)(l (4)
Nous trouvons enfin dans la section médiane (v = 0
et%:O) +A+4+C—B+D=0. (5)

Les deux équations algébriques (4) et (5) donnent
deux premiéres solutions

1

C=+3[0]—D A=—-[0]4+B

N =

que nous introduisons dans les trois équations trans-
cendantes. La symbolisation des fonctions de I'incon-
nue o

m = e"%cos a 0o=c¢"%sin a
n=e¢ %cosa p=c¢ %sina
nous conduit &
+ Am + Bn + Co + Dp = (. (1)
+ Cm —Dn— Ao + Bp = 0. (2)
(—A+Cm+(+B+D)n+(—A—C)o +
+(—B+D)p=0. (3)

[’élimination de A et C donne d’abord

B(+m+n)+D(—o+p) + 5[0](—m—+0) =0 (1)

Nl = b=

B(—o+p)+D(—m—n)+ ;5 [0](+m+0)=¢ (2)

équations dont les racines sont, aprés retour a 'angle o,
et en notant le dénominateur commun

(d) =+ et20 4 620 4 9 cos 20

,+20 sova, ey —igdmy 2
p— T Fcosda—sindd
2(d) i
_+ et + cos 2a - sin 20
D e C

et par conséquent

— 2% cos 204 — sin 2a
A= 20d) (0]
+ ¢2%  ¢cos 20 — sin 2a
G = 2(d) [0].

L’équation (3) se transforme en la condition
4+ 2cosa(+ e+ e =0

dont la solution consiste en
™

2
donc & peine moins que a = 910 05" obtenu grice a la
répartition a 450 dés les bords du pilier. Ce résultat fait

= 900

cosa =0 o =

prévoir que I'Ordonnance fédérale est trop sévere et
pourrait autoriser une répartition plus large au travers
d’un massif de fondation armé. Des mesures au labora-
toire de statique le rendront peut-étre évident.

Le moment fléchissant au milieu de la poutre se
montre, par contre, trés sensible au changement de
régime.

La solution cos20=—1 sin2a=0

simplifie I'expression des constantes qui, avec

e+20 — 93 1410 2% — 0,00432

cosa =0

deviennent pour

(d) = + 23,1410 4 0,0432 — 2 = + 21,1842
A = 4 0,02258 [0] C =—0,02258[0) =— A4
B = + 0,52258 [0] D= + 052258 [0] = + B
et donnent a l'élastique I’équation

p = (4 0,02258 ¢*® cos @ + 0,52258 ¢~ P cos @ —
—0,02258 ¢*® sin @ + 0,522258 ¢~ P sin @) [0]

ou les termes a exposant positif sont trés petits en com-
paraison des termes amortisseurs de la courbe.

Exemple numérigue. — Nous reprenons les dimensions
de la poutre étudiée précédemment et dont le terme de
charge devient

~ 90000 k. 0,0045 em—!

[0] = = 1,08 cm.

5 k/em3.75 em
Les constantes

A =—C =+ 0,02439 B =+ D=+ 0,56439

donnent & 1'¢lastique les équations

g = -+ 0,02439 e*® cos @ + 0,56439 =P cos ¢ —
—0,02439 ¢*? sin @ + 0,56439 ¢ P sin @

lo . .

f[L — k[ 0,04878 *® sin @ — 1,12878 ¢~ sin @] ;

axr B

(12" 9.2 L5 o+ ERZLS —

pro 2k2 [— 0,02435 e*® cos ¢ — 0,56439 ¢~ cos @ —
—0,02439 TP sin @ + 0,56439 ¢~ P sin @] ;

3¢ )

‘1;‘3 — 23 [ 0,04878 ¢+ P cos @ + 1,12878 ¢~ cos @]

axr

et satisfont comme suit aux conditions de limites :
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Eaxtrémité A (@ =a =90 ; sina =1 ; cosa = 0).

p=—0,11733 + 0,11734 > 0. (1)
d2o
152:%0,11733—#0,11734;\50. (2)
d3y
e 0. (3)

Equilibre général :

— 0,02439 + 0,56439 — 0,02439 + 0,56439 = 1,08 em
1,08 = 1,08. (4)

Section médiane :
dy

— =0)+0,02439—0,02439—0,56439+0,56439=0. (5
dx )

La compression du sol atteint, sous la charge ponc-
tuelle (z=0; ¢ =0)
p = + 0,02439.1.1 4 0,56439.1.1 = 0,58878 cm

et le moment fléchissant médian

20

M = —(EJ) ﬂ = -+ 5451100 cm k = + 54,51 mt
da?

un chiffre naturellement plus fort que sous la base

répartitrice.

Conclusions.

Supposant I'élasticité parfaite du sol comprimé, mais
abstraction faite de I’entrainement dit aux déforma-
tions inégales, supposant donc la proportionalité des
enfoncements avec les efforts verticaux, qui les provo-
quent, on montre que les conditions aux extrémités de
la poutre de longueur limitée, et celles aux affleurements
de la poutre de longueur illimitée, conduisent le calcul a
des fonctions trigonométriques amorties par des expo-
nentielles 4 exposants négatifs et positifs. Les cons-
tantes d’intégration donnent aux puissances négatives
du nombre e une influence prépondérante, mais laissent
subsister dans tous les cas étudiés les termes a exposant
positif ; Iabsence de ces derniers aurait empéché de
donner satisfaction simultanée & toutes les conditions
d’extrémités, de contiguité et d’équilibre.

On remarque, en passant, que I’¢lasticité de la poutre
abaisse ses moments fléchissants maximums en concen-
trant la pression du sol aux abords de la charge ; la
longueur de la cuvette de pénétration ne dépend toute-
fois pas de la grandeur de la charge sur le sol censé élas-
tique linéairement, mais seulement de sa disposition.

On voit enfin, & travers un sommier armé, que la trans-
mission des charges se fait probablement sur une lar-
geur plus grande que ne le fait la répartition a 459 géné-
ralement admise ; Pélasticité relative du sol et de la
poutre influencent cette largeur dans une proportion
que le laboratoire de statique pourrait aider a fixer pra-

tiquement.
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d'un tube cylindrique de révolution
a épaisseur variable,

par Jacques PASCHOUD, ingénieur E. I. L.,
ingénieur aux Usines Paillard S. A., Sainte-Croix.

1. Introduction.

Dans son article paru dans ce méme numéro, M. le
professeur A. Dumas expose les difficultés trés grandes
qui s’opposent & I'intégration algébrique rigoureuse des
équations différentielles des enveloppes et il s’attache
particulierement & I'¢tude du tube cylindrique de révo-
lution a épaisseur variable. II montre comment, en
généralisant la solution de 1'équation différentielle du
tube & épaisseur constante, on peut obtenir les défor-
mations dans la section origine du tube. Partant de ces
déformations, il est alors possible de trouver toute I’élas-
tique par une intégration numérique ou graphique point
par point. Cette méthode a I'avantage considérable d’étre
immédiatement applicable & n’importe quel cas d’enve-
loppe de révolution. Par contre, elle ne peut étre utilisée
que pour des enveloppes axialement illimitées dans un
sens, ou du moins que 'on peut considérer comme telles
en vertu du principe de Saint-Venant. Enfin, pour trou-
ver la déformation en un point quelconque de cette
enveloppe, elle exige une intégration point par point
rumérique ou graphique & partir de la section origine.

Nous attachant au seul cas du tube cylindrique de
révolution & épaisseur variable sollicité dans la section
origine par un moment fléchissant et un eflort tran-
chant répartis uniformément dans cette section, nous
avons cherché & mettre I’é¢lastique de ce tube sous une
forme algébrique propre 4 permettre la détermination
suflisamment précise des déformations en un point quel-
conque, et ceci par simple substitution de nombres
aux symboles algébriques. Notre but était encore d’en-
visager non seulement le probleme du tube illimité
axialement mais aussi toutes les conditions aux limites
possibles pour la section terminale du tube.

2. Principe de la méthode.
L’idée développée fut la suivante : chercher une loi
régissant la variation d’épaisseur du tube qui permette,
par lintégration rigoureuse de DPéquation différentielle
proposée d’obtenir I'élastique du tube sous la forme
d’une fonction connue ; puis généraliser cette fonction
de fagon A pouvoir emvisager d’autres lois de variation
d’épaisseur.

Avant de développer ce principe, nous youdrions
attirer Pattention sur le fait que les calculs effectués
pour obtenir le résultat algébrique paraitront probable-
ment un peu longs ; néanmoins Papplication de ce résul-
lat, acquis une [ois pour toutes, 3 un probleme numeérique

donné sera beaucoup plus courte.
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