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sollicitations au gel, les déchets provoqués par celui-ci
n'ont que très rarement atteint 25 gr/dcm2, souvent ils

ont été inférieurs à 1 gr. Or 25 gr/dcm2 correspondent
à une pellicule de béton de 1 mm d'épaisseur. En mettant

les choses au pire, le béton sera détérioré sur une
épaisseur de 2 à 3 cm après une trentaine d'années. A
ce moment, il suffira de munir le parement amont d'un
enduit gunite pour le restaurer complètement. Quant à

la chute de résistance à la compression, de 10 à 20 %,
elle sera largement compensée par le durcissement normal

du béton.
Les plus beaux raisonnements ne tiennent pas devant

la réalité. Le gel peut attaquer le béton dans toute la

masse gelée, c'est-à-dire sur une épaisseur dépassant
0,80 à 1,00 m. Il provoque le déchaussement des

graviers, une fissuration, souvent imperceptible, de

la pâte liante, ce qui a pour conséquence de diminuer
très sensiblement, non pas la résistance à la compression
qui est peu modifiée, mais la résistance à la traction
et le module d'élasticité apparent.

Depuis 1931, nous avons modifié en conséquence
l'essai de gélivité ; ce que nous déterminons maintenant
c'est la chute de la résistance à la flexion et du module
d'élasticité du béton sous l'action du gel. Cette méthode,
mise au point par le Laboratoire de Lausanne, a été

aussi adoptée depuis par le Laboratoire fédéral de Zurich.
Les recherches entreprises sur ces nouvelles bases ont

abouti aux conclusions suivantes :

Contrairement à ce que l'on croit généralement, la

gélivité d'un béton ne dépend ni de sa porosité, ni de

sa résistance, mais essentiellement de sa fissuration,
souvent microscopique, due au retrait et aux variations
locales de température, ainsi qu'aux vides laissés sous
les gros graviers par la remontée de l'excès d'eau de

gâchage. A égalité de résistance un mortier sera moins

gélif qu'un béton contenant des gros graviers. Toute
fissure est une amorce d'attaque par le gel1.

Pour réaliser un béton non gélif, il faut le gâcher

avec peu d'eau pour réduire le retrait et les effets de

la remontée d'eau de gâchage. Pour atténuer les

inconvénients de cette dernière, il ne faut pas utiliser, pour
les bétons exposés au gel, un gravier dont les grains
dépassent 30 mm de diamètre.

Par analogie, les briques et les tuiles, bien que
toujours très poreuses et à résistance modérée, ne sont
gélives que si elles ont une texture feuilletée due à un
défaut dans le rebattage de l'argile.

Il y a encore une autre forme très importante de la

gélivité du béton que nous avons constatée, en 1938,
lors des essais d'un bloc de béton au dosage de 300 kg

1 Voir : « Etude des parements des barrages en béton et en maçonnerie »,

par J. Bolomey. Publication du « Second congress on large dams », Washington,

1936. '— « Module d'élasticité du béton », par J. Bolomey. Bulletin
technique nos 17 et 18, 1939. —¦ « Destruction des bétons par voie chimique,
physique ou mécanique», par J. Bolomey. Bulletin technique n° 21, 1940.

prélevé dans le parement du barrage de Barberine.
Le béton altéré tend à se détacher en feuillets verticaux

parallèles au parement ; les graviers ne sont pas déchaussés

comme cela paraîtrait normal, mais certains ont été
cisaillés par des efforts tangentiels parallèles au parement.
Tandis que la résistance à la flexion reste notable pour
les prismes horizontaux ou verticaux parallèles au

parement, elle est tombée à zéro pour les prismes
normaux à celui-ci.

Cette fissuration spéciale dans des plans parallèles
au parement, alors que la pâte liante n'est pas détruSfâilf
est due au gonflement du béton gelé par rapport au
même béton non gelé. Il se produit des efforts tangentiels

intenses au point de contact du béton gelé avec
celui qui ne Test pas encore, efforts qui peuvent
provoquer le cisaillement du béton. A mesure que le gel
pénètre dans la masse du béton, il se forme une série
de fissures parallèles au parement. Ces fissures
s'élargissent progressivement sous l'action du gel et du dégel
jusqu'à ce que se produise la chute de feuillets de béton.

Ce phénomène de dilatation du béton gelé est très
étroitement apparenté au soulèvement des chaussées.

Dans certains cas, suivant la nature du sous-sol et du

revêtement, celui-ci peut se dilater sous l'action du gel.
Il se produit des compressions tangentielles dans le plan
du revêtement qui peuvent provoquer son soulèvement

par flambage. C'est pour cette raison que le soulèvement
est généralement plus marqué au milieu de la chaussée

que sur ses bords.
La dilatation du béton gelé peut atteindre 0,1 à

0,2 mm/m1 pour du béton coulé, comme celui du
barrage de Barberine ; elle est pratiquement nulle pour du
béton vibré.

Lausanne, février 1945.

Poutres formant radier

sur sol compressible
par A. PARIS, professeur à l'Ecole d'ingénieurs

de l'Université de Lausanne.

Les phénomènes de déformation des sols de fondation,
sollicités par la charge des bâtiments ou autres ouvrages,
sont affectés de deux facteurs qui influencent défavo1-

rablement la fidélité des efforts à la loi de Navier. D'une

part l'homogénéité, généralement locale, empêche l'élasticité

supposée de se manifester par une loi simple,
qu'on admet quand même par nécessité de calcul. D'autre
part, cette élasticité, jointe à l'impossibilité de réactions
négatives sous les ondes de soulèvement, fait que la
déformation se manifeste par des cuvettes localisées,

que le calcul suppose finir brusquement à leur point
d'émergence, tandis qu'un raccordement s'impose en
réalité avec les surfaces primitives du sol, demeurées
telles dans les régions non affectées.
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Adapter l'analyse des déformations à ces faits réels
conduirait à des complications sans proportion avec les

avantages théoriques, restés hypothétiques en présence
d'une élasticité imparfaite.

On base donc les calculs habituels sur la condition
des déformations linéaires

s (B)v 1)

qui lie entre eux, sur le sol de fondation, les réactions
spécifiques s toujours positives, l'indice de compressi-
bilité (B) du terrain et les ordonnées v des surfaces
d'enfoncement élastique de contact. Ce problème a déjà
été fort étudié ; nous croyons néanmoins utile de rechercher

ici une solution mathématique capable de satisfaire

à toutes les conditions, que la nature des faits
impose aux limites du radier.

Considérons une poutre rectangulaire de section
constante F d.e ; on connaît sa raideur (E.J), produit
du module d'élasticité du béton par le moment d'inertie
censé constant malgré la solidarité avec les bases monolithes

des colonnes solidaires. La résistance du fondement

aux déformations élastiques s'incarne dans la

caractéristique du professeur Dr M. Ritter

k=*/WL 2)

indice simple de la solidarité de déformation entre sol
et poutre.

Nous admettons pouvoir négliger l'effet du poids
propre du sommier en béton, portion de la charge totale
faible en soi et capable de s'équilibrer par une réaction
immédiate. Restent les charges de construction.

Celles-ci se présentent localement comme charges
concentrées P agissant sur une largeur 1b censée
négligeable ; ailleurs, les charges réparties p uniformes ou
variables affectent des espaces finis tels que a (fig. 1).
Le sol leur répond par des réactions montantes

q s.d= d.(B).v

qui ont un diagramme continu sur toute la longueur
de la poutre, si l'on suppose momentanément l'absence
de soulèvement.

Il se forme ainsi deux sortes de sollicitations de la
poutre :

Les régions I, telles que A — Bx, B2— C, etc., où
agissent seulement les réactions du sol, où la poutre
tend donc à remonter et qui peuvent donner lieu à

.X îi~0
fit) | Bi

TTT TTrTT7dT
- réQlcnîx" ¦

M t M M
- région i-|

F

m
origine.Niveau

»\3Mique

IB. 1 Types de charge.

des soulèvements locaux ; la réaction du sol, seule en
cause, introduit en analyse une équation différentielle
homogène, où la déformation élastique v apparaît
simplement proportionnelle à la réaction q.

(El
d*v

dx* d.(B). 3)

Les régions II, telles que CD, se placent entre les
domaines de pure réaction ; la résultante variable

P
Tbd.(B).v-

conduit à une équation différentielle avec membre de

charge du type
d*v

(EJ) dx* d.(B). 4)

Ces régions I et II ne sont nettement tranchées que
dans la conception théorique ; en réalité, la poutre,
résistante au cisaillement, répartit les charges P ou p.a
sur des longueurs difficiles à préciser, et pour lesquelles
l'Ordonnance donne des mesures, arbitraires du reste
puisqu'elles ne font pas intervenir le rapport des
raideurs de la poutre et du sol. En réalité, l'action transmise

par la poutre au sol s'efface progressivement;a3||
dehors des charges, et sur des longueurs que des mesures
au laboratoire de statique permettraient de comparer
aux résultats du calcul théorique ; une conception plus
claire en résulterait peut-être.

Ceci admis, les conditions d'élasticité s'expriment par
les formules habituelles de réaction et de moment

d2M
dx2

c'est-à-dire

M

¦™ S-

(EJ)
d2v

dx2

Les deux régions de charge, constatées ci-dessus, se

comportent comme suit dans l'analyse de la stabilité.
Convenant du symbole

qp k.x 5)

qui remplace l'abscisse linéaire x par le nombre pur k.x,
on établit les équations différentielles et leurs dérivées.

Régions I (sans charge directe). L'équation homogène

(B)d.v1-(EJ)
div1
aW

0

que la caractéristique (équation 2) permet d'écrire

div1
dx* ikiv1 0

admet l'intégrale

vx : + Ae+f cos qp + Bé~V cos qp

+ Ce+cP sin cp + 1

avec les dérivées

dv-,

~dlc

a-<P sin qp

k [e+cP cos cp (+A+Q+e-V cos cp (— B+D) + |

+e+cPsincp (—A + C) + e~^ sintp (-B—D)] j

6)

7)

8)
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ll^VZZ* 2k2 [+ C.e+<P cos cp— D.ë~* cos cp —
dx'

— A.e+f sin cp + B.e~^sin cp]

d3v

-^ 2/c3 [e+<P cos 9 (— A + C) +
+e-<Pcos cp(+ 5 + D) +
+ e+<P sin cp (—^—C) + e^ sin cp (—B + D)

dont la quatrième

div1

9)

10)

dx /c4[+ 4.e+cPcoscp + S.e-°Pcos9 +
C.e+(psinqp -f-D.e" sin cpj — 4/r%

11)

satisfait à la condition 6.

L'amortissement des ondes de déformation réduit en

général les facteurs A et C des puissances positives de e

à de petites fractions de B et D, dans les régions
extérieures aux charges du moins ; les conditions aux limites
les empêchent toutefois de s'annuler régulièrement.

Régions II (sous charge répartie). Les charges dites
concentrées ne l'étant jamais que relativement, on
traitera d'une manière analogue les secteurs II, qui
supportent une charge fortement localisée ; nous en

étudierons néanmoins le passage à la limite 2b 0.

L'équation 4 devient

-, g*+*.„.= JL.. 12)

Elle admet, si la charge est uniforme, l'intégrale

-M.-- "
• ", *. + û/m

où v0 représente l'intégrale générale de l'équation homogène

; on écrit donc l'équation de l'élastique

+ £.e+<P coscp + f.e-'Pcoscp + G.e+<Psincp

-f- H. ê~^ sin qp
4/c4 (EJ)

puis ses dérivées

dv2

dx
k [e+(P coscp (+E+ G)+e_tp coscp (— F+H)+

d2,

+ e+(Psinqp(— E + G) +

'l=2k2[+ G.e+<P coscp—

-£.e+cPsin<p + F.e'

-<PS, n<p'—F — H)]

H .e v coscp

_<p sin qp]

13)

14)

15)

dx3
=2P[e+mcoscp(—£+G)-r-e-<Pcoscp(+aF+f/) +

+ e+f sinqp (— E — G) + e~^ sin cp (— F + H)]

d*Vi
Ix* -4/c4 [+ E.e+f coscp + F -«Pros qp

+ G.e+<Psinqp+//.e-'Psincp] —4/c4 +<v

4/c^-rf7) °

résultat conforme à l'équation 12.

ik'(EJ)

16)

17)

a J- dAV2
c est-à-dire -~dx*

Ces développements s'appliquent à divers cas

particuliers, dont nous examinerons deux formes habituelles.

1. Poutre de fondation de longueur limitée.

Si la poutre supporte des charges théoriquement
concentrées, donc de largeur réputée nulle, toutes les

régions sont du type I à équation homogène ; ainsi les

deux secteurs terminaux et les intervalles, qui séparent
les charges. Chaque secteur introduit quatre constantes

d'intégration, les seules inconnues du problème.

a) Deux charges égales et symétriques.

Considérons le support de deux charges égales et
symétriques. La verticale médiane M, sur laquelle nous

plaçons l'origine 0, divise la poutre en deux parties

équivalentes ; chacune d'elles comporte deux domaines

d'intégration du premier type, sans charge extérieure.

Les équations différentielles appartiennent au groupe 7

à 11 ; nous les rapportons néanmoins à des ordonnées vx

et v2, et désignons les constantes par A..D et E..H.
Deux d'entre elles, E et G dans les régions extérieures,
coefficients de puissances à exposants positifs, sont

très petites mais non nulles, car elles doivent contribuer
à satisfaire aux huit conditions d'extrémités exprimées

par ordonnées v, tangentes dv/dx, moment M ou effort
tranchant Q

en A M2 0 (1) & o (2)

en B (>2 vx (3) ig(,1 tg(,2 (4)

M2 M1 (5) p + Qi~Q2 0 (6)

en M tg horizont. (V) Qx-9 (8)

Nous trouvons ainsi, conformément aux équations 7 à 11,

les conditions aux limites (simplifiées par les facteurs

communs).
Extrémité A (x a ; qp k.a a connu) :

dx2
:

cos a—H .ë~acosa-

+ aP.e_asina= 0.

¦£.e+asina

Ç^ e+acosa(— E+ G) +e~acosa(+F + H)+
dx3

+ e+asina(—E—G) + é~a sin a (— F + H) 0

Section B (sous charge) (x b ; cp /rfo ß)

(2)

c'est-à-dire

cos ß (+ A — E)

(3)

+ e+ß sin ß (+C
dvx _ dv2

G)

e~Pcosß(+ B — F) +
e-Psinß(+ö — #) 0.

soit
dx dx

e+Pcosß(+ a4-r-C— E— G)

+ e~

-Pcosß.(—B+JD^Fl

sinß(—A + C + E— G) +
sin ß (— B — D + F + H) 0.

(4)

-H)+

d2vx _ d\
„.2

c'est-à-dire
et v2
dx2

e+P cos ^(+C—G) + e-P cos $ (—D + H) +
+ e+P sin p (— A + E) + e-P sin ß (+ B — F) 0

(5)
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Equilibre général P — d. I s.dx — d. I s.dx 0 (6)

0 b

c'est-à-dire la condition

+ P — d.(B) vxdx + 0

que l'équation générale (3) transforme en

ou bien

+ P + (EJ)
dh
dx

d3v.

+ P + {EJ)
d3vx

z=b

d3v2

dx3

d?vx dS
dx3

0.

Des quatre efforts tranchants de la grande accolade,
ceux du milieu (x 0) et de l'extrémité (x a)
s'annulent ; il reste ainsi

+ P + (EJ)
dh

(EJ)
d3Ve

dXe,
0

c'est-à-dire P — Qx + Q2 0

expression de l'équilibre de la section B où l'effort
tranchant- du côté A est négatif, puisqu'on le compte en sens
des x décroissants. Le développement de ces dérivées
troisièmes conduit à

+—+ 2F[+e+Pcosß(—A + C) +e-KosH+B+D) +
+ e+P sin ß (— A — C) + eH5 sin ß (— £ -f £>)] —

-2k3 [+ e+P cos ß (— E + G) + e~P cos ß (+ F + H) +
+ e+P sin ß (— E— G) + e~ß sin ß (— F + H)] 0.

2k P
+ e+P cos ß (— A + C + E — G) +(B)d
+ e-P cos ß (+ B + D — F — H) +
+ e+P sin ß (— A — C + E + G) +
+ e-P sin ß (— B + D + F — H) 0.

Section M médiane (a; 0 ; cp /c.a; 0) ;

sin qp 0 ; cos cp 1 ; e+f e~^ 1.

-3^- 0 c'est-à-dire + A + C — B + D 0 (7)

d3«.__i 0 c'est-à-dire -A + C + B + D 0 (8)

Les équations (7) et (8) donnent les solutions

+ A + B +C -D
qui permettent d'écrire, en mettant en évidence les
inconnues A à H,

e+a sin a. E-\-e a s'ma.F -f e"1

r— e~a cos a. // 0

-¦os a. G
(i;

(— e+a cos a — e+a sin a) E + (+ e-a cos a ¦

e^sina) F + (+ sin a) G +
-)- (+ e-" cos a + é~a sin a) # 0 J

(+e+Pcos ß+e-Pcos ß)a4+(+e+Psin ß—e~Psin ß) C— I

-e+Pcosß.£-e-Pcosß.F-e+Psin ß.G—e_Psin ß.H=0 f

+ (+e+P cos ß—e-P cos ß—e+P sin ß—e~P sin ß) A +
+ (+e+P cos ß—e-P cos ß + e+P sin ß + e~P sin ß) C +
+ (—e+P cos ß + e+P sin ß) E + (+ e~P cos ß +
+ e-P sin ß) F + (— e+P cos ß — e+P sin ß) G +
+ (— e-P cos ß + e~P sin ß) H 0

(—e+Psinß+e-Psinß)yl+(+e+Pcosß+e-Pcosß)G+
+e+Psin ß.£-e-Psin ß.F—e+P cos ß. G+e_P cos ß.# °

(— e+P cos ß + e_P cos ß — e+P sin ß — e~P sin ß) A +
+ (+e+P cos ß—e~P cos ß —e+P sin ß — e~P sin ß) C +
+ (+ e+P cos ß + e-P sin ß) E + (— e~P cos ß +
+ e+P sin ß) F + (— e+ß cos ß + e+P sin ß) G +

(2)

(3)

(4)

(5)

+ (— e-P cos ß — e~P sin ß) H
2k P

o

(6)

Les racines de ces équations, encore littérales, résolvent

le problème.

Exemple numérique. — Deux colonnes distantes de 450 cm
chargent chacune de P 90 t une poutre, dont voici les
dimensions :

longueur l la 650 cm ; largeur d 75 cm ;

épaisseur e 50 cm ; moment d'inertie J 780 000 cm4
module d'élasticité E 293 100 kg/cm2 ;

raideur (EJ) 2286.108 kg.cm2.

Le sol de fondation répond par un indice de compressi-
bilité (Z?) 5 kg/cm3 qui conduit à la caractéristique

i
k

5 kg/cm8 x 75 cm
4,50.10-3cm-i 0,0045 cm-'.4 X 2286.108kg.cm2

Les deux nombres q> donnent aux produits des fonctions
trigonométriques et exponentielles les grandeurs suivantes :

x a 325 cm a 1,4625 83° 48'

e+acos a= -

e—a cos a -

x b 225 cm
e+ß cos ß

0,46621

0,02501

lsina= +4,29125
sin a + 0,23025

e f cos p

Le terme de charge

ß 1,0125 58° 10'

1,45181 e+P sin ß + 2,33850

0,19162 e-P sin ß + 0,30866

2/c

d.(B)
P=2,16 intervient dans la sixième

condition.
Les six équations d'élasticité se chiffrent dès lors facilement

et leurs racines sont :

A + 0,26337 C + 0,20601 E — 0,00677
F — 0,21546 G + 0,14281 H .+ 1,84074

auxquelles on ajoute les deux solutions antérieures

B A+ 0,26337 D —C= -0,20601

Cet ensemble conduit aux équations des élastiques des
deux secteurs et à leurs dérivées ; au secteur intérieur d'abord :
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dvx
dx

d?vx

dx2

d3vx

da?

+ 0,26337 e+<P cos cp + 0,26337 e~<P cos cp +
+ 0,20601 e+<P sin 9 — 0,20601 e-<P sin cp

0,0045 (+ 0,46938 e+<P cos <p — 0,46938 e~<P cos <p —

— 0,05736 e+<P sin cp — 0,05736 e-™ sin o?)

2.0,00452 (+ 0,20601 e+<P cos 9 + 0,20601 e-<P cos cp —

— 0,26337 e+<P sin cp -f 0,26337 e-<P sin cp)

2.0,00453 (— 0,05736 e+<? cos cp + 0,05736 e-<P cos 9 —

— 0,46938 e+<P sin cp — 0,46938 e-<P sin cp)

puis au secteur extérieur :

Vl — 0,00677 e+<P cos cp — 0,21546 «-«P cos cp +
+ 0,14281 e+<P sin cp + 1,84074 e~<P sin cp

^ 0,0045 (+0,13604 e+'P cos cp + 2,05622 e-<P cos cp +
+ 0,14958 e+<P sin cp — 1,62528 e~<P sin cp)

J2 2.0,00452(+ 0,14281 e+<P cos cp — 1,84074 e~<P cos cp +
+ 0,00677 e+<P sin cp — 0,21546 e~<P sin cp)

d?Ve,

^f 2.0,00453 (+ 0,14958 e+<P cos cp + 1,62528 <f-<P cos cp —

— 0,13604 e+<P sin cp + 2,05622 e-<P sin cp).

Ces expressions satisfont aux conditions d'extrémités et
de contiguïté des deux secteurs ; on trouve en effet :

Extrémité A (<p a) Af 0 Q 0

ce qui donne :

ePv.tZ2 2/c2 (+ 0,09563 — 0,09565) ~ 0 ;

C^g
db?

2k3 (+ 0,58383 — 0,58378) ~ 0.

Pied de la charge (cp ß)

tg vx tg v2 MX M2 Qx — Q2 — P 0

c'est-à-dire :

vx Vo_ ~ + 0,85100 cm ;

dvx dv,

dx

d?v

dx2 dx2

?-c. a. d. après division par k: + 0,43967r>o + 0,43964 ;

2"2
c. a. d. pour k2 20,25.10-« :

Qi-Q»

- 7,93922. lO-« r>o _ 7,94044.10-« ;

P 0 ^.-(«.(^-^-P.O
c'est-à-dire pour 2k3 182,25.10-9, et

<?, +54778 kg <?2 — 35211kg
donne l'équilibre + 89 989 — 90 000 ~ 0.

Section médiane (cp 0).

vx + 0,52674 cm ;

dvx
dx

d2vx

dx2

fv\
dx*

k (+ 0,46938 — 0,46938) 0 ;

+ 16,68681.10-« ;

2/c3 (— 0,05736 + 0,05736) 0.

i—

P- 90» 2.ffiW. V

Réactions

B Raidnur conslanle (E.3)

q»d.(B).u
e-

i ï î r t i ï i t r
o.» m.

l»6.50tl

V" 0.851 0.526
rq,-otg.- K.-g-» + O.OMA-0. »96-+0,00a)

&\%
*fc«AS N..T-3B.I5CHLt

nB' iiSaÄcrmü

ttfö^q* 35.2'

5»ow^Sw wBS;
5l8f

v=ipon.

Fig. 2. — Charges symétriques d'une poutre de longueur limitée.

La poutre en béton armé, qui établit ainsi l'équilibre
général en satisfaisant à toutes les conditions d'extrémités,
subit les moments fléchissants caractéristiques suivants :

sous la charge : contrainte du sol (B)v 5 k/cm3.0,851 cm
4,25 k/cm2 ;

MB= -- (EJ) ^ + 1 815 000 kg.cm + 18,150 mt

au milieu de la portée

M, 2286.108 x 16,68681.10-« 38,146 mt.

Si l'on supposait la poutre rigide, sollicitant le sol d'une
manière uniforme par p 90 t : 3,25 m 27,7 t/m, donc

3,7 kg/cm2, on trouverait sous la charge un moment

M*
1,02

+ 27,7 t/m. -vy- + 13,85 mt

et au milieu de la poutre
/3,25MM 901

2
,25 m — 56,3 mt

une sollicitation sensiblement plus défavorable du profil de

béton armé.

b) Les deux colonnes se confondent.

Si maintenant les deux colonnes se confondent en une

seule, faisant 2P 180 t, l'annulation de l'espacement,
2b 0, conduit à

e+P e-P cos ß 1 sin ß 0

ce qui donne aux équations la forme simplifiée

e+a sin a. E + e—a sin a. F + e+a cos a. G

— e~a cos a.H 0.

(— e+a cos a — e+a sin a) E + (+ e~a cos a —

— e"« sin a) F + (+ e+a cos a — e+a sin a) G +
+ (+ e-a cos a + e-0 sin a) H — 0.

+ 2A — E — F 0.

(1)

(2)

(3)
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— E + F-
+ 2C—G

+ E~F-

G — H--

- H 0.

G — H-

0.

2k P
(B)d

0.

(5)

(6)

On évalue E, F, G, H en fonction de A et C :

+ A —

+ C +

1 kP
2(B)d
1 kP

F + A +
1 /cP

2(B)d

// — G + H2(5)d " ' 2(B)d
expressions qu'on introduit dans les deux équations en a,
ce qui donne la solution finale du problème numérique.

2. Poutre-radier de longueur illimitée.
Dans le cas le plus simple, où l'on suppose que la

proximité des charges exclut entre elles la possibilité
d'un soulèvement du sommier, la courbe élastique en
contact permanent avec le sol s'exprime, pour chaque
charge prise isolément, par les seules puissances négatives

du nombre e, car l'amortissement commence au
pied de la charge considérée et se continue indéfiniment1.

Si par contre la charge reste isolée, les demi-ondes
bombées dépassent le niveau du sol et, interrompant le

contact, rendent fragmentaire le diagramme des
réactions ; la pénétration de l'élastique dans le sol se
bornant à une cuvette de longueur finie, mais inconnue au
préalable, le nombre des conditions aux limites du
diagramme demande le retour des termes à exposants
positifs. On fait alors abstraction de la possibilité d'ondes
d'enfoncement subséquentes.

a) Charge localisée.
Une charge localisée de longueur donnée conditionnera

une région du groupe II (équat. 13 à 17), qui se
continuera par deux régions I (équations homogènes 7 à 11)
jusqu'à une émergence A, dont l'abscisse a k.a constitue

une nouvelle inconnue. Seule la partie de la courbe
théorique comprise entre ces deux limites A compte
comme réaction du sol et participe à l'équilibre de la
charge localisée (fig. 3).

Supposons que la force P, localisée sur une longueur 2b,
la charge d'une manière uniforme. La solution du
problème doit alors satisfaire aux conditions suivantes :

Extrémité A de la cuvette : vx 0 ; Mx 0 ; Qx 0.

Bord B de la charge : c2— 'i ; tg v2= tg vx ; Mt-= Mx.

P tEquilibre général : -~ — / q.dx 0.

Milieu M : tg v, 0,2 - v Oa 0,

ce qui fait neuf conditions pour les neuf inconnues :

deux fois quatre constantes d'intégration et l'amplitude
2a de la cuvette.

Nous disposons ainsi des neuf équations suivantes, où
les constantes sont analogues aux précédentes mais dont
seule la première a une forme nouvelle :

* Voir notre Çpure de béton armé, volume I, Ed. Rouge & Cle, Lausanne.

Extrémité A (x a ; cp a ka).

vx 0) +ad.e+acosa+jB.e—acosa+G.e+asinct-

+ D.é-asma 0.

dh
la

d3^
dxJ

0) +C.e+acosc.—D.e acosct—A.e+asina-

B. sin a 0.

0) e+acosa(—A+C) + e-a cos a (+B+D) +
+ e+a sin a (-A—C) + e~« sin a (—B+D) 0.

(1)

(2)

(3)

Jonction B des régions (x b ; qp ß kb).

vx v2) e+Pcosß(+A—£)+e-Pcosß(+5—F)+'
+ e+Psinß(+C—G)+e-Psinß(+D—J¥) —

0.
ik*(EJ)

(4)

dvx
dx dx

?+Pcosß(+^ + C —E—G)

+ e-P cos ß (— B + D + F — H) +
+ e+Psinß(— A+C+E— G) +
+ e-P sin ß (— B — D + F + H) 0.

Sf-£) <*v*i+e-;e>'ï
+ e-P cos ß (-D+H) + e+P sin ß (—A+E) +
+ e-Psinß(+ß — F) =0.

a

Equilibre général : I q.dx — -y 0,

o

équation que q (B)d.v transforme en

(5)

(6)

(B).d / v2dx + / vxdx -i*
* " p.90'

q=o

q-i

ï—-l\

q
' tt*j HOÔn. *

2 a 4 555.1 cm.

charcjel P : 1 b

i n f * *|
Sché iJSà^f*las cm. v» 0.58 or,Sir,

aes reactions rTâSH^ro«- K. 0.ÎI3 • -0.001

Üo2e ç,a2
*nQ6 M- + 53.TJcm.r i

N--tHZ.90cm.r
\\V>

Efforts tranchants
Q.O

t—»—»—rr .q.o

JJ-O

M>0

q«o

Fig. 3. — Poutre de longueur illimitée.
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Les deux intégrales définies se résolvent par
remplacement des pénétrations vx et v2 en fonction des

1 (EJ)relations 6 et 12 et du rapport (équat.

_{EJ) dh,
1 (B)d dx*

4/c4 (B)d

1

^~Wd
ce qui donne sous a charge

+p-^'S

(B)d. Çv2dx= Cpdx-(EJ) f^dx

+ ¦

P
(EJ)

o

dh2
dz3 + {EJ)

d3v%

dx3

et en région extérieure à la charge
a

~d3vx
(B)d. Ivxdx=-—(EJ)

dx.3 (EJ)
d3vx

dx3 x=b

L'effort tranchant s'annulant aux limites x 0 et
x a, deux parenthèses s'effacent, et l'on écrit l'équation

d'équilibre (7)

(+Pi+2 (EJ)
dh
dx3

\ + l(EJ) d3vx 1_P
«-»( 2

0,

condition qui se réduit à la simple égalité des efforts
tranchants en B :

d3v2

dx3 + dhx
Ix3 0.

Section médiane (x 0 ; cp 0).

da;

dh2
dx3

0) i.t+E+G) + l.{—F + H) 0 (8)

0) i.(—E+G) + l.(+F + H) 0 (9)

Les deux dernières équations donnent immédiatement
deux solutions

+ E= + F + G H

que nous introduisons dans les sept autres ; nous obtenons

ainsi quatre équations algébriques où paraissent les

constantes d'intégration comme seules inconnues ; ce
sont :

+ A.e+P cos ß + B.e-P cos ß + G.e+P sin ß +
+ D.e-Psinß + E(— e+Pcos ß — e~P cos ß) +
+ G(- ' sin ß)

4/c4 {EJ)

+ A (+ e+P cos ß — e+P sin ß) + B(— e+P cos ß —
-e_P sin ß) + C(+ e+P cos ß + e+P sin ß) +
+ D (+ e-Pcosß —e-Psinß) + £(—e+Pcosß +
+ e_P cos ß + e+P sin ß + e~P sin ß) +
+ G(—e+Pcos ß+e-Pcos ß—e+Psin ß—e'Psin ß) 0

-a4. e+P sin ß + P.e-Psin ß + C. e+P cos ß-
-D.e-P cos ß + E(+ e+P sin ß — e~Psin ß) +
+ G(— e+P cos ß — e-P cos ß) 0.

(4)

(5)

(6)

A (— e+P cos ß — e+P sin ß) + B (+ e~P cos ß —

- e-P sin ß) + C (+ e+P cos ß — e+P sin ß) +
+ D(+e~Pcosß + e-Psinß) + E(+ e+PCosß —
— e-Pcos ß+e+Psin ß+e-Psin ß)+ G(—e+Pcos ß+
+ e-P cos ß + e+P sin ß + e~P sin ß) 0.

(7)

On a ensuite trois équations transcendantes à cinq
inconnues A à D et a, et que nous classons suivant les

constantes :

-\- A.e+acos a -\- B.e acosa + C.e+asin a

+ Z».e-asina 0.

a4.e+asina+ B., 'sm a C cos a ¦

¦ D .e acos a 0.

(1)

(2)

A(- ,+a cos a — e+a sin a) + B (+ e~a cos a ¦

-a. ha,e asin a) + C(+
„—a,

(3)

+ D (+ e-" cos a + e-" sin a) 0.

Nous simplifions l'écriture des quatre équations a.

briques en symbolisant les grandeurs connues :

ge-

[N]
P

ik*(EJ) 2b(B)d

,+P,r e ' M cos p s e * cos p

t e+P sin ß u e-P sin ß

ce qui conduit à

+ r.A + s.B + t.C + u.D + E(— r — s) +
+ G(— t + u) — [N[ 0.

A(+ r — t) + B(— s — u) + C{+ r + t) +
+ D(+ s — u) + E{— r + * + t — u) +
+ G(— r + s— t— u) =0.

— t.A + u.B + r.C — s. D + E(+ t— u) +
+ G(— r — *) 0.

a4(—r —f) + B(+ s — u) + G(+ r — i) +
+ £>(+ s + u) + £(+ r — s + « + u) +
+ G(— r + s + f + u) 0.

(4)

(5)

(6)

(7)

Les quatre constantes ainsi obtenues en fonction des

deux restantes ramènent les trois équations transcendantes

à trois inconnues.
La résolution littérale des équations algébriques (4) à

(7) conduit à des calculs disproportionnés avec leur
utilité pratique. Cette résolution aurait un seul intérêt,
celui de montrer que la longueur 2a de la cuvette est
indépendante de la grandeur de la charge, dans la
supposition d'élasticité linéaire mise à la base des développements

théoriques. Cette indépendance paraît du reste
évidente.

L'exemple numérique, qui suit, le montre. L'équation

(4) étant seule à contenir le terme de charge, tous
les facteurs numériques des solutions ultérieures résultent

proportionnels à ce seul terme de charge ; c'est
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donc le cas également des constantes d'intégration, que
donne la résolution.

Par contre, l'équation homogène issue de l'équation (3)

donnera une grandeur a indépendante de ce terme de

charge, puisque la proportionnalité des facteurs numériques

en affecte également chaque terme.
Exemple numérique. — Nous reprenons les données de

l'exemple précédent en les appliquant à une poutre sans

poids notable, de longueur illimitée et de profil
d 75 cm e 50 cm

supportant la charge unique
P 90 000 k.

Sa raideur
(£J) 2286.108kg.cm2

conduit avec
(B) 5 kg/cm3

à la caractéristique
k 0,0045 cm-1.

On admet, selon Ordonnance, une répartition de la charge
de la colonne de 60 cm de base sur

2b 60 + 50 110 cm.

La section limite entre les régions I, hors charge, et II
sous la charge, se place à

ß kb 0,0045 cm-1.55 cm 0,2475 14° 11'

à quoi correspondent

Sh ß 0,2500 Ch ß 1,0308 e+P 1,2808 e-P 0,7808

Les symboles introduits ci-dessus se chiffrent par :

90 000 kg
[N] 110 cm x 5 k/cm3 x 75 cm

2,18181cm

r e+P cos ß + 1,24176

s e-P cos ß + 0,75700

0,31382

0,19131

D'où résultent les quatre équations algébriques (4), (5), (6)

et (7), dont on tire les solutions provisoires :

A + B — 0,52881 C — D + 0,55102
E + B — 1,35460 G — D + 0,34233

L'élimination de ces constantes donne aux trois équations
transcendantes la forme

B(+ e+a cos a + e-«1 cos a) +£> (—e+a sin a + e-a sin a)—I
(1)

- 0,52881 e+a cos a + 0,55102 e+a sin a 0. |

ß(—e+asino+e-asina) + D(—e+acoso —e-«coso)+ l

+ 0,55102 e+a cos a + 0,52881 e+a sin a 0. I

B{ ;os a + e~a cos a — e+a sin a ¦ sin a) +
+ D (— e+a cos a + e~a cos a + e+a sin a + g-« sin a) +
+ 1,07983 e+a cos a — 0,02221 e+a sin a 0.

Les équations (1) et (2) donnent

0,52881 e+2ot — 0,55102 sin 2a + 0,52881 cos 2a

(3)

B
h2a e-2a + 2 cos 2a

D + 0,55102 e+2a + 0,52881 sin 2a + 0,55102 cos 2a

0+2a + e-2a + 2

réduisant la (3) à la forme simple

e+a (_|_ 1,07983 cos a + 0,02221 sin a) +
+ e-a (+ 1,07983 cos a — 0,02221 sin a) 0

dont la solution
a 91° 05' 1,5897

correspond à une amplitude de la cuvette de

„ 1,5897
2/x 2

'k 0,0045
353,3 cm.

On trouve conséquemment par les fonctions de l'angle

B + 0,55270

D + 0,57402

et par retrogression

A + 0,02389 C — 0,02300
E — 0,80190 G — 0,23169
F — 0,80190 H + 0,23169

Les deux fractions de la ligne élastique se figurent dès lors

comme voici :

Région I (sans charge, entre x b et x a) :

c.j + 0,02389 e+<P cos cp + 0,055270 g-V cos cp —

— 0,02300 e+(P sin cp + 0,57402 e-<P sin cp

avec les dérivées

-£i + 0,0045 (+ 0,00089 e+f> cos cp + 0,02132 e~<P cos cp —

— 0,04689 e+<P sin cp — 1,12674 e~<P sin cp) ;

-£± + 2.20,25.10-« (— 0,02300 e+<P cos cp —

— 0,54702 e-<P cos cp — 0,02389 e+<P sin cp +
+ 0,55270 e~<P sin cp) ;

-~ 2.91,125.10-9 (— 0,04689 e+<P cos cp +
+ 1,12674 e-<P cos cp — 0,00089 e+tP sin cp +
+ 0,02132 e-<P sin cp).

Région II (sous charge, entre x 0 et x b) :

p2 _ 0,80190 e+(P cos cp — 0,80190 e-<P cos cp —

— 0,23169 e+'P sin cp + 0,23169 e~V sin cp f 2,18181

dv2

dx + 4,5. lO-3 (—1,03359 e+<P cos cp +1,03359 e-<P cos 9 +
+ 0,57021 e+(P sin 9 + 0,57021 e-<P sin 9) ;

d2v2

dx2 2.20,25.10-« (— 0,23169 e+cP cos 9 —

— 0,23169 e-<P cos 9 + 0,80190 e+<P sin 9 —

— 0,80190 6-^8^9) ;

-r^ 2.91,125.10-9 (+ 0,57021 e+^o^-dxà

— 0,57021 e-<P cos 9 + 1,03359 e+<P sin 9

+ 1,03359 e-<P sin 9).

Ces équations satisfont comme suit aux conditions posées.

Milieu M x 0 ; 9 0.

,,2 + 0,57801 cm ;

tKC 0 Q2 0.

Section B de jonction I-II (x b ; 9 f

Vy v%) + 0,55066 — 0,55081 Ùè 0

tg "i tg v2) — 0,21303 + 0,21294^ 0

M, Mt) -¦ 0,36485 + 0,36485 0

Q1 Qs) + 0,79851 — 0,79851 0.
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Section A (extrémité de la cuvette, x 0 ; 9 a 91° 05')

e"1"" cos a

a.—a

ce qui

M,

cos a

fait

0,09270

0,00386

.,+a sin a

sin a

4,90126

0,20417

+ 0,11720 — 0,11707 =^ 0 ;

0) +0,11719 — 0,11709^0;
Qx 0) + 0,00870 — 0,00871 ^ 0.

Les constantes d'intégration répondant exactement aux
conditions du problème, on constate les sollicitations
suivantes le long de la cuvette :

au milieu M (x 0) :

+ 0,57801 cm ;

(B)v 5 kg/cm3.0,57801 cm 2,1

M (EJ)
dhz
dx2

4 290 111 cm kg

kg/cm2 ;

- 42,90 mt ;

à la limite B de la charge transmise sur le sol

s 2,75 kg/cm2 ;

M + 3 377 890 crakg + 33,78 mt.

b) Charge ponctuelle.

On simplifie volontiers le calcul de la poutre en
supposant la charge extérieure P concentrée sur un espace
infiniment petit

2b —>¦ zéro.

Cela n'a pas d'importance dans le cas d'une poutre
reposant sur des appuis extérieurs fixes ; il pourrait
n'en être pas de même ici, puisque l'équilibre du
secteur II chargé traduit des efforts unitaires infiniment
grands sur ce court espace où

sin ß ^ ß kb —* 0 ; e+P e~P 1 ; cos ß 1.

L'équation différentielle de l'élastique

v + £e+(Pcoscp + Fe-V

+ H e-f sin cp

cos cp + Ge+cP sin qp

P
2b(B)d

satisfait à ces limites aux mêmes conditions, quelle que
soit la longueur 2b (équat. 8 et 9 de la section médiane),
donc aux égalités

+ E + F + G —H

ce qui conduit à l'équation simplifiée

vz E(+ e+(P + e-<P) cos cp + G(+ e+tP — e-<P) sin cp +

^ 2b(B)d
avec ses dérivées

k [(+ E + G) (+ e+(P — e-*) cos qp +dv2

dx

d2v9

+ (— E + G) (+ e+<P + e"*) sin cp] ;

2/c2[+ G(e+<P + e-<P) coscp + £(—e+<P-

+ e-"P) sin cp] ;

a-ß 2k3[(— E + G) (+ e+<P - e-<P) cos qp -
-(+£+G)(+e+<P + e-cP)sincp].

26

La limite 2b —> 0 réduit l'équation de l'élastique à

P
2bE(+ 1 + 1)1 + 26 G(+l — l)kb (B)d

c'est-à-dire à

0 46 E + (B)d

ce qui donne à la constante E une grandeur infinie
P

E
ib(B)d

co.

La constante G reste, par contre, finie en même temps
que le moment fléchissant, inconnu du reste avant
calcul

Mu — (EJ)

P
dx (EJ)2k2[+ G(l + 1)1

\b(B)d (+1 — 1) kb] — 4/c2 (EJ) G.

La tangente au bord extérieur du secteur II introduit

l'indétermination (voir ci-dessus) :

+ E(+ e+«P — e-*) cos cp — E{+ 1 + l)/c 6

~ 4Wd[(+e+<P-e_<P)-2/c6]= -:'^.
P

2(B) d 26

qu'on résoudra en développant les exponentielles

«-«P
cp m"

+ i + + Ji- 112!
ce qui fait

et conduit à

-<P — 2cp 2kb

' dix k-érd{-k+h)-°- -^|
Les efforts locaux infiniment grands n'empêchent

donc pas le secteur I de partir sur une tangente
horizontale. On peut désormais l'étudier indépendamment
en tenant compte de l'équilibre général et des conditions

aux limites
dv

insertion B M x 0

extrémité A

dx 0;
x a

v 0

d2
0,

dh
dx2 ' dx3

L'équation différentielle (7)

v + Ae+<P cos cp + Be-V cos qp + Ce+tP sin qp +
+ Dé~v sin qp

avec ses dérivées (expressions comme 8 à 11) nous donne
les cinq équations nécessaires :

Extrémité A de la cuvette x — a ; (p a /c.o.

a-v
dx2

a ; qp a

0) + .4e+a cos a + Bé"« cos a + Ce+° sin a +
+ De~°- sin a 0.

0) +Ge+°cosa —öe-^cosa —a4e+asina +
+ ße-" sin o 0.

(1)

(2)
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dx
0) e+acosa(—A—C) + ë-acosa(+B+D)+ \

+ e+asina(—A—C)+e-asina(—5+D) 0

Equilibre général :
a a

P

(3)

+ £-/'• .dx
P
2 l.(B) A .dx

Cid* Pr r i d*v y+ 2+ Wda?dx=+2+{EJ)
dh

+
P
2 (EJ) V

•T3L

puisque l'effort tranchant s'annule à la limite x a ;

on a ainsi la quatrième condition, où x 0 fait 9 0.

+ ^ — (EJ) 2/c3(— yl + C + ß + ß) 0

c'est-à-dire

A + 5 + C + Z) +
P/c 4(£J)

donc
4(£J) (5)d

a4 + B + G + D + [0] si [0] +
P/c

(7J)d
(4)

Nous trouvons enfin dans la section médiane (x 0

de
et

da
0) + A + C — 5 + D 0. (5)

Les deux équations algébriques (4) et (5) donnent
deux premières solutions

C= + \[0]-D A=-e}[0] + B

0 e+a sin a

p ê~a sin a

(1)

(2)

que nous introduisons dans les trois équations
transcendantes. La symbolisation des fonctions de l'inconnue

a
m e+a cos a

n é~a cos a

nous conduit à

+ Am + Bn + Co + Dp 0.

+ Cm — Dn — Ao + Bp 0.

(— A + C)m + (+ £ + D)n + (— A — C)o +
+ (— 5 + D)p 0.

L'élimination de A et C donne d'abord

B(+m+.n)+D(— o + p) + ^ [0] (— m + o) 0 (1)

B(—o + p)+D(—m — n) + ^[0](+m+o) 0 (2)

équations dont les racines sont, après retour à l'angle a,

et en notant le dénominateur commun

(d) ¦¦ + e+2a + e~2a + 2 cos 2a

+ e+ + cos 2a — sin 2a

(3)

B
2(d)

n + e+2a + cos 2a + sin 2a

2(d)

et par conséquent

A —

C=±

-2a cos 2a —¦ sin 2a

2(d)

+ cos 2a — sin 2a-2a

(d)

[0]

[0].

L'équation (3) se transforme en la condition

+ 2 cos a(+ e+a + e-") 0

dont la solution consiste en
ÎT

cos a 0 a -^ 90°
rc

2

donc à peine moins que a 91° 05' obtenu grâce à la

répartition à 45° dès les bords du pilier. Ce résultat fait
prévoir que l'Ordonnance fédérale est trop sévère et

pourrait autoriser une répartition plus large au travers
d'un massif de fondation armé. Des mesures au laboratoire

de statique le rendront peut-être évident.
Le moment fléchissant au milieu de la poutre se

montre, par contre, très sensible au changement de

régime.
La solution cos a 0 cos 2a — 1 sin 2a 0

simplifie l'expression des constantes qui, avec

e+2a 23,1410 e-2a 0,00432

deviennent pour
(d) + 23,1410 + 0,0432 — 2 + 21,1842

A + 0,02258 [0] C — 0,02258 [0] — A
B + 0,52258 [0] D + 0,52258 [0] + B

et donnent à l'élastique l'équation

v (+ 0,02258 e+<P cos cp + 0,52258 e~* cos qp —

— 0,02258 e+(P sin cp + 0,522258 e"* sin qp) [0]

où les termes à exposant positif sont très petits en

comparaison des termes amortisseurs de la courbe.

Exemple numérique. — Nous reprenons les dimensions

de la poutre étudiée précédemment et dont le terme de

charge devient
90 000 k. 0,0045 cm-1

[0J 1,08 cm.
5 k/cm3.75 cm

Les constantes

A — C + 0,02439 B + D + 0,56439

donnent à l'élastique les équations

v + 0,02439 e+<P cos qp + 0,56439 é~V cos qp -
0,56439 e"' sin cp ;— 0,02439 nn cp

dx
k [— 0,04878 e+<P sin qp — 1,12878 e_<P sin cp] ;

dh
dx2
Y-2 2/c2 [— 0,02435 e+f cos cp — 0,56439 g~* cos cp -

0,02439 e+(P sin qp + 0,56439 e~V sin cp] ;

dh
- 2/c3 [— 0,04878 e+<P cos cp + 1,12878 e-<P cos cp]

exa:3

et satisfont comme suit aux conditions de limites :
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Extrémité A (cp a 90° ; sin a

v — 0,11733 + 0,11734 ^ 0.

dh
dx — 0,11733 + 0,11734 ^ 0.

0.

cos a 0).

(1)

(2)

(3)

Equilibre général :

- 0,02439 + 0,56439 0,02439 + 0,56439 1,08 cm
1,08 1,08. (4)

Secti 'diaion mediane :

dx
0) + 0,02439—0,02439—0,56439+0,56439 0. (5)

La compression du sol atteint, sous la charge
ponctuelle (x 0 ; qp 0)

v + 0,02439.1.1 + 0,56439.1.1 0,58878 cm

et le moment fléchissant médian

M (EJ) dx2
5 451 100 cm k + 54,51 mt

un chiffre naturellement plus fort que sous la base

répartitrice.

Conclusions.

Supposant l'élasticité parfaite du sol comprimé, mais

abstraction faite de l'entraînement dû aux déformations

inégales, supposant donc la proportionalité des

enfoncements avec les efforts verticaux, qui les provoquent,

on montre que les conditions aux extrémités de

la poutre de longueur limitée, et celles aux affleurements
de la poutre de longueur illimitée, conduisent le calcul à

des fonctions trigonométriques amorties par des

exponentielles à exposants négatifs et positifs. Les

constantes d'intégration donnent aux puissances négatives
du nombre e une influence prépondérante, mais laissent
subsister dans tous les cas étudiés les termes à exposant
positif ; l'absence de ces derniers aurait empêché de

donner satisfaction simultanée à toutes les conditions
d'extrémités, de contiguïté et d'équilibre.

On remarque, en passant, que l'élasticité de la poutre
abaisse ses moments fléchissants maximums en concentrant

la pression du sol aux abords de la charge ; la

longueur de la cuvette de pénétration ne dépend toutefois

pas de la grandeur de la charge sur le sol censé

élastique linéairement, mais seulement de sa disposition.
On voit enfin, à travers un sommier armé, que la

transmission des charges se fait probablement sur une

largeur plus grande que ne le fait la répartition à 45°
généralement admise ; l'élasticité relative du sol et de la

poutre influencent cette largeur dans une proportion
que le laboratoire de statique pourrait aider à fixer
pratiquement.

Recherche de l'Elastique
d'un tube cylindrique de révolution

à épaisseur variable,

par Jacques PASCHOUD, ingénieur E. I. L.,
ingénieur aux Usines Paillard S. A., Sainte-Croix.

1. Introduction.

Dans son article paru dans ce même numéro, M. le

professeur A. Dumas expose les difficultés très grandes
qui s'opposent à l'intégration algébrique rigoureuse des

équations différentielles des enveloppes et il s'attache

particulièrement à l'étude du tube cylindrique de
révolution à épaisseur variable. Il montre comment, en

généralisant la solution de l'équation différentielle du
tube à épaisseur constante, on peut obtenir les

déformations dans la section origine du tube. Partant de ces

déformations, il est alors possible de trouver toute l'élastique

par une intégration numérique ou graphique point
par point. Cette méthode a l'avantage considérable d'être
immédiatement applicable à n'importe quel cas d'enveloppe

de révolution. Par contre, elle ne peut être utilisée

que pour des enveloppes axialement illimitées dans un
sens, ou du moins que l'on peut considérer comme telles

en vertu du principe de Saint-Venant. Enfin, pour trouver

la déformation en un point quelconque de cette

enveloppe, elle exige une intégration point par point
numérique ou graphique à partir de la section origine.

Nous attachant au seul cas du tube cylindrique de

révolution à épaisseur variable sollicité dans la section

origine par un moment fléchissant et un effort
tranchant répartis uniformément dans cette section, nous

avons cherché à mettre l'élastique de ce tube sous une
forme algébrique propre à permettre la détermination
suffisamment précise des déformations en un point
quelconque, et ceci par simple substitution de nombres

aux symboles algébriques. Notre but était encore
d'envisager non seulement le problème du tube illimité
axialement mais aussi toutes les conditions aux limites
possibles pour la section terminale du tube.

2. Principe de la méthode.

L'idée développée fut la suivante : chercher une loi
régissant la variation d'épaisseur du tube qui permette,
par l'intégration rigoureuse de l'équation différentielle

proposée d'obtenir l'élastique du tube sous la forme
d'une fonction connue ; puis généraliser cette fonction
de façon à pouvoir envisager d'autres lois de variation
d'épaisseur.

Avant de développer ce principe, nous voudrions
attirer l'attention sur le fait que les calculs effectués

pour obtenir le résultat algébrique paraîtront probablement

un peu longs ; néanmoins l'application de ce résultat,

acquis une fois pour toutes, à un problème numérique
donné sera beaucoup plus courte.
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