Zeitschrift: Bulletin technique de la Suisse romande
Band: 71 (1945)

Heft: 15-16: 25me anniversaire du Laboratoire d'essai des matériaux de
I'Ecole d'ingénieurs de Lausanne

Artikel: Sur le régime des déformations des contraintes d'une enveloppe
cylindrique de révolution, d'épaisseur variable, sollicité par des efforts
circulaires

Autor: Dumas, Antoine

DOl: https://doi.org/10.5169/seals-54098

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 26.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-54098
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

BULLETIN TECHNIQUE DE LA SUISSE ROMANDE 199

Sur le régime des déformations

et des contraintes d'une enveloppe cylindrique
de révolution, d’épaisseur variable, sollicitée par
des efforts circulaires,

par Axtoixe DUMAS, professeur a I’'Ecole d’ingénieurs
de Lausanne,
directeur du Laboratoire d’essai des matériaux.

Notations diverses.

Dans la présente étude, les grandeurs essentieiles dont il
sera fait usage ont les significations sulvantes :

M, . . My. . M. Moments fléchissants, uniformément ré-
partis le long de la circonférence du
tube et rapportés a I'unité de lon-
gueur (kg.cm/cm).

Te. . . T. Effort tranchant radial, réparti comme
ci-dessus (kg/cm).
E. . . . ... . Module d¢lasticité longitudinale (kg/
cm?) en sollicitation mono-axiale.
E, . . . . . . . Idem, en sollicitation bi-axiale
m2
Gy = ——— + E).
(Ey mi—A1 )
m. . . . . . .. Coeflicient de contraction (1/m = 0,3).
r . .. ... .. Rayon moyen du tube.
Epaisseur du tube, supposée variable
dh -
h!f = e Dérivée de h par rapport a .
1

= 0 ~h3.r.Ap Moment d’inertie d’une bande de tube
d’ouverture au centre Ag.

19 E* . . . Idem pour une bande de largeur unité

Les dérivées sont écrites soit compleétement, soit symbo-
lisées par le signe '

Dans les calculs qui suivent, toutes les grandeurs sont
établies sur la base kg (poids), em et sec. Les unités ne sont
pas rappelées lors des calculs numériques.

Introduection.

La détermination des déformations et des contraintes
qui s’établissent dans des corps creux, du type des
«enveloppes » (en allemand « Schalen »), est un pro-
bleme d’une haute importance tant pour Iingénieur-
mécanicien que pour I'ingénieur civil. En mécanique, les
enveloppes sont les pitces maitresses de 'ensemble de
tubulures et de conduites forcées (pieces de dérivation,
raccords, embranchements, collecteurs). Un role essen-
tiel leur revient également dans les organes d’installa-
tions thermiques, au méme titre que ci-dessus men-
tionné. Dans le génie civil enfin, le role des enveloppes
est considérable et I'on en rencontre de nombreuses
sous forme de coupoles, de réservoirs, de silos, ete.

Mais, alors que la détermination des dites déforma-
tions et contraintes semble &tre simple, Panalyse de la
question montre bien vite que I'on est en face d’un

probleme présentant de tres grosses diflicultés de réso-

lution, celles-ci étant essentiellement d’ordre mathéma-
tique. En effet, alors qu’il est relativement aisé d’écrire
les équations différentielles définissant les déformations
et contraintes cherchées, il se trouve que ces équations
sont quasi insolubles pour I'ingénieur courant.

Certains mathématiciens ont été séduits par le pro-
bleme et, en son temps, le regretté professeur Meissner,
de Zurich, a établi ses équations remarquables donnant,
apreés intégration, les solutions cherchées. Quelques-uns
de ses éleves, dont MM. Bolle et Dubois, ont appliqué
ses méthodes qui sont exactes, mais qui conduisent &
de tels développements de calculs que I'homme du
métier en est rebuté. Par exemple, pour traiter le cas
de I’enveloppe de forme conique, M. Dubois présente
un travail de plus de deux cents pages, d’une trés grande
valeur, mais qui n’est que calculs de la premiéere a la
derniére page, faisant appel aux fonctions de Bessel et
a leurs développements en série. Mises sous une telle
forme, les opérations de calcul sont impraticables pour
I’homme du métier. Quant & faire appel & un mathéma-
ticien pour calculer des enveloppes, c’est encore une
solution peu recommandable, car ce dernier, ne sachant
pas ce que signifient les équations qui lui sont confiées,
risque de ne pas trouver le chemin qui lui permettrait
d’arriver sans trop de peine aux résultats désirés.

De nombreux spécialistes se sont occupés du pro-
bleme en question et des enseignements trés précieux
ont été établis, au point que pour certains ingénieurs,
le probléeme passe pour résolu. Mais qu’il soit rappelé
que toutes les solutions approchées, dont un grand
nombre sont rappelées dans 'ouvrage de Poschl (Berech-
nung yon Behiiltern), traitent pour ainsi dire essentielle-
ment le cas de corps creux a paroi d’épaisseur constante.
Or, les régions qui préoccupent essentiellement les cons-
tructeurs sont celles ou des raccordements avec des
dérivations ou des embranchements sont prévus et o
les épaisseurs doivent étre localement énergiquement
renforcées. Il en résulte ainsi que les régions qui présen-
tent un intérét tout particulier pour le constructeur
sont d’épaisseur variable et échappent encore au calcul
rigoureux. Ainsi le but de cette étude est-il de venir
s'attacher a cette question de la détermination des
déformations et des contraintes d’une enveloppe dans
la région de son raccord avec une autre enveloppe et
ou les épaisseurs des parois sont renforcées progressive-
ment. Les solutions seront recherchées par des procédés
mathématiques simples, permettant & I'ingénieur ayant
subi ses examens propédeutiques avec succes de les
pratiquer lui-méme et sans I'aide de spécialistes.

Cette étude s’adresse aux éleves-ingénieurs terminant
leurs études, ainsi qu’aux ingénieurs construisant des
enveloppes. Pour cette raison, des choses connues devront
dtre répétées afin de rendre compréhensible 'enchaine-
ment des développements. Mais, quoi qu’il en soit, le
résultat final sera le suivant : en faisant usage unique-
ment de moyens élémentaires, les régimes des déforma-

tions et des contraintes dans la région d’épaisseur
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variable d’un corps creux de révolution seront déter-
mineés.

Signalons encore, qu’en fait, les contraintes étant
lices aux déformations par des lois simples connues de
chaque ingénieur, la présente étude ne s’est attachée
qu’a la définition des déformations des tubes considérés
et n’a pas traduit ces déformations en contraintes.

Rappelons enfin que cette étude n’a pas la prétention
de conduire le lecteur aux confins de la science de 1’élas-
ticité et de la résistance des matériaux. Il s’agit plutot
de montrer & quels résultats conduit une application
judicieuse de connaissances de caractére mathématique
jugées élémentaires par les spécialistes.

Probléme traité.

Parmi les innombrables problémes qui pourraient
étre choisis, nous retiendrons le cas décrit ci-apres.

Ho N —
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Fig. 1.

Considérons un tube de révolution de rayon moyen r
et d’épaisseur pariable h.

Supposons ce tube chargé sur I'une de ses faces par
un moment M, et par un effort tranchant radial 7, ces
deux sollicitations s’entendant par unité de longueur de
la circonférence du tube.

[’épaisseur i du tube est variable, ainsi que dit, et
cela suivant une loi qui doit étre donnée ou choisie au
gré du constructeur. Il est escompté que Iépaisseur est
relativement faible par rapport au rayon r, afin de
laisser au tube son caractére d’enveloppe.

Le tube est supposé réalisé en une matiére homogeéne,
présentant un module d’élasticité constant. Si cela
n’était pas le cas, il serait possible d’apporter des cor-
rections aux résultats et dont il sera question plus loin.

Si nous adoptons ce cas relativement simple de pro-
bleme, soit un cylindre au lieu de prendre un corps a
double courbure, et si nous considérons le module d’élas-
ticité comme constant, ¢’est uniquement afin de ne pas
charger cet exposé de diflicultés qui ne sont pas indis-
pensables. Bornons-nous 4 dire que, pour 'homme du
métier, le probleme traité présente déja un caractére
classique contenant toute une série de difficultés clas-

siques non encore complétement résolues.

Mise en équation.

7r. ay

Y  &lastigue

W Fibre moyenae Mo.T.ag
o ——
[ | k p

Fig. 2.

Pour fixer les idées, choisissons un tube suivant les
caractéristiques représentées par la figure 2 ci-contre
avec une épaisseur croissante. Fixons des axes de coor-
données & l'origine du tube ainsi que représenté par la
ficure 3. La fibre moyenne du tube se déforme sous
Ieffet du moment M, et de I'effort tranchant radial T ;
elle prend la forme dite '« élastique » du tube et qui a
le caractére représenté ci-dessus.

Dés que cette élastique est connue, le régime des
contraintes en chaque point du tube I’est aussi, étant
donné les relations simples qui lient les déformations
aux contraintes. Et si le calculateur prend un ouvrage
spécial traitant le probléme des enveloppes, tel que
Fligge, Stattk und Dynamik der Schalen, 11 y trouvera
I'équation suivante, qui définit précisément I’élastique

cherchée :
/ / 3 4
1d(0d (1 8@\ o ™ L o
x dx drv \z dx dz/ m2—1  rla?
ou l'on a:
d . . . .. . . . symbole de dérivation.
x . . . . . . . . abscisse d'un point de I'axe de la
parol du tube.
Yy . . . . . . . . ordonnée de I'élastique au point
d’abscisse a.
m . . . . . . . coellicient de contraction
(1/m= 0,3 pour P'acier).
dh - .
= ... coeflicient  d’accroissement  de
! I’épaisseur de la paroi pris cons-
tant dans le cas de I'équation
ci-dessus.
14 T.r.ae ”
Ho.r'.uf ( Suap
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= My rag
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Fig. 3
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En présence de cette équation, pratiquement ininté-
grable, I'ingénieur qui n’est pas un spécialiste de ces
choses est perdu, tandis que, présentées difféeremment,
certaines possibilités de résolution apparaissent. Nous
allons en conséquence mettre le probleme en équation,
¢’est-a-dire rétablir I'équation ci-dessus en admettant
en plus une loi de variation quelconque de I’épaisseur
h= f(z) ou f(x) est une
fonction quelconque de x, mais conforme a celle que

en fonction de I’abscisse a.

présente une réalisation logique du tube. Pour établir
I’équation définissant la déformée du tube, nous appli-
querons exactement la méthode de Timoshenko, que
lon trouve dans son ouvrage classique de résistance
des matériaux.

Considérons une bande du tube, d’ouverture angu-
laire Ap et appliquons-y les équations de I'élasticité.
La déformation se produisant suivant la figure 3 ci-
dessus, on constate les effets suivants :

La bande, de largeur r.A@ est déformée vers 'ex-
térieur, dans le sens des y croissants, par effet du
moment M,.r.Ap et de la force 7.r.A@. Les sens
de ces sollicitations sont admis positifs lorsqu’ils pro-
voquent des déformations radiales y positives dans le
voisinage de l'origine.

A ces sollicitations positives s’opposent :

a) La rigidité a la flexion de la bande et qui est

mesurée par le terme M : [.E; ou l'on a:

M moment fléchissant au point considéré.

I moment d’inertie de la bande au méme point.

E, module d’élasticité en sollicitation bi-axiale
de la matiere du tube.

b) La rigidité due a la continuité circulaire du tube.
Ainsi qu’il est aisé de le contréler, pour provoquer
un gonflement y d’un anneau de longueur dx du
tube il faut, sur une bande de largeur r.A,
une force

soit, rapporté a l'unité de longueur de la bande du
tube :
_ y.h.E

: r.AQ

P1 =]
Cette force spécifique étant un terme de rappel, sera a
prendre négativement.
D’aprés les lois de la statique, on sait que dans le
cas de la flexion on a, d’une maniére générale :
d*M
da? P

ot tous les termes ont une signification connue. (Dans
notre cas, le moment sera rapporté a la bande de lar-
geur r.A@ et la force unitaire sera une force de rappel,
par conséquent & prendre négativement. I’adaptation
au cas présent sera faite ci-apres.)

Ainsi, en raisonnant sur une bande de largeur r.A@

et en rapportant le moment fléchissant M & une lon-
gueur unité, les équations deviennent :
Loi de déformation par flexion de la bande considérée :

diy _ M.r.Ao
dz?2  1.E,

Relation entre le moment M et les forces de rappel :

d*M y.h.E
e —p= ——I_z—.r.Acp

r.Ag

Ces équations, simplifiées, et en se rappelant que le
moment d’inertie [ est égal & I;.r.Ag ou I; est le
moment d’inertic d’une bande de largeur unité, on a :

dy M ,
a2t 1, B (1)
d2M y.h.E
r - 2 (2)

Ceci forme un systéeme de deux équations différen-
tielles simultanées.
: 1
Lorsque h est constant et que par suite 11:’19‘-’13~17
on obtient directement, par élimination de M apres
double dérivation de ’équation (1) :
dty 12.y-h B E 1

= = 12— .
dat h3.r2 E, 1 Ey © r2.h3 Y

respectivement

' 3 (m*—1)

m2.r2. h?

y=0 3)

ot m est le coeflicient de contraction.

Ceci est I'équation classique duv tube d’épaisseur cons-
tante.

Le systéme d’équation 1 et 2, résolu par rapport au
moment, conduit & la méme équation, mais en M, &
savolr :

d*M 3 (m*—1)

dat m2.r2. h?

“M=0 (4)

Nous ne nous arréterons nullement sur ces deux rela-
tions 3 et 4, qui sont ultra-connues et qui se présentent
si simplement parce que I'épaisseur h a été admise
constante.

Lorsque DPépaisseur du tube est variable, que h est
une fonction de a, la réduction des équations 1 et 2
est plus complexe ; les opérations sont a pratiquer en
tenant compte de cette relation. Dans ces conditions,
on tire de I’équation 1, par une double dérivation :

2y d2 M
da?  da®

&y
da®

4
11.E,,Z;{, L9 LBy -2Y 4 17 By

Soit, apres introduction de la relation 2 :

Iy &y | hE

5 I R A

dy 9 I &
dat "7

1, da®

gy
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Apreés introduction des valeurs suivantes :

11=112-h3; Ii=112'3~h2-h’
" __ 1 9 1 2
{ =g 6k g - 3R

et aprés simplifications on obtient
d*y R APy h'? R d?y
YY L 9.9. 0, g L
dx* +4:3 h  da® _'_[6 h? +4 h:| da? ™

3 (m2—1)

m2.r2, h?

(5)

Ceci est 'équation différentielle définissant I’élastique
de la fibre moyenne du tube. Elle est identique, aprés
développement, a celle qui a été donnée ci-devant
page 200, mais elle est plus générale et se préte a des
variations d’épaisseur suivant une loi quelconque.

Dans cette équation, la signification de chaque terme
est connue. Rappelons toutefois que si la loi de varia-
tion h= f(x) est connue, on a: h'= ['(2) et h'= ["(2).
Et dans le cas de la variation linéaire d’épaisseur, on
a simplement h= h, -+ ox, respectivement h'= a et
k"= 0. C’est pour cette loi particulitre de variation
de h que I’équation de la page 200 a été établie.

Il aurait été aisé d’établir une équation semblable en
fonction de M, aprés élimination de y entre les équa-
tions 1 et 2. Cela définirait la maniére dont le moment
M varie avec x, ce qui est intéressant 4 connaitre. Mais
que Pon n’omette pas que la solution de I'une des équa-
tions fournit immeédiatement la solution de l’autre, ce
qui fait que le choix de 'une ou de Pautre des formes
conduit aux mémes résultats.

Digression relative a l'intégration de I’équation
de I’élastique.

L’intégration de I’équation 5, pour celui qui n’est pas
absolument spécialisé dans ce domaine, est une impos-
sibilité. Et si I'ingénieur, désirant connaitre le régime
des contraintes d’un tube d’épaisseur variable, se ren-
dait chez un mathématicien compétent et lui demandait
de lui résoudre la dite équation, il en reviendrait com-
pletement dégu, sans que le mathématicien puisse en
étre rendu responsable. La cause en est que cette
équation ne peut pas étre résolue par des moyens ordi-
naires, qu’elle ne peut en conséquence pas &tre intégrée
d’une maniére tout 4 fait générale et que seules des
solutions particulieres, adaptées précisément au pro-
bleme & résoudre, pourront étre établies. Et elles le
pourront méme trés bien, ainsi que cela sera montré
plus loin. Mais une solution de caractére particulier ne
peut étre découverte, cela va sans dire, que par celui
qui connait & fond le caractére du probleme dont il
cherche Ja solution formelle, et c’est ce qui manque
absolument au mathématicien. Ainsi, ¢’est & homn.e
du métier que revient toujours la charge de trouver la
solution du probleme qu’il se pose, méme s’il est d’ordre
mathématique.

Supposons maintenant que notre homme du métier ait
connaissance de machines a intégrer modernes, respecti-
vement, sans aller bien loin, qu’il connaisse la Regue
Brown Boveri et qu’il ait lu dans le numéro 7 (juillet 1944)
la description et vu les images de la machine & intégrer les
équations différentielles construite par M. de Freuden-
reich pour résoudre ses équations de réglage. Les équa-
tions différentielles définissant les conditions du réglage
des machines étant trés parentes de celles de 1’élasticite,
il y a tout lieu de penser que la machine qui est borne
pour un cas le sera aussi pour 'autre. Or, de nouveau,
si notre homme du métier présentait son équation du
tube a la dite machine, il y a lieu de penser qu’il en
reviendrait encore plus décu que de sa conversation
avec le mathématicien, et cela pour les raisons suivantes :

Une machine a intégrer, d’un des types existants, ne
donne des résultats que sous forme numérique, respec-
tivement graphique ; elle ne peut pas donner des résul-
tats sous forme algébrique. Ainsi I'opérateur de la
machine interrogé par son client, lui répondra : « Je
vais faire passer votre équati-n entre les rouleaux de
ma machine, mais veuillez auparavant me donner toutes
les valeurs initiales (au départ) de la fonction et de ses
dérivées ». Et c’est 1a qu’apparaitra le cercle vicieux :
I'homme du métier cherche précisément les déformations
du tube a Porigine, ce qu’il veut et peut tirer de I'inté-
grale de I'équation différentielle, tandis que la machine
ne peut intégrer que si on lui donne les conditions au
départ. Cercle vicieux qui ne peut étre surmonté que
par des tatonnements qui risquent d’étre laborieux ou
par une connaissance profonde du probléeme a résoudre.

Dans le cas du tube, probleme faisant ’objet de cet
exposé, la connaissance de quaire conditions limites est
nécessaire aux fins de définir les quatre constantes d’in-
tégration. Or, en général, notamment pour tous les
problemes de caractéere hyperstatique, deux conditions
sont données a 'origine du tube, pour 2= 0 par exemple,
tandis que les deux autres conditions sont définies pour
lautre extrémité du tube, pour a trés grand, disons
pour z infini. Ainsi, deux conditions sont données au
départ, les deux autres conditions sont données pour
Parrivée, aprés un chemin a trés grand.

On congoit qu’une machine ne peut pas &tre mise en
marche en vue d'un résultat & atteindre aprés avoir
fonctionné un certain temps. Et pour cette raison, en
principe, une machine & intégrer fera triste figure devant
le probleme précité.

Il existe enfin des procédés numériques ou graphi-
ques d’intégrer des équations différentielles. L’homme
du métier serait done tenté d’avoir recours a 1'une ou
Pautre de ces méthodes qui sont excellentes. Mais la
encore il ferait fiasco pour les mémes raisons que celles
qui viennent d’&tre exposées, car il ne saurait pas par
quelles valeurs initiales il doit amorcer ses opérations
d’intégration.

Les machines a intégrer, les méthodes d’intégration

numériques ou graphiques sont des procédés opérant
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par continuité, par récurrence. Les valeurs caractéris-
tiques en un point sont établies par continuité, apres
avoir établi les valeurs correspondantes en tous les
points & partir de lorigine des opérations jusqu’au
point cherché. Les dits procédés, mathématiquement
parlant, sont équivalents ; ils ont des avantages, mais
ils ont aussi des défauts, les défauts inhérents a
toute méthode opérant par récurrence et qui sont parti-
culierement sensibles lorsqu’il s’agit d’aller chercher

en cours de route des conditions imposées d’avance.

Possibilité d'intégration de I’équation de I’élastique.

L’intégration rigoureuse de I’équation 5 définissant
I’élastique de la fibre moyenne du tube est une opération
impraticable avec des moyens élémentaires et sans
calculs absolument rebutants. Il convient donc, aux
fins de rendre les calculs simples, de rechercher une
approximation aisée et conduisant a des résultats sufli-
samment précis. Pour cela, différents essais ont été faits
et vont étre relatés.

La premiére idée qui se présente, par analogie avec la
solution relative au tube d’épaisseur constante, est de
mettre la solution sous la forme :

y=¢é' [Cy.sin s + Cy.coss] +e" [Cy.sin 9 +Cy.cos 9]  (6)

ou t et s sont des fonctions de @, notamment des poly-
nomes de la forme t= t,x + t; @5 + ty-25%.... respective-
ment § = 8,-@ -+ s;-2% + s5-2% 4.

Il est sous-entendu que ¢ est essentiellement négatif
tandis que s est positif. Quant & u, nous admettrons
qu’il s’agit d’un terme essentiellement positif, ce qui a
comme effet d’obliger les constantes Cy et Cy & étre
nulles et pour cette raison le dernier terme, en e, de
I'équation 6 sera abandonné dans la suite.

La solution, mise sous cette forme, pourrait &tre
amenée trés prés de la réalité si 'on pouvait définir les
fonctions ¢ et s. Or, on peut faire cette détermination
sur les bases suivantes :

1. On néglige les termes moyens de I’équation 5 et
on détermine s et ¢ comme s’il s’agissait d’un tube a
épaisseur constante. La solution obtenue de ce fait,
pour de faibles variations d’épaisseur, est assez bonne
mais elle ne donne précisément pas les résultats que
nous voulons connaitre, & savoir 'influence de la varia-
tion de I’épaisseur sur les déformations et contraintes
du tube. Ce procédé est en conséquence a rejeter.

2. On considére I’équation 5 dans son ensemble, on
en écrit Péquation dite caractéristique dont les coefli-
cients, dans le cas particulier, sont des fonctions de a.
Ceci fait, pour différentes valeurs de @, on résout I'équa-
tion caractéristique précitée, ce qui fournit une série
de racines qui sont 4 leur tour une fonction de z. Ce
sont alors ces racines, qui sont ainsi des fonctions de ,
qui sont considérées comme les fonctions s et t de I'équa-
tion 6. L’approximation obtenue par ce procédé est
certainement excellente ; toutefois, cette méthode de

calcul se heurte & de grosses difficultés qui sont les
suivantes :

a) Pour déterminer la valeur des racines de I'équation
caractéristique en fonction de z, il faut résoudre
plusieurs des dites équations. Or, comme il s’agit
d’équations du quatriéme degré, dont toutes les
racines sont complexes, il s’agit la d’un gros
travail. Outre cela, en admettant que la forme
précitée de la solution (équation 6) soit heureuse,
les opérations nécessaires pour la détermination
des constantes d’intégration deviennent trés labo-
rieuses. Il faut, en effet, dériver plusieurs fois
“équation 6 pour en définir les valeurs & I'origine,
ce qui est un travail trés conséquent.

b) En admettant que les polyndmes s et ¢ de I'équa-
tion 6 aient été déterminés, ainsi que les cons-
tantes d’intégration, il se trouve que le calcul de
la fonction y et de ses dérivées pour différentes
valeurs de 2 est un travail laborieux, méme rebu-
tant. Seul un calculateur, et non un homme du
métier, pourra s’astreindre a de tels calculs. Pour
cela, la solution précitée n’est pas & considérer
comme heureuse et doit &tre abandonnée.

3. Aprés plusieurs études du probleme, la méthode
qui s’est révélée la plus pratique et la plus rapide est
la suivante :

a) Des polyndmes s et ¢ de I’équation 6 on ne conserve

que le premier terme, soit s,.2 et ..

b) Les facteurs s, et t, sont les racines de I’équation
caractéristique pour les valeurs correspondant a
z={.

¢) L’équation 6, aprés introduction des valeurs s, et
t, permet de calculer la valeur de la fonction y
et de ses dérivées pour = 0, & 'origine seulement,
mais elle ne doit pas étre utilisée pour la déter-
mination de la fonction et de ses dérivées en
d’autres points qu’a l'origine, car elle n’est I'ex-
pression de la réalité que dans le voisinage de ce
point.

d) Connaissant la valeur de la fonction y et de ses
dérivées a lorigine, il est possible, voire méme
aisé, d’intégrer I’équation initiale 5 par voie numé-
rique.

La méthode décrite ci-dessus (3) est trés simple. La
seule question qui se pose & son sujet, c’est de fixer
dans quelle mesure les racines de I’équation caractéris-
tique pour les valeurs a 'origine de ses coeflicients divers
fournissent bien les valeurs a Porigine de la fonction et
de ses dérivées. A cela on peut répondre comme suit :
les racines de I’équation caractéristique a l'origine défi-
nissent une fonction y dont elle-méme ainsi que ses
quatre dérivées successives satisfont a I'équation géné-
rale & Porigine. Si donc les valeurs initiales déterminées
de cette maniére ne sont pas rigoureusement I’expression
de la réalité, elles n’en sont certainement pas trés loin-

taines.
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Quant & Pintégration numeérique, c’est un travail qui

est aisé a4 conduire et ne présente aucune espeéce de
difficulté pour qui en a la maitrise.

Exemple numérique concret.

Pour établir les avantages et les inconvénients d’une
méthode, la premiére chose & faire c’est une application
numérique. Pour cette raison, les régimes des déformations
élastiques des tubes désignés ci-aprés ont été déterminés.
1. Tube cylindrique d’épaisseur constante, de longueur

supposée infinie.

L R R it s S A T
o T IR TRATRR R

Rayon : r =50 em

Epaisseur: A= 5 cm

2. Tube cylindrique, d’épaisseur croissante.

g
w‘“,' h = 50+002.x
o
ANE SR —
=4 §
= s - 8 =
Fig. 5.
Rayon : r =50 cm
Epaisseur

a lorigine : hy = 5 cm

Loi de I'augmentation

d’épaisseur : h = ho 4 0,02
d’ou I = 0,02.

3. Tube cylindrique, d’épaisseur décroissante.

Sem

i/ h= 50-002.x
l«i--%&x\%&«\w«e\m

Fig. 6.

Reyon @ r =50 ¢m

Epaissenr

a lorigine : ho = 5 c¢m

Loi de la diminution

d’épaisseur : h = hy — 0,02 2
d’ont K = —0,02.

Ainsi Pétude a-t-elle été faite, a titre de controle, sur
deux tubes semblables mais avec loi de variation d’épaisseur
inversée el encadrant un tube d’épaisseur constante dont
les régimes de déformation sont complélement connus.

Les calculs ont également été pratiqués sur deux tubes
tels que les précités, avec loi de croissance, respectivement
de diminution d’épaisseur A" = + 0,01, mais dont les déve-
loppements ne seront donnés que partiellement.

La loi de variation d’épaisseur a été choisie trés faible
afin de pouvoir constituer un tube décroissant relativement
et suflisamment long pour permettre I’étude sans atteindre
la région d’épaisseur nulle et méme négative.

L’équation différentielle générale définissant la déforma-
tion élastique radiale du tube, équation 5, page 202, appli-
quée aux cas présents et avec 1/m = 0,3, devient :

dy . 0,12 d% 0,024 d*y
dzt = 50, 02z da® T (520, 022 dat T
) ) )
L0 4,368 =0 ™
(560,02 )2

Lorsqu’il y a un double signe dans I'équation ci-dessus,
le supérieur (+4) se rapporte au tube d’épaisseur croissante
et 'inférieur (—) au tube décroissant.

Pour le tube d’épaisseur constante, I’équation se réduit
a ses deux termes extrémes.

Pour trouver une série de valeurs de la fonction y et de
ses dérivées satisfaisant en un point, & l'origine, pour z = 0
a I'équation 7, nous en écrivons I’équation caractéristique
dans laquelle nous faisons « = 0. Cette équation caracté-
ristique devient :

14+ 0,024.43 1+ 0,000096.72 -+ 0,00017472 = 0. (8)

\

Les quatre racines de cette équation, tous calculs faits,
sont :
Tube croissant :
1,0 = — 0,087480 + ¢.0,0811018
l30 = + 0,0754805 + ¢.0,0811215
Tube constant :
tio34 = + 0,0812965 + ¢.0,0812965
Tube décroissant :
1o = — 0,07547
34 = -+ 0,08747

5 +1:.0,081142
5 +1.0,081089

La résolution de Péquation 8, soit dit en passant, n’est
pas une chose aisée ; néanmoins, en se rappelant que les
racines relatives au tube constant sont voisines des autres
racines el en organisant un schéma de calcul convenable,
la résolution de I’équation 8 prend deux a trois heures,

La symétrie entre les valeurs des racines trouvées est
intéressante ; elle suggére diflérentes choses mais dont nous
ne parlerons pas.

Ainsi, abandonnant les racines d’argument positif nous
pouvons dire qu’a Porigine, pour o = 0, des relations de la
forme ci-dessous définissent la déformation des tubes étudiés.

y = e'o® (C,.sin sox - Cy.cos Soz) (9)
ou l'on a
pour le tube croissant :

to = — 0,087480 s, = 0,0811018
pour le tube constant :

to = — 0,0812965 so = 0,0812965
pour le tube décroissant :

to = — 0,075475 so = 0,081142

Dérivant I'équation 9 puis en y faisant @ = 0, on obtient
la valeur de la fonction et de ses dérivées a l'origine, soit :

Yo =0C,
Yo' = C1.80 + C,.1.
Yo' = Cy.2.t.80 + C, [te® — 8. (10)

Yo' = Cy [3.16%.50 — 8¥] + Cy [— Bto. 862 + to].
yo''"'= C, [4.te® 5o — &.to.50°] +

+ Cy [fo* — 6.162.8% + 4.
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(Les indices , signifient qu’il s’agit de valeurs & origine
des coordonnées, pour x = 0.)

Les relations 10 fournissent ainsi une valeur & Dorigine
de la fonction y et de ses dérivées sati:faisant rigoureusement
a I’équation différentielle de 1I’élastique cherchée et conte-
nant deux constantes arbitraires d’intégration C; et C,.
(Les deux autres constantes ont disparu du fait qu’elles
doivent étre nulles, la déformation du tube tendant vers
zéro lorsque z tend vers l'infini.)

On peut donc prendre les valeurs déflinies par les équa-
tions 10 comme valeurs de la fonction et de ses dérivées a
Porigine, et comme il y a deux inconnues, C; et C,, on peut
se donner arbitrairement deux conditions limites.

Pour ce qui en est des deux conditions arbitraires, la
question se présente en général comme suit :

10 on donne le moment d’encastrement M, ainsi que
Peffort tranchant radial 7', les deux & l'origine, et on
demande d’établir le régime des déformations du tube.
Ou bien

20 la déformation radiale y, et la rotation initiale y,” sont
données et l'on demande quel moment M, et quel
effort tranchant radial 7" il a fallu appliquer pour les
provoquer.

Le probléme se présente toujours de I'une ou de l'autre
de ces maniéres pour les déterminations de l'intensité de
liaisons hyperstatiques.

Etablissons maintenant I'influence d’un moment ainsi que
celul d’un elfort tranchant, les deux a l'origine.

Etant donné que I'on a d’une part :

M=vy".1,.Ep
et d autre part :

dM
=—=

il en résulte les conditions suivantes pour les valeurs & 'ori-
gine (pour z = 0) :

1\[ - 1‘\10 = ‘l},f'.]I‘o.El, 5

Tr— yé”.]l.o.EI) + y(sl.]i,u.Eb ==

y'" . 1.Ey + y" .11 . Ep

. - “.n
= yé ,.[14().1’4} —I— 1‘70- ——
1.0
soil encore, en posant
M i T
My =+— et Tr=-—1r
I1.0.Ev Ii.0.Ey
il vient

Mo = 45" ;
: st e 10
rr = Yo ‘%“ 1‘]07‘-]_" .
1.0
En utilisant ces relations, en posant My 520 et Tp = 0 el
en utilisant les équations 10, on obtient les valeurs suivantes
des constantes d’intégration C; et C

2 -

Tube croissant conslant décroissant
B = 0,02 0,01 0 - 0,00 — 0,02
Cy/Ms= —65,1304 —70,252 —75,653 81,097 —87,578
Co/Mor= 70,5238 72,888 75,653 79,195 81,896

d’ott résulte, toujours d’apres les équations 10, pour les
valeurs initiales :
décroissant

Tube croissant constant

I = 0,02 0,01 0 0,01 — 0,02
Yo/Mor = 70,52 72,89 75,65 79,19 81,90
Yo/ Mo —11,45 11,85 —12,30 —12,79 —13,29
Yo' [Mor == 1,000 1,000 1,000 1,000 1,000
Yo' [Mor - 0,012 0,006 0,000 0,006 0,012
YtV Mo = — 0,0121 — 0,0132 —- 0,014

En utilisant toujours les relations ci-dessus et en posant
Mo = 0 et Ty 520, on obtient les nouvelles séries de valeurs :

Tube croissant constant décroissant
n — 0,02 0,01 0 — 0,00 — 0,02
CT, = 65,468 33,363 0 —31,324 —72,672
C,/T, = 863,99 896,34 930,59 967,27  1002,90
puis, toujours d’apres les équations 10 :
Tube croissant conslanl décroissant
h' = 0,02 0,01 0 — 0,00 — 0,02
yo/Tr = 863,99 296,34 930,59 967,27  1002,90
yo /Ty = —70,272 —72,923 —75,65 —78,478 —81,590
yo' [T, = 0,000 0,000 0,000 0,000 0,000
yo' [Ty = 1,000 1,000 1,000 1,000 1,000

Sur la base de ces valeurs initiales, I'équation différen-
ticlle 5 a été intégrée pour les trois cas suivants :
= 4+002 K =0 et I =-—0,02 oles trois fois pour
Moy=1 et Tr=0.

I’intégration a éLé réalisée par voie numérique. Les résul-
tats font I'objet du report ci-contre, figure 7.

L’examen de cette figure fournit tous les renseignements
que l'on pourrait désirer quant & la déformation des trois
types de tubes considérés. Les trois séries de courbes per-
mettent notamment une comparaison directe entre eux des
résultats obtenus dans les trois cas. L’affaire étant évidente,
nous nous abstiendrons de la commenter plus longuement.
Signalons toutefois que les constantes numériques données
ci-devant ont été établies en tout pour cing types de tubes,
soit pour k= 0,02, 0,04, 0, — 0,01, —0,02, tandis que
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Iig. 7. — Courbes définissant la déformation radiale y du tube
et de ses dérivées successives i’ Ay’ sous eflet d'un moment
relatil My = 1 agissant a origine, pour trois types de tubes.

Pour les unités et les signes, comparer avee les valeurs numériques don-
gnes,

nées ci-contre,
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la figure 7 ne donne que les caractéristiques des tubes extré-
mes et du moyen. Il est, dans ces conditions, aisé d’inter-
poler les résultats pour d’autres coeflicients de variation
d’épaisseur des tubes.

Il est, d’autre part, intéressant de constater que les résul-
tats de la splendide analyse de M. J. Paschoud, jointe a
cette étude et traitant le méme probléme par des procédés
mathématiques rigoureux, conduisent aux mémes courbes
de déformations, ce qui fournit un précieux élément de
comparaison des deux méthodes de calcul.

Résumé et conclusion.

La présente étude s’est attachée & la détermination
du régime des déformations élastiques d’un tube cylin-
drique de révolution, d’épaisseur variable, chargé par
des forces et moments répartis uniformément le long
d’une tranche circulaire libre.

Le probleme a été résolu uniquement par des procédés
élémentaires familiers & tout ingénieur ayant subi avec
succes ses examens propédeutiques.

La méthode appliquée peut étre utilisée pour traiter
tous les cas que I'on peut normalement rencontrer en
pratique. Elle se préte notamment a la détermination
des déformations d’un tube d’épaisseur variable et de
module d’élasticité variable tels qu’on en rencontre dans
le cas d’objets en fonte grise ou encore en béton armé.

Au début de cette étude, il est fait allusion a une
intégration au moyen d’une machine a intégrer. A ce
sujet nous dirons que la partie de ce travail qui s’est
révélée de beaucoup la plus laborieuse, ¢’était la déter-
mination des valeurs initiales de la fonction a intégrer,
tandis que l'intégration proprement dite n’était plus
qu'une opération absolument aisée.

Quant au temps nécessaire pour pratiquer les calculs
dontilvient d’étre question,il peut étre estimé commesuit :

1. Prise de contact avec le probléeme, pré-
paration des schémas de calcul, tAtonne-

ments divers S I heure
2. Résolution de I'équation caractéristique 1 heure
3. Calcul des constantes d’intégration,
d’aprés les équations 10 1 heure
4.  Etablissement des « cames » nécessaires
pour les intégrations numériques ou mé-
caniques v o « « o « v« « .. 2 heures
5. Intégration de Péquation différentielle et
tracé des courbes intégrales. 3 heures
6. Mise au net des résultats. . 1 heure
Total . . . . . 9 heures

A cela s’ajoute le temps nécessaire aux vérifications et
controles dont I'importance dépend du degré de stireté
du calculateur ; cela conduira volontiers 4 un multiple
du temps estimé pour les opérations proprement dites.

Signalons enfin que le probleme en question ne peut
étre traité qu’en opérant avec grand soin et en faisant
un usage continuel de la machine a calculer ; la régle
i calcul, méme de précision, est insuflisante pour de tels
prob]émcs,

Lausanne, juin 1945,

Recherches et essais sur les bétons

Surprises et problémes rencontrés
au cours des travaux de Barberine

par J. BOLOMEY, professeur,

ancien ingénieur-directeur des travaux des usines de Barberine
et de Vernayaz .

Introduction.

Les travaux pour 'aménagement de I'usine de Barbe-
rine ont présenté la particularité d’avoir été entrepris,
sous la pression de I’opinion publique et pour procurer
des occasions de travail, alors que les études de détail
étaient loin d’étre terminées. En effet :

Les voies d’accés aux futurs chantiers n’étaient pas
encore aménagées, ce qui a contribué a faire illusion
sur les difficultés présumées d’exécution des travaux,
difficultés qui ont été exagérées.

Les débits de la Barberine, notamment ceux des
hautes eaux, n’étaient pas exactement connus, de sorte
que le volume d’eau qu’il convenait d’emmagasiner
dans le futur lac n’a pu étre déterminé qu’approxima-
tivement. En fait, il a été choisi trop petit d’au moins
20 %,.

Le profil et I'implantation du barrage étaient insuffi-
samment étudiés. Ils ont été compléetement modifiés
aprés l'adjudication des travaux et la solution finale-
ment adoptée n’est pas trés heureuse, en ce sens qu’elle
ne permet pas le surhaussement du barrage.

Aucune décision n’était encore prise sur la nature
des matériaux a utiliser pour la construction du bar-
rage : maconnerie de moellons ou béton. Si cette der-
niére solution était adoptée, fallait-il recourir au ballast
calcaire roulé du plateau de Barberine ou a du concassé
de gneiss ou de granit ?

Les travaux de l'infrastructure du funiculaire et de
laroute d’acces entre le sommet du funiculaire et Emosson
ont été adjugés et commencés, en juillet 1919, sur la
base d’un projet général trés peu précis, les levers de
terrain ayant été par trop sommaires étant donné le
terrain trés accidenté.

C’est pourquoi la premiére tache de la Direction des
travaux a consisté a compléter le plus rapidement pos-
sible les levers de terrain et & préparer les projets d’exé-
cution indispensables. Bien souvent des levers effectués
le matin ont di étre mis au net 'aprés-midi, pour per-
mettre de donner le soir des indications sur les travaux
a entreprendre le lendemain.

Etude des matériaux.
[’étude des matériaux devant servir a la construction
du barrage n’était méme pas commencée lors de la mise
en soumission et de 'adjudication de ces travaux.

! Conférence faite devant les membres de PA*EL L. et de la S.V.I.A.,
le 17 février 1945, & Lausanne.
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