
Zeitschrift: Bulletin technique de la Suisse romande

Band: 71 (1945)

Heft: 15-16: 25me anniversaire du Laboratoire d'essai des matériaux de
l'Ecole d'ingénieurs de Lausanne

Artikel: Sur le régime des déformations des contraintes d'une enveloppe
cylindrique de révolution, d'épaisseur variable, sollicité par des efforts
circulaires

Autor: Dumas, Antoine

DOI: https://doi.org/10.5169/seals-54098

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 26.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-54098
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


BULLETIN TECHNIQUE DE LA SUISSE ROMANDE 199

Sur le régime des déformations

et des contraintes d'une enveloppe cylindrique
de révolution, d'épaisseur variable, sollicitée par

des efforts circulaires,

par Antoine DUMAS, professeur à l'Ecole d'ingénieurs
de Lausanne,

directeur du Laboratoire d'essai des matériaux.

Notations diverses.

Dans la présente étude, les grandeurs essentielles dont il
sera fait usage ont les significations suivantes :

Mo Mot. M. Moments fléchissants, uniformément ré¬

partis le long de la circonférence du
tube et rapportés à l'unité de

longueur (kg. cm/cm).
TV. T Effort tranchant radial, réparti comme

ci-dessus (kg/cm).
E Module d'élasticité longitudinale (kg/

cm2) en sollicitation mono-axiale.
EB Idem, en sollicitation bi-axiale

v m'—1

m Coefficient de contraction (1/m 0,3).

r Rayon moyen du tube.
h Epaisseur du tube, supposée variable

dh
h== -j- Dérivée de h par rapport à x.

1
I jk ¦ h? .r A(p Moment d'inertie d'une bande de tube

d'ouverture au centre Aqi.
1

It =ts • " Idem pour une bande de largeur mrté

Les dérivées sont écrites soit complètement, soit symbolisées

par le signe '.

Dans les calculs qui suivent, toutes les grandeurs sont
établies sur la base kg (poids), cm et sec. Les unités ne sont

pas rappelées lors des calculs numériques.

Introduction.

La détermination des déformations et des contraintes

qui s'établissent dans des corps creux, du type des

« enveloppes » (en allemand « Schalen »), est un
problème d'une haute importance tant pour l'ingénieur-
mécanicien que pour l'ingénieur civil. En mécanique, les

enveloppes sont les pièces maîtresses de l'ensemble de

tubulures et de conduites forcées (pièces de dérivation,
raccords, embranchements, collecteurs). Un rôle essentiel

leur revient également dans les organes d'installations

thermiques, au même titre que ci-dessus
mentionné. Dans le génie civil enfin, le rôle des enveloppes
est considérable et l'on en rencontre de nombreuses

sous forme de coupoles, de réservoirs, de silos, etc.
Mais, alors que la détermination des dites déformations

et contraintes semble être simple, l'analyse de la

question montre bien vite que l'on est en face d'un
problème présentant de très grosses difficultés de réso¬

lution, celles-ci étant essentiellement d'ordre mathématique.

En effet, alors qu'il est relativement aisé d'écrire
les équations différentielles définissant les déformations

et contraintes cherchées, il se trouve que ces équations
sont quasi insolubles pour l'ingénieur courant.

Certains mathématiciens ont été séduits par le
problème et, en son temps, le regretté professeur Meissner,
de Zurich, a établi ses équations remarquables donnant,
après intégration, les solutions cherchées. Quelques-uns
de ses élèves, dont MM. Bolle et Dubois, ont appliqué
ses méthodes qui sont exactes, mais qui conduisent à

de tels développements de calculs que l'homme du
métier en est rebuté. Par exemple, pour traiter le cas

de l'enveloppe de forme conique, M. Dubois présente

un travail de plus de deux cents pages, d'une très grande
valeur, mais qui n'est que calculs de la première à la
dernière page, faisant appel aux fonctions de Bessel et
à leurs développements en série. Miles sous une telle
forme, les opérations de calcul sont impraticables pour
l'homme du métier. Quant à faire appel à un mathématicien

pour calculer des enveloppes, c'est encore une
solution peu recommandable, car ce dernier, ne sachant

pas ce que signifient les équations qui lui sont confiées,

risque de ne pas trouver le chemin qui lui permettrait
d'arriver sans trop de peine aux résultats désirés.

De nombreux spécialistes se sont occupés du
problème en question et des enseignements très précieux
ont été établis, au point que pour certainsAigénieurs,
le problème passe pour résolu. Mais qu'il soit rappelé

que toutes les solutions approchées, dont un grand
nombre sont rappelées dans l'ouvrage de Pöschl (Berechnung

von Behältern), traitent pour ainsi dire essentiellement

le cas de corps creux à paroi d'épaisseur constante.

Or, les régions qui préoccupent essentiellement les

constructeurs sont celles où des raccordements avec des

dérivations ou des embranchements sont prévus et où
les épaisseurs doivent être localement énergiquement
renforcées. Il en résulte ainsi que les régions qui présentent

un intérêt tout particulier pour le constructeur
sont d'épaisseur variable et échappent encore au calcul

rigoureux. Ainsi le but de cette étude est-il de venir
s'attacher à cette question de la détermination des

déformations et des contraintes d'une enveloppe dans

la région de son raccord avec une autre enveloppe et

où les épaisseurs des parois sont renforcées progressivement.

Les solutions seront recherchées par des procédés

mathématiques simples, permettant à l'ingénieur ayant
subi ses examens propédeutiques avec succès de les

pratiquer lui-même et sans l'aide de spécialistes.
Cette étude s'adresse aux élèves-ingénieurjiïtBrminant

leurs études, ainsi qu'aux ingénieurs construisant des

enveloppes. Pour cette raison, des choses connues devront
être répétées afin de rendre compréhensible l'enchaînement

des développements. Mais, quoi qu'il en soit, le

résultat final sera le suivant : en faisant usage uniquement

de moyens élémentaires, les régimes des déformations

et des contraintes dans la région d'épaisseur
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variable d'un corps creux de révolution seront
déterminés.

Signalons encore, qu'en fait, les contraintes étant
liées aux déformations par des lois simples connues de

chaque ingénieur, la présente étude ne s'est attachée
qu'à la définition des déformations des tubes considérés

et n'a pas traduit ces déformations en contraintes.
Rappelons enfin que cette étude n'a pas la prétention

de conduire le lecteur aux confins de la science de l'élasticité

et de la résistance des matériaux. Il s'agit plutôt
de montrer à quels résultats conduit une application
judicieuse de connaissances de caractère mathématique
jugées élémentaires par les spécialistes.

Problème traitéa

Parmi les innombrables problèmes qui pourraient
être choisis, nous retiendrons le cas décrit ci-après.

uT

^aa^aV^^V^aX^^SV^S?T

IT

Considérons un tube de révolution de rayon moyen r
et d'épaisseur variable h.

Supposons ce tube chargé sur l'une de ses faces par
un moment M0 et par un effort tranchant radial T, ces
deux sollicitations s'entendant par unité de longueur de
la circonférence du tube.

L'épaisseur h du tube est variable, ainsi que dit, et
cela suivant une loi qui doit être donnée ou choisie au
gré du constructeur. Il est escompté que l'épaisseur est
relativement faible par rapport au rayon r, afin de
laisser au tube son caractère d'enveloppe.

Le tube est supposé réalisé en une matière homogène,
présentant un module d'élasticité constant. Si cela
n'était pas le eas, il serait possible d'apporter des
corrections aux résultats et dont il sera question plus loin.

Si nous adoptons ce cas relativement simple de
problème, soit un cylindre au lieu de prendre un corps à

double courbure, et si nous considérons le module d'élasticité

comme constant, c'est uniquement afin de ne pas
charger cet exposé de difficultés qui ne sont pas
indispensables Bornons-nous à dire que, pour l'homme du
métier, le problème traité présente déjà un caractère
classique contenant toute une série de difficultés
classiques non encore complètement résolues.

Mise en équation.

K 5^

Mo /"> T.r.ùif
¦f Stasliaue fier» maytant

e>-r
Mo-r.ùf

Fig. 2.

Pour fixer les idées, choisissons un tube suivant les

caractéristiques représentées par la figure 2 ci-contre
avec une épaisseur croissante. Fixons des axes de
coordonnées à l'origine du tube ainsi que représenté par la

figure 3. La fibre moyenne du tube se déforme sous

l'effet du moment M0 et de l'effort tranchant radial T ;

elle prend la forme dite 1'« élastique » du tube et qui a
le caractère représenté ci-dessus.

Dès que cette élastique est connue, le régime des

contraintes en chaque point du tube l'est aussi, étant
donné les relations simples qui lient les déformations

aux contraintes. Et si le calculateur prend un ouvrage
spécial traitant le problème des enveloppü, tel que
Flügge, Statik und Dynamik der Schalen, ilgjSj trouvera
l'équation suivante, qui définit précisément l'élastique
cherchée :

x dx

où r
d

x

X2lx dx
dy

+12 -1 Wy o

dh

dx

symbole de dérivation.

abscisse d'un point détaxe de la
paroi du tube.

ordonnée de l'élastique au point
d'abscisse x.

coefficient de contraction
(l/m= 0,3 pour l'acier).

coefficient d'accroissement de
l'épaisseur de la paroi pris constant

dans le cas de l'équation
ci-dessus.

H A
r.r.tif

T.n.&QiM..r.i

f
'M0 r.ttf

Fig. .S.
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En présence de cette équation, pratiquement ininté-

grable, l'ingénieur qui n'est pas un spécialiste de ces

choses est per®., tandis que, présentées différemment,
certaines possibilités de résolution apparaissent. Nous

allons en conséquence mettre le problème en équation,
c'est-à-dire rétablir l'équation ci-dessus en admettant

en plus une loi de variation quelconque de l'épaisseur h

en fonction de l'abscisse x. h f(x) où f(x) est une

fonction quelconque de x, mais conforme à celle que

présente une réalisation logique du tube. Pour établir
l'équation définissant la déformée du tube, nous

appliquerons exactement la méthode de Timoshenko, que

l'on trouve dans son ouvrage classique de résistance

des matériaux.
Considérons une bande du tube, d'ouverture angulaire

Acp et appliquons-y les équations de l'élasticité.
La déformation se produisant suivant la figure 3 ci-

dessus, on constate les effets suivants :

La bande, de largeur r.Acp est déformée vers
l'extérieur, dans le sens des y croissants, par l'effet du

moment M0.r.Acp et de la force T.r.Acp. Les sens

de ces sollicitations sont admis positifs lorsqu'ils
provoquent des déformations radiales y positives dans le

voisinage de l'origine.
A ces sollicitations positives s'opposent :

a) La rigidité à la flexion de la bande et qui est

mesurée par le terme M : I .Eb où l'on a :

M moment fléchissant au point considéré.

/ momentafflinertie de la bande au même point,
Ei, module d'élasticité en sollicitation bi-axiale

de la matière du tube.

b) La rigidité due à la continuité circulaire du tube.

Ainsi qu'il est aisé de le contrôler, pour provoquer
un gonflement y d'un anneau de longueur dx du

tube il faut, sur une bande de largeur r.Acp,

une force

Acp, dx
y-h-E a j—— afe r • Acp • dx

soit, rapporté à l'unité de longueur de la bande du

tube :

y.h.E
Pi .r.Acp

Cette force spécifique étant un terme de rappel, sera à

prendre négativement^
D'après les lois de la statique, on sait que dans le

cas de la flexion on a, d'une manière générale :

d2M ¦_
~dlv2~ ~P

où tous les termes ont une signification connue. (Dans

notre cas, le moment sera rapporté à la bande de

largeur r.Acp et la force unitaire sera une force de rappel,

par conséquent à prendre négativement. L'adaptation
au cas présent sera faite ci-après.)

.Ainsi, en raisonnant sur une bande de largeur r.Acp

et en rapportant le moment fléchissant M à une

longueur unité, les équations deviennent :

Loi de déformation par flexion de la bande considérée :

d2y _ M.r.Acp
dx2 I.Eb

Relation entre le moment M et les forces de rappel :

a d2M
dx*

y.h.E— Pi=— ,2 -r-^P

Ces équations, simplifiées, et en se rappelant que le

moment d'inertie I est égal à Ix.r.Acp où Ix est le

moment d'inertie d'une bande de largeur unité, on a :

dh) M
dx* Ix.Eb

d2M
__ y.h.E

dx* r2

(1)

(2)

Ceci forme un système de deux équations différentielles

simultanées.
1

Lorsque h est constant et que par suite J1 -ttt.A3.1,

on obtient directement, par élimination de M après
double dérivation de l'équation (1) :

d'y _dx*~

respectivement

12.y.h.E
HF7r*TE~b — 12

1

.h* ¦y

dhj
dx* + 4< 3(' m

.h2 y 0 (3)

où m est le coefficient de contraction.
Ceci est l'équation classique du tube d'épaisseur

constante.

Le système d'équation 1 et 2, résolu par rapport au

moment, conduit à la même équation, mais en M, à

savoir :

^M+43y-î).M=o
efcr4 m2.r2. h2

(4)

Nous ne nous arrêterons nullement sur ces deux
relations 3 et 4, qui sont ultra-connues et qui se présentent
si simplement parce que l'épaisseur h a été admise

constante.
Lorsque l'épaisseur du tube est variable, que h est

une fonction de x, la réduction des équations 1 et 2

est plus complexe ; les opérations sont à pratiquer en

tenant compte de cette relation. Dans ces conditions,

on tire de l'équation 1, par une double dérivation :

d'y dh, Eh.d2y_am

Soit, après introduction d

d*y
dx*

4-2

ta relation 2

h.E
^da? ^! d*»W1.r».,E» y
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Après introduction des valeurs suivantes :

7l_12 ; Ji A.3.A2-Ä'

Il ^.6.h-h'2+-^-3-h2-h''

et après simplifications on obtient :

^y j_ o <, —
d3y

_i_
dx* "1-z'°' ft

"

dx3 ***
h'2 h" dhj

dx2 +

1K-1)^ m2.r2.h2 V
(5)

Ceci est l'équation différentielle définissant l'élastique
de la fibre moyenne du tube. Elle est identique, après
développement, à celle qui a été donnée ci-devant
page 200, mais elle est plus générale et se prête à des

variations d'épaisseur suivant une loi quelconque.
Dans cette équation, la signification de chaque terme

est connue. Rappelons toutefois que si la loi de variation

h— f{x) est connue, on a : h'= fix) et h"= f"(x).
Et dans le cas de la variation linéaire d'épaisseur, on
a simplement h= h0 -f- ax, respectivement h'= a et
h"= 0. C'est pour cette loi particulière de variation
de h que l'équation de la page 200 a été établie.

Il aurait été aisé d'établir une équation semblable en
fonction de M, après élimination de y entre les équations

1 et 2. Cela définirait la manière dont le moment
M varie avec x, ce qui est intéressant à connaître. Mais

que l'on n'omette pas que la solution de l'une des équations

fournit immédiatement la solution de l'autre, ce

qui fait que le choix de l'une ou de l'autre des formes
conduit aux mêmes résultats.

Digression relative à l'Intégration de l'équation
de l'élastique.

L'intégration de l'équation 5, pour celui qui n'est pas
absolument spécialisé dans ce domaine, est une
impossibilité. Et si l'ingénieur, désirant connaître le régime
des contraintes d'un tube d'épaisseur variable, se
rendait chez un mathématicien compétent et lui demandait
de lui résoudre la dite équation, il en reviendrait
complètement déçu, sans que le mathématicien puisse en
être rendu responsable. La cause en est que cette
équation ne peut pas être résolue par des moyens
ordinaires, qu'elle ne peut en conséquence pas être intégrée
d'une manière tout à fait générale et que seules des
solutions particulières, adaptées précisément au
problème à résoudre, pourront être établies. Et elles le

pourront même très bien, ainsi que cela sera montré
plus loin. Mais une solution de caractère particulier ne
peut être découverte, cela va sans dire, que par celui
qui connaît à fond le caractère du problème dont il
cherche la solution formelle, et c'est ce qui manque
absolument au mathématicien. Ainsi, c'est à l'homme
du métier que revient toujours la charge de trouver la
solution du problème qu'il se pose, même s'il est d'ordre
mathématique.

Supposons maintenant que notre homme du métier ait
connaissance de machines à intégrer modernes, respectivement,

sans aller bien loin, qu'il connaisse la Revue
Brown Boveri et qu'il ait lu dans le numéro 7 (juillet 1944)
la description et vu les images de la machine à intégrer les

équations différentielles construite par M. de Freudenreich

pour résoudre ses équations de réglage. Les équations

différentielles définissant les conditions du réglage
des machines étant très parentes de celles de l'élasticité,
il y a tout lieu de penser que la machine qui est bonne

pour un cas le sera aussi pour l'autre. Or, de nouveau,
si notre homme du métier présentait son équation du
tube à la dite machine, il y a lieu de penser qu'il en
reviendrait encore plus déçu que de sa conversation
avec le mathématicien, et cela pour les raisons suivantes :

Une machine à intégrer, d'un des types existants, ne
donne des résultats que sous forme numérique,
respectivement graphique ; elle ne peut pas donner des résultats

sous forme algébrique. Ainsi l'opérateur de la
machine interrogé par son client, lui répondra : « Je
vais faire passer votre équati n entre les rouleaux de

ma machine, mais veuillez auparavant me donner toutes
les valeurs initiales (au départ) de la fonction et de ses

dérivées ». Et c'est là qu'apparaîtra le cercle vicieux :

l'homme du métier cherche précisément les déformations
du tube à l'origine, ce qu'il veut et peut tirer de l'intégrale

de l'équation différentielle, tandis que la machine
ne peut intégrer que si on lui donne les conditions au
départ. Cercle vicieux qui ne peut être surmonté que
par des tâtonnements qui risquent d'être laborieux ou

par une connaissance profonde du problème à résoudre.
Dans le cas du tube, problème faisant l'objet de cet

exposé, la connaissance de quatre conditions limites est
nécessaire aux fins de définir les quatre constantes
d'intégration. Or, en général, notamment pour tous les

problèmes de caractère hyperstatique, deux conditions
sont données à l'origine du tube, pour x= 0 par exemple,
tandis que les deux autres conditions sont définies pour
l'autre extrémité du tube, pour x très grand, disons

pour x infini. Ainsi, deux conditions sont données au
départ, les deux autres conditions sont données pour
l'arrivée, après un chemin x très grand.

On conçoit qu'une machine ne peut pas être mise en
marche en vue d'un résultat à atteindre après avoir
fonctionné un certain temps. Et pour cette raison, en
principe, une machine à intégrer fera triste figure devant
le problème précité.

Il existe enfin des procédés numériques ou graphiques

d'intégrer des équations différentielles. L'homme
du métier serait donc tenté d'avoir recours à l'une ou
l'autre de ces méthodes qui sont excellentes. Mais là
encore il ferait fiasco pour les mêmes raisons que celles
qui viennent d'être exposées, car il ne saurait pas par
quelles valeurs initiales il doit amorcer ses opérations
d'intégration.

Les machines à intégrer, les méthodes d'intégration
numériques ou graphiques sont des procédés opérant
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par continuité, par récurrence. Les valeurs caractéristiques

en un point sont établies par continuité, après

avoir établi les valeurs correspondantes en tous les

points à partir de l'origine des opérations jusqu'au
point cherché. LeW dits procédés, mathématiquement
parlant, sont équivalents ; ils ont des avantages, mais

ils ont aussi des défauts, les défauts inhérents à

toute méthode opérant par récurrence et qui sont
particulièrement sensibles lorsqu'il s'agit d'aller chercher

en cours de route des conditions imposées d'avance.

Possibilité d'intégration de Péquation de l'élastique.

L'intégration rigoureuse de l'équation 5 définissant

l'élastique de la fibre moyenne du tube est une opération
impraticable avec des moyens élémentaires et sans

calculs absolument rebutants. Il convient donc, aux
fins de rendre les calculs simples, de rechercher une

approximation aisée et conduisant à des résultats
suffisamment précis. Pour cela, différents essais ont été faits
et vont être relatés.

La première raée qui se présente, par analogie avec la
solution relative au tube d'épaisseur constante, est de

mettre la solution sous la forme :

y=é \CX. sin s -\- Ca. coss] -f- eu [Ca. sin v +C4. cos v] (6)

où t et s sont des fonctions de x, notamment des

polynômes de la forme t= toX -\- t^-x^ + t^-a?..... respectivement

S S S0-X -f- S±-X2 -{- Sz'X3 -\-

Il est sous-entendu que t est essentiellement négatif
tandis que s est positif. Quant à u, nous admettrons

qu'il s'agit d'un terme essentiellement positif, ce qui a

comme effet d'obliger les constantes Cs et C4 à être
nulles et pour cette raison le dernier terme, en eu, de

l'équation 6 sera abandonné dans la suite.

La solution, mise sous cette forme, pourrait être

amenée très près de la réalité si l'on pouvait définir les

fonctions t et s. Or, on peut faire cette détermination

sur les bases suivantes :

1. On néglige les termes moyens de l'équation 5 et
on détermine s et i comme s'il s'agissait d'un tube à

épaisseur constante. La solution obtenue de ce fait,

pour de faibles variations d'épaisseur, est assez bonne
mais elle ne donne précisément pas les résultats que
nous voulons connaître, à savoir l'influence de la variation

de l'épaisseur sur les déformations et contraintes
du tube. Ce procédé est en conséquence à rejeter.

2. On considère l'équation 5 dans son ensemble, on

en écrit l'équation dite caractéristique dont les

coefficients, dans le cas particulier, sont des fonctions de x.
Ceci fait, pour différentes valeurs de x, on résout l'équation

'caractéristique précitée, ce qui fournit une série

de racines qui sont à leur tour une fonction de x. Ce

sont alors ces racines, qui sont ainsi des fonctions de x,
qui sont considérées comme les fonctions s et t de l'équation

6. L'approximation obtenue par ce procédé est

certainement excellente ; toutefois, cette méthode de

calcul se heurte à de grossesÉaifricultés qui sont les

suivantes :

a) Pour déterminer la valeur des racines de l'équation
caractéristique en fonction de x, il faut résoudre
plusieurs des dites équations. Or, comme il s'agit
d'équations du quatrième degré, dont toutes les

racines sont complexes, il s'agit là d'un gros
travail. Outre cela, en admettant que la forme

précitée de la solution (équation 6) soit heureuse,
les opérations nécessaires pour la détermination
des constantes d'intégration deviennent très
laborieuses. Il faut, en effet, dériver plusieurs fois

l'équation 6 pour en définir les valeurs à l'origine,
ce qui est un tipsrail très conséquent.

b) En admettant que les polynômes s et t de l'équa¬
tion 6 aient été déterminés, ainsi que les

constantes d'intégration, il se trouve que le calcul de

la fonction y et de ses dérivées pour différentes
valeurs de x est un travail laborieux, même rebutant.

Seul un calculateur, et non un homme du

métier, pourra s'astreindre à de tels calculs. Pour
cela, la solution précitée n'est pas à considérer

comme heureuse et doit être abandonnée.
3. Après plusieurs études du problème, la méthode

qui s'est révélée la plus pratique et la plus rapide est

la suivante :

a) Des polynômes s et t de l'équation 6 on ne conserve

que le premier terme, soit s0.x et to-x.
b) Les facteurs s0 et to sont les racines de l'équation

caractéristique pour les valeurs correspondant à

x=0.
c) L'équation 6, après introduction des valeurs s0 et

U permet de calculer la valeur de la fonction y
et de ses dérivées pour a;= 0, à l'origine seulement,
mais elle ne doit pas être utilisée pour la
détermination de la fonction et de ses dérivées en
d'autres points qu'à l'origine, car elle n'est
l'expression de la réalité que dans le voisinage de ce

point.
d) Connaissant la valeur de la fonction y et de ses

dérivées à l'origine, il est possible, voire même

aisé, d'intégrÉBip'équation initiale 5 par voie numérique,

La méthode décrite ci-dessus (3) est très simple. La
seule question qui se pose à son sujet, c'est de fixer
dans quelle mesure les racines de l'équation caractéristique

pour les valeurs à l'origine de ses coefficients divers
fournissent bien les valeurs à l'origine de la fonction et
de ses dérivées. A cela on peut répondre comme suit :

les racines de l'équation caractéristique à l'origine
définissent une fonction y dont elle-même ainsi que ses

quatre dérivées successives satisfont à l'équation générale

à l'origine. Si donc les valeurs initiales déterminées
de cette manière ne sont pas rigoureusement l'expression
de la réalité, elles n'en sont certainement pas très
lointaines.
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Quant à l'intégration numérique, c'est un travail qui
est aisé à conduire et ne présente aucune espèce de

difficulté pour qui en a la maîtrise.

Exemple numérique concret.

Pour établir les avantages et les inconvénients d'une
méthode, la première chose à faire c'est une application
numérique. Pour cette raison, les régimes des déformations
élastiques des tubes désignés ci-après ont été déterminés.
1. Tube cylindrique d'épaisseur constante, de longueur

supposée infinie.

«
•Sa ^mmmm^ -

Fig. 4.

Rayon : r 50 cm
Epaisseur : h 5 cm

2. Tube cylindrique, d'épaisseur croissante.

<ô h SO + O.OZ.X

^ i ft
Fig. 5.

Rayon : r 50 cm
Epaisseur
à l'origine : h0 5 cm
Loi de l'augmentation
d'épaisseur : h h0 + 0,02.x

d'où h' 0,02.

3. Tube cylindrique, d'épaisseur décroissante.

L ,h » 50-0,02.«

!wttW^AWW{

Fig. 6.

Riyon : r 50 cm
EpsuMeiir
à l'origine : h0 5 cm
Loi de la diminution
d'épaisseur : h ho — 0,02 x

d'où h' -0,02.

Ainsi l'étude a-t-elle été faite, à titre de contrôle, sur
deux tubes semblables mais avec loi de variation d'épaisseur
inversée et encadrant un tube d'épaisseur constante dont
les régimes de déformation sont complètement connus.

Les calculs ont également été pratiqués sur deux tubes
tels que les précités, avec loi de croissance, respectivement
de diminution d'épaisseur h' ± 0,01, mais dont les

développements ne seront donnés que partiellement.

La loi de variation d'épaisseur a été choisie très faible
afin de pouvoir constituer un tube décroissant relativement
et suffisamment long pour permettre l'étude sans atteindre
la région d'épaisseur nulle etàStaême négative.

L'équation différentielle générale définissant la déformation

élastique radiale du tube, équation 5, page 202, appliquée

aux cas présents et avec 1/m 0,3, devient :

d'y .0,12 d3y 0,C024

dx11 5±0, 02a;
' dâ? M (510,1)22^

4,368

dhj
dx2

10-3
(5+0,02 xX2 • y 0

(7)

Lorsqu'il y a un double signe dans l'équation ci-dessus,
le supérieur (+) se rapporte au tube d'épaisseur croissante
et l'inférieur (—) au tube décroissant.

Pour le tube d'épaisseur constante, l'équation se réduit
à ses deux termes extrêmegpls

Pour trouver une série de valeurs de la fonction y et de

ses dérivées satisfaisant en un point, à l'origine, pour x 0
à l'équation 7, nous en écrivons l'équation caractéristique
dans laquelle nous faisons x 0. Cette équation caractéristique

devient :

f4 ± 0,024. t3 + 0,000096. i2 + 0,00017472 0. (8)

Les quatre racines de cette équation, tous calculs faits,
sont :

Tube croissant :

ilj2 _-• 0,087480 ± i. 0,0811018
Éà + 0,0754805 ± i.0,0811215

Tube constant :

ii.2,3,4 ± 0,0812965 1 i.0,0812965

Tube, décroissant :

îl2 — 0,075475 ± i.0,081142
«3i4 + 0,087475 ± i.0,081089

La résolution de l'équation 8, soit dit en passant, n'est
pas une chose aisée ; néanmoins, en se rappelant que les

racines relatives au tube constant sont voisines des autres
racines et en organisant un schéma de calcul convenable,
la résolution de l'équation 8 prend deux à trois heures.

La symétrie entre les valeurs des racines trouvées est
intéressante ; elle suggère différentes choses mais dont nous
ne parlerons pas.

Ainsi, abandonnant les racines d'argument positif nous

pouvons dire qu'à l'origine, pour x 0, des relations de la
forme ci-dessous définissent la déformation des tubes étudiés.

y e » sin SoX -f- C2 • cos Sox) (9)
où l'on a

pour le tube croissant :

to — 0,087480

pour le lube constant :

U — 0,0812965

s„ 0,0811018

s« 0,0812965

s„1 0,081142
pour le tube décroissant :

t0 — 0,075475

Dérivant l'équation 9 puis en y faisant x 0, on obtient
la valeur de la fonction et de ses dérivées à l'origine, soit :

y„ C%

yo Ci.So -y- Ce2'to.

ijo" C,.2.to.s0 + C„ [to2 — so2].

y0'" d [3.to2.So — So3} + C, [— Zto.So2 + to3],

i/0""= Cj [4.U3.So — 4.«„.«o3] +
H-CJfo4 — 6.t«».s»-Mo4]

(10)
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(Les indices 0 signifient qu'il s'agit de valeurs à l'origine
des coordonnées, pour x 0.)

Les relations 10 fournissent ainsi une valeur à l'origine
de la fonctfen y et de ses dérivées satkfaisant rigoureusement
à l'équation différentielle de l'élastique cherchée et contenant

deux constantes arbitraires d'intégration Cr et C2.

(Les deux autres constantes ont disparu du fait qu'elles
doivent être nulles, la déformation du tube tendant vers
zéro lorsque x tend vers l'infini.)

On peut donc prendre les valeurs définies par les équations

10 comme valeurs de la fonction et de ses dérivées à

l'origine, et comme il y a deux inconnues, C-, et C2, on peut
se donner arbitrairement deux conditions limites.

Pour ce qui en est des deux conditions arbitraires, la
question se présente en général comme suit :

1° on donne le moment d'encastrement M0 ainsi que
l'effort tranchant radial T, les deux à l'origine, et on
demande d'établir le régime des déformations du tube.
Ou bien

2° la déformation radiale y0 et la rotation initiale y0' sont
données et l'on demande quel moment M0 et quel
effort tranchant radial T il a fallu appliquer pour les

provoquer.
Le problème se présente toujours de l'une ou de l'autre

de ces manières pour les déterminations de l'intensité de

liaisons hyperstatiques.
Etablissons maintenant l'influence d'un moment ainsi que

celui d'un effort tranchant, les deux à l'origine.
Etant donné que l'on a d'une part :

M y" .I,.Eb
et d autre part :

rr, dM
T -^=y h-Eb + y-'J^Eb

il en résulte les conditions suivantes pour les valeurs à l'origine

(pour x 0) :

M=Mo yö-h.o-Eb ;

T yô" .h.o.Eb + yô' .l'i.Q.Eb
l'i.o

En utilisant toujours les relations ci-dessus et en posant
Mor 0 et Tr -c?= 0, on obtient les nouvelles séries de valeurs :

yô".Ii.o-Eb + Mo.

soit encore, en posant

Mor — r r^h.o.Eb
et T

il vient
Mor y'o ;

ir 2/o f- Mor- 7—

h.o '

T
.Eb

En utilisant ces relations, en posant Mor ^ 0 et Tr 0 et

en utilisant les équations 10, on obtient les valeurs suivantes
des constantes d'intégration Cx et C2 :

Tube croissant constant décroissant

h' 0,02 0,01
C1jM0T= —65,1304 —70,252
C2/Mor= 70,5238 72,888

d'où résulte, toujours d'après
valeurs initiales :

0 - 0,01 - 0,02

-75,653 —81,097 —87,578
75,653 79,195 81,896

les équations 10, pour les

Tube croissant constant décroissant

h' 0,02 0,01 0 - 0,01 - 0,02

yo/Mor 70,52 72,89 75,65 79,19 81,90
yô/Mor —11,45 —11,85 —12,30 -12,79 —13,29
y'o/Mor '¦ 1,000 1,000 1,000 1,000 1,000

y'o'/Mor - 0,012 - 0,006 0,000 0,006 0,012

ljl7/Mor - 0,0121 - 0,0132 - 0,014

Tube croissant constant décroissant

h' 0,02

CjTr 65,468

CJT, 863,99

0,01
33,363

896,84

0

0

930,59

— 0,01 — 0,02
—31,324 —72,672

967,27 1002,90

puis, toujours d'après les équa ions 10 :

Tube croissant constant décroissant

h' 0,02
iJo/Tr 863,99

y'jTr -70,272
y'0'/Tr 0,000
y'o" ITT 1,000

0,01

896,84
—72,923

0,000
1,000

0

930,59
—75,65

0,000
1,000

— 0,01 — 0,02
967,27 1002,90

—78,478 —81,590
0,000 0,000
1,000 1,000

Sur la base de ces valeurs initiales, l'équation différentielle

5 a été intégrée pour les trois cas suivants :

h' + 0,02 h' 0 et h' — 0,02, les trois fois pour
Mot 1 et Tr 0.

L'intégration a été réalisée par voie numérique. Les résultats

font l'objet du report ci-contre, figure 7.

L'examen de cette figure fournit tous les renseignements

que l'on pourrait désirer quant à la déformation des trois

types de tubes considérés. Les trois séries de courbes

permettent notamment une comparaison directe entre eux des

résultats obtenus dans les trois cas. L'affaire étant évidente,

nous nous abstiendrons de la commenter plus longuement.
Signalons toutefois que les constantes numériques données

ci-devant ont été établies en tout pour cinq types de tubes,
soit pour ft'= 0,02, 0,01, 0, —0,01, —0,02, tandis que

Lêùende :

iy I tube croissant" (V'HOî)
1 lube conüfint \ » o

«UWIP.OJUHI VU V.VL,

II *I

\ i_
M ±1

l"]iv
NI

v ^ïï
5/ 1

1
U

/ Z l i 5 6 7 8 9^^ H 12 "X

1/
"M

Fig. 7. — Courbes définissant îï*déformation radiale y du tube
et de ses dérivées successives t/' à y"' sous l'effet d'un moment
relatif Mor 1 agissant à l'origine, pour trois types de tubes.

Pour les unités et les signes, comparer OYec les valeurs numériques données

ci-contre.
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la figure 7 ne donne que les caractéristiques des tubes extrêmes

et du moyen. Il est, dans ces conditions, aisé d'interpoler

les résultats pour d'autres coefficients de variation
d'épaisseur des tubes.

Il est, d'autre part, intéressant de constater que les résultats

de la splendide analyse de M. J. Paschoud, jointe à

cette étude et traitant le même problème par des procédés
mathématiques rigoureux, conduisent aux mêmes courbes
de déformations, ce qui fournit un précieux élément de
comparaison des deux méthodes de calcul.

Résumé et conclusion.

La présente étude s'est attachée à la détermination
du régime des déformations élastiques d'un tube
cylindrique de révolution, d'épaisseur variable, chargé par
des forces et moments répartis uniformément le long
d'une tranche circulaire libre.

Le problème a été résolu uniquement par des procédés
élémentaires familiers à tout ingénieur ayant subi avec
succès ses examens propédeutiques.

La méthode appliquée peut être utilisée pour traiter
tous les cas que l'on peut normalement rencontrer en
pratique. Elle se prête notamment à la détermination
des déformations d'un tube d'épaisseur variable et de
module d'élasticité variable tels qu'on en rencontre dans
le cas d'objets en fonte grise ou encore en béton armé.

Au début de cette étude, il est fait allusion à une
intégration au moyen d'une machine à intégrer. A ce
sujet nous dirons que la partie de ce travail qui s'est
révélée de beaucoup la plus laborieuse, c'était la
détermination des valeurs initiales de la fonction à intégrer,
tandis que l'intégration proprement dite n'était plus
qu'une opération absolument aisée.

Quant au temps nécessaire pour pratiquer les calculs
dont ilvient d'être question, il peut être estimé commesuit :

1. Prise de contact avec le problème, pré¬
paration des schémas de calcul, tâtonnements

divers 1 heure
2. Résolution de l'équation caractéristique 1 heure
3. Calcul des constantes d'intégration,

d'après les équations 10 1 heure
4. Etablissement des « cames » nécessaires

pour les intégrations numériques ou
mécaniques 2 heures

5. IntegratiÖEjffio'equation différentielle et
tracé des courbes intégrales 3 heures

6. Mise au net des résultats 1 heure

Total 9 heures

A cela s'ajoute le temps nécessaire aux vérifications et
contrôles dont l'importance dépend du degré de sûreté
du calculateur ; cela conduira volontiers à un multiple
du temps estimé pour les opérations propremenljjäjites.

Signalons enfin que le problème en question ne peut
être traité qu'en opérant avec grand soin et en faisant
lin usage contirmcl de la machine à calculer ; la règle
à calcul, même de précision, est insuffisante pour de tels
problèmes,

Lausanne, juin 1945.

Recherches et essais sur les bétons

Surprises et problèmes rencontrés
au cours des travaux de Barberine

par J. BOLOMEY, professeur,
ancien ingénieur-directeur des travaux des usines de Barberine

et de Vernayaz 1.

Introduction.

Les travaux pour l'aménagement de l'usine de Barberine

ont présenté la particularité d'avoir été entrepris,
sous la pression de l'opinion publique et pour procurer
des occasions de travail, alors que les études de détail
étaient loin d'être terminées. En effet :

Les voies d'accès aux futurs chantiers n'étaient pas
encore aménagées, ce qui a contribué à faire illusion
sur les difficultés présumées d'exécution des travaux,
difficultés qui ont été exagérées.

Les débits de la Barberine, notamment ceux des
hautes eaux, n'étaient pas exactement connus, de sorte
que le volume d'eau qu'il convenait d'emmagasiner
dans le futur lac n'a pu être déterminé qu'âpproxima-
tivement. En fait, il a été^hoisi trop petit d'au moins
20 %.

Le profil et l'implantation du barrage étaient
insuffisamment étudiés. Ils ont été complètement modifiés
après l'adjudication des travaux et la solution finalement

adoptée n'est pas très heureuse, en ce sens qu'elle
ne permet pas le surhaussement du barrage.

Aucune décision n'était encore prise sur la nature
des matériaux à utiliser pour la construction du
barrage : maçonnerie de moellons ou béton. Si cette
dernière solution était adoptée, fallait-il recourir au ballast
calcaire roulé du plateau de Barberine ou à du concassé
de gneiss ou de granit

Les travaux de l'infrastructure du funiculaire et de
la route d'accès entre le sommet du funiculaire et Emosson
ont été adjugés et commencés, en juillet 1919, sur la
base d'un projet général très peu précis, les levers de
terrain ayant été par trop sommaires étant donné le
terrain très accidenté.

C'est pourquoi la première tâche de la Direction des

travaux a consisté à compléter le plus rapidement
possible les levers de terrain et à préparer les projets
d'exécution indispensables. Bien souvent des levers effectués
le matin ont dû être mis au net l'après-midi, pour
permettre de donner le soir des indications sur les travaux
à entreprendre le lendemain.

Etude des matériaux.
L'étude des matériauxlievant servir à la construction

du barrage n'était même pas commencée lors de la mise
en soumission et de l'adjudication de ces travaux.

1 Conférence faite devant les membres de l'A'E" I.L. et de la S.V. I.A.,
le 17 février 1945, à Lausanne.
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