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Les essais de cisaillement sur l'argile sont difficiles

parce que les résultats n'ont de valeur que si ils s'appliquent

à un matériau bien déterminé. En réalité, si l'on
cisaille différents échantillons d'une même argile consolidée

sous différentes charges verticales, la teneur en

eau et par suite l'indice de vide est variable d'un échantillon

à l'autre. Pour obtenir des courbes intrinsèques,
il faut disposer d'un matériau bien défini ce qui n'est
pas facile avec les argiles qui sont des corps comportant
trois phases : solide, eau absorbée, eau libre1.

Le problème se complique encore pour les sols
routiers parce qu'il est rare que l'on soit en présence de sols

saturés ou presque, comme c'est le cas dans les
fondations. Ces sols contiennent de l'air en proportion
notable. Il ne faut pas perdre de vue que les lois principales

établies pour les terrains argileux ne sont valables

que pour un matériau saturé d'eau, c'est-à-dire sans air.
Divers expérimentateurs spécialisés dans les problèmes
routiers ont mis en doute certains résultats acquis de la
géotechnique pour cette simple raison qu'ils ne travaillent

pas sur les mêmes matériaux et ne parlent pas le
même langage.

(A suivre.)

Sur la généralisation d'une analogie

entre cinq phénomènes de Mécanique,
par Henry FAVRE

professeur à l'Ecole polytechnique fédérale, Zurich.

(Suite et fin.) 2

§ 6. Quelques cas d'intégration du système d'équations
régissant les cinq phénomènes.

Nous voulonspnaintenant donner quelques indications
concernant l'intégration du système qui régit les cinq
— t-' i 1 2phénomènes analogues :

dzx 1 d
t +&Tx®Zz) 0>

dz dzx-2--^ + «^tu* dt dx
o.

(i)

Voici comment on peut procéder. Dérivons (I) par
rapport à £ et (II) par rapport à x, après avoir nïfiltiplié
cette dernière équation par u»2. On obtient :

d*Zx Ä2 1 tiß dz

dt* ' dxdt

+

+ o,

dxdt

ß dx dt
dz\

dx dx dx2

d2z% d(aw2) dz-, ' (Pz-, n+ aur — pf 0.

(n

(in

1 La proportion entre eau libre et eau absorbée semble varier suivant
la valeur des sollicitations imposées.

* Voir Bulletin technique des 11 et 25 novembre 1944.

Remplaçons, en vertu de (II), -j? par —auu2 tr-=
dans (F) : * dX

d2zx <22Zg auÄiß dzx n
dt2 dxdt $ dx dx (V)

puis soustrayons (Y) de (II') :

„ d2z-, /d(ouu2) au»2 d$ dz-,
auJ ~Ti ~rdx2 dx ß dx dx

Divisons par au)2, il vient :

d2zx

dx2

en posant

d
a „. dzx 1 d!izx

(aßur) -— s -— U
aßuj2 dx dx m2 dt2

aßur

on obtient finalement

dHx ldf dzx 1 d2zx _dx2 y àx dx uj2 dtz

(25)

(III)

La signification de y pour chacun des cinq phénomènes
est indiquée à la colonne 10 du tableau 2.

Telle est l'équation à laquelle doit satisfaire z\ 1).

Supposons que l'on ait trouvé une solution zx (x, t)
de (III). Pour avoir z2, introduisons cette solution dans

(II) et intégrons par rapport au temps, ce qui donne :

Cdzx
z2 etui2 / — dt. (IV)

Le calcul de s2 est alors ramené à une quadrature.
La principale difficulté du problème réside dans

l'intégration de l'équation (III).
Remarquons <jue pour les trois premiers phénomènes,

zx désigne une vitesse v (tableau 2) et peut se mettre
sous la forme d'une dérivée partielle par rapport au

dy
temps. Par exemple, pour la corde, nous avons v ¦#.

où y désigne l'écart d'un point P (voir fig. 1 et § 2, 1°).
Si nous mesurons les écarts y en prenant la position de

repos comme origine, une intégration de (III) par rapport
au temps donne

<Py l^Tfty 1^ 0
dx2 y dxdx iua dP (III*)

Telle est l'équation qui régit les écarts de la corde.
C'est exactement la même que (III), qui régit les vitesses

v.
Si y et tu sont constants (indépendants de x), la

dernière équation écrite se réduit à

dx2 UJ8 dt2
dh/

0,

qui n'est autre que 1'« équation ordinaire des cordes
vibrantes ». (III*) ou (III) peut donc être appelée :

« équation générale des cordes ». On peut alors dire que
toutes les grandeurs zx figurant à la quatrième colonne du

1 En éliminant zj entre (1) et (II), on obtiendrait pour ;2 une équation
beaucoup moins simple que (III).
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tableau 2 satisfont à l'équation générale des cordes

vibrantes 1.

Voici quelques cas d'intégrabilité de l'équation (III) :

1° Y= const., uj const.

C'est celui des caractéristiques constantes envisagé

au paragraphe 1. (III) se réduit à l'équation ordinaire
des cordes vibrantes :

d%
dx2

i_d\
uj2 dt2

0

dont la solution générale est

rîM'+S

(III, 1°)

(26)

où F et f désignent deux fonctions arbitraires (Solution
d'Euler-d'Alembert). F représente une onde qui se

propage sans se déformer dans le sens des x croissants avec

la vitesse constante uj, f une onde de mêmes propriétés
se déplaçant dans le sens des x décroissants.

On peut aussi intégrer l'équation (III, 1°) à l'aide des

séries trigonométriques (méthode de D. Bernoulli) ou

encore en utilisant la transformation de Laplace.

2° y const., uj variable.

Une corde de traction constante (eF Y const.)»

mais de profil ou de masse spécifique variable

uj variaable satisfait aux conditions ci-dessus.

Il en est de même d'une conduite forcée de diamètre

constant remplie d'un liquide homogène! — Y const. I,

mais dont l'épaisseur des parois varie (a uj variable).
Les trois autres phénomènes, par contre, peuvent
difficilement réaliser ce* conditions (voir tableau 2).

L'équation (III) devient ici

dx2

1 d\ 0, (III, 2°)

où uj2 est une fonction de x.
Dans un mémoire paru en 1766, Leonard Euler a

donné des indications intéressantes sur l'intégration de

(III, 2°) 2. Il ne lui a pas été popible de trouver la solution

générale de cette équation lorsque uj2 est une fonction

quelconque de x. Mais il est arrivé à la conclusion

que dans chaque cas où il est possible de l'intégrer, la

solution générale peut se mettre sous la forme

zx= Pr (fudx+t)+Qr' (fudx+t)+Rr" (fudx+t)+

+ PA{fudx-t)+QA'(fudx-t)+RA''(^lx-t)+ (27)

où P, Q, R, et u sont'des fonctions déterminées de x,
tandis que T et A désignent des fonctions arbitraires
des arguments entre parenthèses.

* Il n'en est pas de même des grandeurs zs qui satisfont a une tout autre
équation.

a « Recherches sur le mouvement des cordes inégalement grosses », par
L. Euler. Mélanges de philosophie et de mathématique de la Société Royale
de Turin, 1766.

Euler déduit de (27) la solution rigoureuse pour le
C

cas où uj2 — C désignant une constante et l'expo-

sant n étant égal à 4, 4/s, 8/3, 8/5, ™f5, i2/7, "/„
Nous nous permettons de renvoyer le lecteur à l'examen

de ce mémoii^ qui pourrait peut-être conduire à
des applications intéressantes.

3° Y &t uj sont des fonctions linéaires de x, qui varient

peu dans le domaine considéré.

C'est le cas où les caractéristiques accusent une faible
variation linéaire (corde pesante verticale suffisamment

tendue, barre légèrement conique animée de vibrations
longitudinales ou de torsion, conduite dont le diamètre

d^êpaisseur accusent une faible variation linéaire, canal
découvert de largeur et de profondeur légèrement varia-
Wmm

On peut alors poser :

YoC + Oi*), uj0 (1 + bçx) ; (28)

où y0> "^o' °i e^ ^2 désignent des constantes, les deux
dernières étant petites par rapport à 1.

L'équation (III) devient :

d2zx bx dzx 1 ^dx2 l + bxxdx uj2(l + 0aa:)a dt2
0.

Multiplions par 1 -f- bxx et remplaçons, au dernier

l + bxx
terme, par l-f-(bx — 2b2)a;.

(l+b^)2

On obtient :

Ä, S dzx l + (ö1-2b2)xÄ1(i + M^+bx^ Wn dt2
0. (111,3°

Nous pouvons chercher à satisfaire à cette équation

par une expression de la forme1

zl^+(l+e1x){F (l+€ga:)a:'
/

(l+ega;)»

où F fp / désignent des fonctions quelconques, ex et e2

des constantes du même ordre que bx et b2, z\, une
daÊitante. En introduisant cette expression de zx dans

l'équation différentielle et en identifiant 2, on obtient

pour ex et e2 les valeurs suivantes :

H e«

La solution approchée de l'équation (111, 3°) devient :

1 On obtient cette expression en modifient légèrement le second membre
de (26), car (III, 3°) devient (111, 1°) lorsque bt et b. sont nuls.

2 Dans les calculs, on néglige les produits et les puissances des petites

quantités ej, e2l bj, ba.
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1 —sfo —*¦)*

/ t +

1 — M x

l—^x

+

(29)

Cette expression représente la somme de deuppondes

qui se propagent en se déformant s
On démontre que uj uj0 (1 -f- bgc) est la vitesse de

propagation des ondes au profil x. Cette vitesse dépend
donc du lieu.

4o const. xa, uj const.

Les vibrations d'une corde pourraient difficilement
satisfaire à ces conditions. Par contre, les quatre autres
phénomènes le peuvent, pourvu que la matière soit
homogène (p const., E const., etc.) et que F, J ou
FP soient proportionnels à x2 (voir tableau 2 ; s'il s'agit

d'une conduite il faudrait encore que — soit constant,
e

c'est-à-dire e proportionnel à x).
L'équation (III) devient :

d\
dx2

2dz,
x dx

i^d\
UJ2 dt2

0, (III, A0\

où uj est constant.
C'est l'équation que l'on rencontre dans la théorie

des ondes sphériques se propageant dans un milieu
continu. Sa solution rigoureuse est :

4 + ^ Ft + f(t + X-^
\ uj

(30)

où F et f désignent des fonctions arbitraires, z\ et xm,
des constantes. Cette expression représepËe la somme de
deux ondes qui se propagent en se déformant. La vitesse
de propagation uj de ces ondes est constante. Leur
longueur ne varie pas, mais seulement la hauteur.

5° Y const, x uj est une fonction linéaire de x qui
varie peu dans le domaine considéré.

C'est le cas des conduites à caractéristiques linéairement

variables le long de l'axe que l'on rencontre dans
la pratique. Exception faite de la corde, les autres
phénomènes peuvent satisfaire aux conditions ci-dessus.

Posons

'l_2>v-t=^Y (31)

où L désigne la longueur de la conduite, du canal ou
de la barre, xm l'abscisse du milieu, ujm la valeur de uj

relative à ce point, v une constante positive petite par
rapport à 1.

C'est par la môme méthode que nous avons trouvé nnr solution approchée

de l'équation régissant les vibrations transversales des cordes pesantes
verticales (voir Schweiz. Bauzeilung des 20 novembre et 4 décembre 1943,
équation (9). Celte solution est un cas particulier de (29).

L'équation (III) s'écrit ici :

dhx 2dz^
dx2 x dx

1
m ii+4v x — x„i\ d\

dt2L

Sa solution approchée est1 :

F5i—zi

+

L

t +

^ 0. (III, 5o)

(32)

+
L

1—v

où F, f désignent des fonctions arbitraires, z9, Xm des

constantes. Cette expression est la somme de deux
ondes qui se propagent en se déformant. La vitesse de

propagation uj est une fonction du lieu.
En faisant v 0 on retrouve l'équation (30).

6° Si l'équation (III) peut se mettre sous la forme

dx2
2AT{x) W(x)

AxV(x)+B V(x)
dzx

Y w dt2
0, (111,6°)

où. A et B sont des constantes, on peut l'intégrer en

appliquant la transformation de Laplace, comme l'a
montré M^Blanc, professeur à l'Ecole d'ingénieurs de

Lausanne 2. C'est l'équation du cas le plus général sans

diffusion.

7° Cas des ondes stationnaires.

Posons

<p • sin
2m

où q> désigne une fonction de x, et T une constante.
L'équSSon (III) devient

d2tp 1 df d<p 4tra

dx2 y dx dx jPuj2
<P 0. (III, 7°)

Elle ne contient que la variable indépendante x, ce qui
démontre ägie des ondes stationnaires peuvent exister
dans le cas général. Le problème est donc ramené à

l'intégration de cette équation différentielle ordinaire.
En tenant compte des conditions aux limites, sa solution

permettra de déterminer la période T des différentes
vibrations, ainsi que la position des nœuds et des ventres.
Dans certains cas, elle pourra être ramenée à l'équation
de Bessel.

Zurich, le l^Beptembre 1944.

1 Voir notre article déjà cité de la Revue générale de l'hydraulique,
formule (9).

2 « Transformation de Laplace et équations différentielles », par Ch. Blanc.
Bulletin technique de la Suisse romande du 6 février 1943.
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