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Les essais de cisaillement sur ’argile sont difficiles
parce que les résultats n’ont de valeur que si ils s’appli-
quent & un matériau bien déterminé. En réalité, si I'on
cisaille différents échantillons d’une méme argile conso-
lidée sous différentes charges verticales, la teneur en
eau et par suite I'indice de vide est variable d’un échan-
tillon & P'autre. Pour obtenir des courbes intrinséques,
il faut disposer d’un matériau bien défini ce qui n’est
pas facile avec les argiles qui sont des corps comportant
trois phases : solide, eau absorbée, eau libre .

Le probléeme se complique encore pour les sols rou-
tiers parce qu’il est rare que I’on soit en présence de sols
saturés ou presque, comme c’est le cas dans les fon-
dations. Ces sols contiennent de 1’air en proportion
notable. II ne faut pas perdre de vue que les lois princi-
pales établies pour les terrains argileux ne sont valables
que pour un matériau saturé d’eau, c’est-a-dire sans air.
Divers expérimentateurs spécialisés dans les problémes
routiers ont mis en doute certains résultats acquis de la
géotechnique pour cette simple raison qu’ils ne travail-
lent pas sur les mémes matériaux et ne parlent pas le

méme langage. ]
(A suigre.)

Sur la généralisation d'une analogie
entre cing phénoménes de Mécanique,

par Hexry FAVRE

professeur a4 1’Ecole polytechnique fédérale, Zurich.

(Suite et fin.) ®

§ 6. Quelques cas d’intégration du systéme d’équations
régissant les cinq phénomeénes.

Nous voulons maintenant donner quelques indications
concernant I'intégration du systéme qui régit les cing
phénomenes analogues :

Bt g ) =0, (n
1 9z2 7
0 +a = 0. (IT)

Voici comment on peut procéder. Dérivons (I) par
rapport a ¢ et (I1) par rapport & 2, aprés avoir multiplié
cette derniére équation par w2 On obtient :

()zl X Pzy n L dp dz, —0 (1
dudt " B dx Jit d
2 2.
(722 d(aw?) Jz, 2é1_0 i
— + —— + ow? —, = 0. (II')
Jxdt dv  Ju Jdx
! La proportion entre cau libre ¢t cau absorbée semble varier suivant
la valeur des sollicitations imposdes.
* Voir Bulletin technique des 11 et 25 novembre 1944,

|
|
|

Remplacons, en vertu de (II), % par __awz(?_zl
! o dx

dans (I') :
9221 92Z2

P N i
puis soustrayons (I”) de (IT'):

472z1 (aw?) | ow?dB dz Pz
M+<m *y%%%”—*Q

Divisons par aw? il vient :

%z, 1 1 Pz
Pl anzdz( pu) B s
en posant
afw? = v, (25)

on obtient finalement

Pz Advdn 1 Pm
wtinm v = (111)

La signification de y pour chacun des cinq phénoménes
est indiquée a la colonne 10 du tableau 2.

Telle est I'équation & laquelle doit satisfaire z; 1).

Supposons que l'on ait trouvé une solution z; (z, t)
de (III). Pour avoir z,, introduisons cette solution dans
(IT) et intégrons par rapport au temps, ce qui donne :

zp = w? / %”;1 dt. (IV)

(%

Le calcul de z, est alors ramené & une quadrature.

La principale difficulté du probléme réside dans I'in-
tégration de 'équation (III).

Remarquons que pour les trois premiers phénomeénes,
z; désigne une vitesse ¢ (tableau 2) et peut se mettre
sous la forme d’une dérivée partielle par rapport au
temps. Par exemple, pour la corde, nous avons ¢ = —%
ou y désigne I’écart d’un point P (voir fig. 1 et § 2, 10).
51 nous mesurons les écarts y en prenant la position de
repos comme origine, une intégration de (IIT) par rapport
au temps donne

@.}_idla_‘/_l_lazy:o_ (111%)
da?  ydvdr o w? I

Telle est I'équation qui régit les ccarts de la corde.
C’est exactement la méme que (III), qui régit les vites-
ses v.

Si 7 et w sont constants (indépendants de z), la der-
niére équation écrite se réduit i

qui n’est autre que I’ équation ordinaire des cordes
vibrantes ». (III*) ou (III) peut donc &tre appelée :
« équation générale des cordes ». On peut alors dire que
toutes les grandeurs z, figurant a la quatriéeme colonne du

! En éliminant z, entre (I) et (II), on obtiendrait pour 3, une équation
beaucoup moins simple que (ITI).
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tableau 2 satisfont & Uéquation générale des cordes
vibrantes 1.
Voici quelques cas d’intégrabilité de 1’équation (IIT) :
1° v = const., w = const.

C’est celui des caractéristiques constantes envisagé
au paragraphe 1. (III) se réduit & I'équation ordinaire
des cordes vibrantes :

2 1 222
Pz 1 Py
JIx? w? Ji?

=0 (111, 10)

dont la solution générale est
A_r<t_m>+f(t+a), (26)

ou F et f désignent deux fonctions arbitraires (Solution
d’Euler-d’Alembert). F représente une onde qui se pro-
page sans se déformer dans le sens des x croissants avec
la vitesse constante w, f une onde de mémes propriétés
se déplacant dans le sens des z décroissants.

On peut aussi intégrer I’équation (III, 1°) a 'aide des
séries trigonométriques (méthode de D. Bernoulli) ou
encore en utilisant la transformation de Laplace.

20 v = const., w variable.

Une corde de traction constante (el = y = const.),
mais de profil ou de masse spécifique variable

<\/E - \'ariable> satisfait aux conditions ci-dessus.
p

Il en est de méme dune conduite forcée de diametre
: fosg it B
constant remplie d’un liquide homogéne(; = Y= const.),

mais dont Pépaisseur des parois varie (@ = w variable).
Les trois autres phénomeénes, par contre, peuvent
difficilement réaliser ces conditions (voir tableau 2).
L’équation (I1I) devient ici
(7251 1 ()22.1 -
Ja? Wk I

(111, 20)

ot w? est une fonction de z.

Dans un mémoire paru en 1766, Leonard Euler a
donné des indications intéressantes sur I'intégration de
(111, 20) 2. 1l ne lui a pas été possible de trouver la solu-
tion générale de cette équation lorsque w? est une fone-
tion quelconque de 2. Mais il est arrivé a la conclusion
que dans chaque cas ou il est possible de I'intégrer, la
solution générale peut se mettre sous la forme

2= PI (fudz+t)+Q" (fudz+t)+RT" ( fudx+)+ ... |
+PA (fuda—t)+QA'( fuda—t)+ RA"( fude—L)+ ..... ’

et u sont des fonctions déterminées de ,

ou P, 0, R; ...
tandis que [ et A désignent des fonctions arbitraires
des arguments entre parentheses.

U Il n'en est pas de méme des grandeurs z, qui satisfont & une tout autre

équation.
2 « Recherches sur le mouvement des cordes inégalement grosses », par
L. Euler. Mélanges de philosophic et de mathématique de la Société Royale

de Turin, 1766.

Euler déduit de (27) la solution rigoureuse pour le

c !
cas o w? = — , C désignant une constante et I’expo-
s

sant n étant égal a 4, %[5, 8fs, &[5, 22/5, 22/7, 28/0y ..o

Nous nous permettons de renvoyer le lecteur & 'exa-
men de ce mémoire, qui pourrait peut-étre conduire a
des applications intéressantes.

39 o et w sont des fonctions linéaires de x, qui varient
peu dans le domaine considéré.

C’est le cas ou les caractéristiques accusent une faible
variation linéaire (corde pesante verticale suffisamment
tendue, barre légérement conique animée de vibrations
longitudinales ou de torsion, conduite dont le diamétre
et I’épaisseur accusent une faible variation linéaire, canal
découvert de largeur et de profondeur légérement varia-
bles).

On peut alors poser :

Y=Yo(1+d2), w=uw,(1l+dz); (28)
ou Y,, W,, 0, et d, désignent des constantes, les deux
derniéres étant petites par rapport a 1.

L’équation (III) devient :

%z, 3y Iz 1

Py e
J2 | T+oxde wil-Fom)? I

Multiplions par 1--d2 et remplagons, au dernier

1 ‘
terme, (11——:;‘;)2 par 14 (d; — 2d,) .
On obtient :
, N dz; 1+ (0,—205)x %z
(1+bl.r)()712‘+blm'————T§~‘—W—o. (III.BO)

S

Nous pouvons chercher a satisfaire & cette équation
par une expression de la forme?!
3 1+e,2) 1 14+-€,2)
zlz—_z‘l)-i—(‘l—}—elx){l’ [l——«uf ) }—}— f[l+——( 2) J},

o Wy

ou F et f désignent des fonctions quelconques, €; et €
des constantes du méme ordre que d; et dy, 2}, une
constante. En introduisant cette expression de z; dans
léquation différentielle et en identifiant 2, on obtient

pour €; et €, les valeurs suivantes :
51:—1_)"(3)1_52): Ca 5 5t

La solution approchée de I’équation (II1, 3°) devient :

1 On obtient cette expression en modifiant légérement le second membre
de (26), car (111, 3°) devient (III, 1°) lorsque d, et d, sont nuls.
2 Dans les calculs, on néglige les produits et les puissances des pelites

quantités €, €,, dq 5.
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(1—3-)

1 1 —22z2|z

z1:z1°+|:1—5(bl—b2)x:|lF t— " -+
2 0

Cette expression représente la somme de deux ondes
qui se propagent en se déformant?. |

On démontre que w = w, (1 +d.2) est la vitesse de
propagation des ondes au profil x. Cette vitesse dépend
donc du lieu.

40 y = const. x2, w = consl.

Les vibrations d’une corde pourraient dillicilement
satisfaire 4 ces conditions. Par contre, les quatre autres
phénomenes le peuvent, pourvu que la matiére soit
homogéne (p = const., £ = const., etc.) et que I, J ou
I, soient proportionnels & 22 (voir tableau 2 ; s’1l s’agit

d’une conduite 1l faudrait encore que — soit constant,
e
c’est-a-dire e proportionrel a z).
L’équation (III) devient :
Pz | 207

a2z dr

ou w est constant. ,

C’est I’équation que l'on rencontre dans la théorie
des ondes sphériques se propageant dans un milieu
continu. Sa solution rigoureuse est :

a==2+2 [F(t e 7) +f<z+ o ’)] (30)

x w

ou F et [ désignent des fonctions arbitraires, z) et x,,
des constantes. Cette expression représente la somme de
deux ondes qui se propagent en se déformant. La vitesse
de propagation w de ces ondes est constante. Leur lon-
gueur ne varie pas, mais seulement la hauteur.

50 1 = const. x%, w est une fonction linéaire de x qui
parie peu dans le domaine considéré.

(est le cas des conduites a caractéristiques linéaire-
ment variables le long de 'axe que I'on rencontre dans
la pratique. Exception faite de la corde, les autres
phénoménes peuvent satisfaire aux conditions ci-dessus.

w = un(1—20 27 7),

Posons

(31)

ou L désigne la longueur de la conduite, du canal ou
de la barre, x,, 'abscisse du milieu, w, la valeur de w
relative & ce point, ¢ une constante positive petite par
rapport a 1.

Clest par la méme méthode que nous avons trouvé une solution appro-
chée de I'équation régissant les vibrations transversales des cordes pesantes
verticales (voir Schweiz. Bauzeilung des 20 novembre et 4 décembre 1943,
équation (9). Cette solution est un cas particulier de (29).

\

! L’équation (III) s’écrit ici :

2z, 2 oz 1 M N
| (& X m Z1
oy - — — (1+b4v—— ) =5 = 0. IIT, 50
| :7x2+x(7m w?,,( v L ){;2 (IIT, 5°)
Sa solution approchée est ! :
‘ (32)
\ o o L e
| == a’"([—" l—7>|F f T Tm -

T — T

wm(’l —v 1;Lrn~l> }’

ou F, [ désignent des fonctions arbitraires, z9,

@ L ) T—Ty;
‘ l W,y <1 —v - )
|
|

+1 e

#n des
constantes. Cette expression est la somme de deux
ondes qui se propagent en se déformant. La vitesse de
propagation w est une fonction du lieu.

En faisant v =0 on retrouve ’équation (30).

! 60 Si Uéquation (111) peut se mettre sous la forme

| @2y [ 2AY¥'(z) __‘P”(.v) dz it Pz
Ja? [A‘P(:z-)—}—B ‘P’(x)}ﬁf"’ (@) =g =0, (IIL, 6°)

ot A et B sont des constantes, on peut l'intégrer en
appliquant la transformation de Laplace, comme I'a
montré M. Blanc, professeur & 1'Ecole d’ingénieurs de
Lausanne 2. C’est ’équation du cas le plus général sans
diffusion.

7° Cas des ondes stationnaires.

Posons
2mt

Z = @-sin — ,

1= T

ot @ désigne une fonction de a, et 7' une constante.
L’équation (III) devient

d?p | dy do 4m®

T i d TTr® T

0. (I11, 7°)
Elle ne contient que la variable indépendante @, ce qui
démontre que des ondes stationnaires peuvent exister
dans le cas général. Le probléeme est donc ramené a
I'intégration de cette équation différentielle ordinaire.
En tenant compte des conditions aux limites, sa solution
permettra de déterminer la période 7' des différentes
vibrations, ainsi que la position des nceuds et des ventres.
Dans certains cas, elle pourra étre ramenée a I'équation
de Bessel.

Zurich, le 16 septembre 1944.

1 Voir notre article déja cité de la Revue générale de Uhydraulique, for-
maule (9).

¢ « Transformation de Laplace el équations différentielles », par Ch. Blane.
Bulletin technique de la Suisse romande du 6 février 1943,
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