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Sur la généralisation d'une analogie

entre cinq phénoménes de Mécanique,

par Hexry FAVRE
professeur a 1’Ecole polytechnique fédérale, Zurich.

(Suite) !
§ 2. Systémes d’équations régissant les cinq phénomeénes
dans le cas des caractéristiques variables.

(Suite.)

50 Petits mouvements non permanents d’un liquide dans
un canal découvert de profil variable (ondes de
translation engendrant des
fatble hauteur).

intumescences de trés

Soit un canal découvert d’axe rectiligne ou légérement
courbe et possédant une faible pente. Nous suppose-
rons les profils en travers de forme quelconque et variable
le long de I’axe. Nous admettrons tou-
tefois que les éléments de surface des
parois et du fond fassent des angles
faibles avec cet axe (fig. 5).

Supposons qu’un liquide immobile,
par exemple de I'eau, remplisse d’a-
bord ce canal, puis qu'une perturba-
tion & une de ses extrémilés engen-
dre un régime non permanent. Nous
admettrons que cette perturbation soit

suffisamment  faible et lente pour { %

surface au temps ¢ *y

que les variations de niveau en un profil quelconque
solent trés petites et lentes. Le profil en long de la
surface du liquide sera, quel que soit le temps, une
ligne de trés faible courbure, voisine du niveau primitif
(mouvement trés graduellement varié).

Considérons au temps ¢ deux profils voisins d’abscisses
x et @ + da. Solent F et ¢ la surface mouillée et la vitesse
moyenne au profil . Le petit volume de liquide compris,
au temps t, entre les deux profils, a une masse égale a
p Fdx, si p désigne la masse spécifique du liquide.

Equation dynamique. 1’accélération de tous les points
de la masse considérée est approximativement horizon-

tale et égale &
dy o

)

" T o

La projection horizontale de la résultante des pres-
slons agissant sur cette masse est

surface au temps ¢

Profil d'abscisse x

' Voir Bulletin lechnique du 11 novembre 1944 Fig. 5. — Petits mouvements non-permanents d'un liquide dans un canal découvert

p: 297.

de profil variable.




310

BULLETIN TECHNIQUE DE LA SUISSE ROMANDE

dy
'——pgr ;E dl,

ou y désigne la surélévation du niveau au profil z et g

Paccélération de la pesanteur L.
L’équation dynamique s’écrit :
dv dy = (7y
plde (=—v+ — ) =—pgl - dz,
dx at dx
n)ilSSC dCCE]CPatiOH force
. Jv S
ou bien, en remarquant que - ¢ est négligeable par
’ Jx 2=
%
rapport a 7’ puisque le mouvement est trés graduelle-
ment varié :
Jy Yy
at Jz

Si nous désignons par p la pression du liqguide a un
niveaw déterminé, nous aurons

ol WD Jy
p = pgy+const.,, d’ou 5 — P85
et Péquation dynamique devient
Jy 1Jp
-+ - = 14’
I/‘t + 0] Jx 0 ( )

A Tinstant ¢ -+ d¢, les molé-

cules qui étaient au temps ¢ sur les profils @ et o 4 da

Equation de continuité.

seront respectivement sur deux nouveaux profils d’abs-

: %

cisses @ -+ ¢dt et x -+ dv + <v i o dx> ot, dont la
ax

2 o d L :
distance est da - T dxdt. D’autre part 'augmentation,
Jdx

pendant lintervalle dz, de 'aire d’un profil transporté
avec les molécules de liquide, et qui était situé au
temps t entre les profils x et @ + du, sera sensiblement

[} bt—i—‘tvbt

A la fin de cet intervalle, la masse considérée aura

donc pour expression
p<F £ bt—l— =4 vbt> <[l1 = gl (lvbl>

Comme elle est constante quel que soil £, nous aurons
Péquation de continuité suivante :

plFde=p <F—{— bt—i——vbt)(d +——dlbl>

masse au temps [ + ot

masse au lemps [

qui s’écrit, en négligeant les infiniment petits d’ordres

supérieurs et aprés suppression du facteur commun
Fdzbdt :

I Jy A

- 4+ F — = (.

T BT

Mais si nous désignons par /), la surface mouillée du

profil  dans le régime primitif et par b la largeur &

fleur d’eau (fig. 5), nous pouvons écrire :
= Iy + by,

1 Nous négligeons les frottements du liquide.

d’ou

1 Jp

IF Jy
- =b-Z =b——.-
pg o

- %

D’autre part, dans les deux derniers termes de I'équa-
tion de continuité, nous pouvons remplacer I par F,
puisque le régime est treés graduellement varié. Cette
équation devient ainsi :

b Jp
rE _()—l (_};, (Fp V) ==110)
ou, en introduisant la profondeur nwyenne%Z ~=Hs
L Jp 1 2 ,
el T E & (Fpy) = 0. (13)

Les petits mouvements non permanents d’un liquide
dans un canal de profil variable sont donc régis par le
systéeme 1 :

12
== (Fpe)=0

(équation de continuité)

4+ — = =0 (équation dynamique)

ou p, ¢ sont des fonctions inconnues des variables indé-
pendantes a, ¢

3 p, Iy, I sont des fonctions données de
2
x 2,

§ 3. L'analogie dans le cas des caractéristiques variables.

La comparaison des systémes d’équations établies au
paragraphe précédent montre immédiatement que les
cinq phénomeénes seront encore analogues si leurs carac-
téristiques varient convenablement en fonction de 2. Ils
satisfont, en effet, aux deux équations

|
(»‘.'.'. l ()
=L S (7Y =0
It B Jdx <BN2> (‘ (I)
1. Jzy dz
0 T 0, (1)

ou les fonctions inconnues z;, z,, les variables indépen-
dantes @, ¢ et les coeflicients a, B, w? ont les significa-
tions indiquées au tableau 2. Si chacun des coefficients
a, B, w? est la méme fonction de x pour les cing phéno-
meénes, ces derniers seront analogues.

Supposons que ce soit le cas. Les grandeurs analogues
tableau 2. 1l
est intéressant de constater que ces grandeurs analogues

sont alors celles d’'une méme colonne du

n‘ont pas toujours les mémes dimensions. Dans la qua-

tritme colonne, z; représente une vitesse pour les trois

' Pour obtenir 'équation (14), nous avons divisé les deux termes de (14')
par gll. Ceci est néeessaire pour Panalogie, comme nous le verrons plus loin.
C'est dans le méme bul que nous avons éeril 'équation de continuité avant
I"équation dynamique.

2 p sera en général une constante. Toutefois on peul imaginer, s'il s’agit
de P'eau, que p varie le long du canal par suite de la présence de matiéres

en suspension ou de matiéres dissoules.
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TaBLEAU 2.

Analogie dans le cas des caractéristiques variables.

Signification des différentes grandeurs figurant dans

les équations (I) et (LI) pour les cingq phénoménes.

‘ ‘ |
L ) s ‘ b 1 | 2 2 JiS
Objet x t Z \ Zg 1 o B w a.w a_B.w2
| |
lignes 1. 2 3: lignes 1, 2, 3 : lignes 1, 2, 3: ]]. 1.9 4 5
es 1,2, 4, 5 : om—
em st em .sec—! dyne.cm—2 gr .om—? [ AERES s oo a2 ‘y"':tm dyss,
lignes 4, 5: lignes 4, 5: lignes 4, 5: ‘ i 3: 4 g—".cm? gt cm
dyne . em—2 cm.sec—?! gr—!.cm.sec? | 'BREJ: cm A ot dyze. cm*
= - |
Corde Abs- |Temps| Vitesse v Composante T ! Masse | Aire F €
(vibrations | cisse d’un point de | suivant la direc- spécifigue p | du profil. 5
transversales).| d’un | la corde. | tion des vibra-| de la matiére quotient de la
L profil. tions, dela « trac- | constituant la « traction de la € ol
| tion de la corde corde. ‘ corde par unité
| par unité de sur- | de surface €»,
‘ ‘ face €. | par la masse
; | ; spécifique p.
s BT ‘ J 1
Barre Vitesse v | Tension normale | Masse | Aire F E
(vibrations des points Iy spécifique p du profil. o
longitudi- | d’un profil de | agissant dans un | de la matiére quotient du mo-
2 nales). ”» » la barre. ‘ pr()ﬁl. constituant la ‘ dule d’élasticité E E.F
‘ barre. \ E de la barre,
| [ par la masse
‘ ' spécifique p.
Barre Vitesse v 1 Tension Masse Moment G
| de rotation des points | (angentielle T spécifique p d’inertie —p_
(vibrations d’un profil si- agissant aux de la maticre polaire J quotient du mo- ‘
3 | de torsion). | » » tués a la dis- | points du profil | constituant la du profil. dule de cigaille- G G.J
’ tance 1 de  situés a la dis- barre ment G de. la
} I'axe. | tance 1 de l'axe. barre par la masse
J\ | spécifique p.
;
Conduite Pression p Vitesse v ’ 1 Aire F 1 S
[orcée du liquide, ' du liquide dans p.a2 du profil. P
, circulaire | t‘\'a}uee a la conduite. Inverse du pro- 1 1D —a? 1 F
- 4 (coups de i @ o I'axe. duit de la masse -+ o 0 o
bélier). spécifique p par €o L
le carré de a. i
i |
Canal Pression p Vitesse v 1 Aire Fp g.H
découvert du liquide, du liquide dans | pg.H du profil, produit de 1'ac-
(ondes de | évaluée a un le canal. inverse du pro- | dans le régime | célération de la 1 Fp
translation). ‘ niveau déter- | duit de la masse primitif. pesanteur g par - -
5 [ » miné. ‘ S])(‘Clﬁque.P par la profondeur o p
| [ l'accélération de moyenne H du
la pesanteur g et canal.
\ la profondeur
1 moyenne H.
1 2 3 a ; 61 6 7 8 9 10

premiers phénomenes (cm -sec—1), une pression pour les
deux derniers (dyne-cm—2). Dans la cinquieme, z, est
une tension normale ou tangentielle (dyne-cm—2) pour
les trois premiers phénomeénes et une vitesse (cm-sec—1)
pour les deux derniers. o représente une masse spéci-
fique pour les trois premiers (gr.cm—3), Uinverse du
produit d’une masse spécifique par le carré d’une vitesse
pour les deux derniers (gr—'.cm-sec?, colonne 6). Dans
la septitme colonne, les grandeurs B sont des surfaces
(¢cm?), sauf pour le troisitme phénomene ot f est un
moment d’inertie (cm?). Par contre, tous les w? ont les
dimensions du carré d’une vitesse (cm?-sec—2, colonne

€, désigne le coefficient de compressibilité du liquide, 1) le diamétre de la conduite, e I'épaisseur des pavois, £ leur module d’élasticité.

8). On peuat formuler des remarques analogues au suje
des colonnes 9 et 10, ot nous avons indiqué la corres-
pondance des produits a-w? et o-Bw?.

On peut encore remarquer ceci. Dans les trois pre-
miers phénomenes, la relation (I) représente I’équation
dynamique [voir (5), (7), (9)], tandis que (II) est I'équa-
tion de continuité [voir (6), (8), (10)]. Le contraire a
lieu pour les deux derniers : (I) représente I’équation de
continuité [voir (11), (13)] tandis que (II) est I’équation
- dynamique [voir (12), (14)).

\ En résumé, nous voyons que si chacun des coeflicients
" a, B, w? est la méme fonction de 2 pour les cing phéno-




312 BULLETIN TECHNIQUE DE LA SUISSE ROMANDE

meénes, ceux-ci sont analogues. Ils satisfont & la définition
de l’analogie que mnous avons donnée au début de ce
mémoire. Mais les grandeurs analogues n’ont pas tou-
jours les mémes dimensions. On peut donc dire que
Panalogie est mathématique sans étre physique.

Par contre, les trois premiers phénomeénes (vibrations
transversales d’une corde, vibrations longitudinales et de
torsion d’une barre) sont analogues au point de vue
mathématique et physique L. Il en est de méme des deux
derniers (coups de bélier dans une conduite forcée et
ondes de translation dans un canal découvert).

Nous avons ainsi généralisé l’analogie rappelée au
paragraphe 1.

Remarque. La propriété de permutation des grandeurs
¢ et p indiquée a la fin du paragraphe 1 ne se laisse
pas généraliser. Il n’est plus possible de permuter a
golonté deux grandeurs figurant, sur la méme ligne,
dans les colonnes (4) et (5). Ceci est di au fait que z;
et z, ne jouent pas des roles symétriques dans le sys-
teme (I), (II), tandis que c’était le cas pour ¢ et p dans
le systeme (1), (2). La permutation des grandeurs ¢ et p
(resp. T) que nous remarquons en passant de la ligne 3
a la ligne 4 est en quelque sorte imposée par la géné-
ralisation.

§ 4. Premiére application. Formules pour les périodes
des vibrations propres.

Dans un mémoire paru ici-méme, nous avons étudié
la résonance des conduites @ caractéristiques linéairement
variables 2. Nous voulons maintenant, en utilisant I’ana-
logie établie au paragraphe 3, déduire d’une proposi-
tion établie dans ce mémoire des conséquences vala-
bles pour les phénomenes analogues.

Soit une conduite dont lextrémité amont est en
communication avec un bassin & niveau constant et qu!
posséde, a I’aval, un obturateur que nous supposerons
fermé. Désignons par g, et a, les valeurs de a a lex-
trémité aval et au milieu de la conduite, par Dy et Dy
son diameétre aux extrémités aval et amont (fig. 6). Nous
admettrons que D, ¢’est-a-dire /' et a varient linéaire-
ment en fonction de a.

Posons :

Gy — G, Dy — l)0
V= —7-, = —

b
@ D,

(el )

Les périodes apparentes ou périodes propres de la

(15)

(16)

conduite sont données par la formule

T
G 8 (17)

U

ot L est la longueur et ot 6 désigne les différentes

racines de I’équation transcendante

! Le fait que le moment dinertie polaire n'a pas les mémes dimen-
sions qu’une surface ne contredil pas cetle assertion, car les dimensions
de B ne jouent aucun role dans les équations (1), (11).

2 Voir les numéros des 7 et 21 mars 1942 du Bulletin technique.

o <_> - 0 (18)
26 200

Ces formules sont valables pour des valeurs quelcon-
D) ey : n
ques de p (pourvu que 5 soit petit par rapport a 1)
dx

el pour de faibles valeurs de v.
Si v et u sont petits par rapport & 1, on a approxima-
tivement :

0O=u-+v (19)
et les différentes périodes propres ont les valeurs sui-
vantes :

: / 40\ 4L

fondamental : (Ta)y = (1 = F) et

3¢ harmonique :  (74); = %(1 — %)% ; (20)
5¢ harmonique :  (T,); = %(1 e %%’>£’,
= Qm

Remarquons maintenant qu’une conduite & caracté-
ristiques linéairement variables est telle que \F et a
sont des fonctions linéaires de x, tandis que p est cons-
tant. Ceci signifie, d’aprés la 4¢ ligne du tableau 2, que
pour une telle conduite, B et w (racines carrées des
termes des 7¢ et 8¢ colonnes) varient linéairement le
long de 'axe, tandis que la grandeur aw? figurant a la
9¢ colonne est constante.

Les résultats relatifs aux coups de bélier que nous
venons de rappeler seront donc immédiatement appli-
cables aux quatre autres phénomeénes, pourvu que ces
derniers soient tels que les grandeurs /B et w varient
linéairement et que aw? soit constant.

Dans ces conditions, si nous affectons des indices O,
m, A les grandeurs relatives 4 une extrémité, au milieu
et a lautre extrémité d’un des einq phénomenes, nous
aurons les formules générales suivantes, applicables aux
cordes, aux barres comprimées, aux barres tordues, aux
conduites forcées et aux canaux découverts :

Wy — W

yo W VB VB
Wi \/BO

Les périodes propres se calculeront ensuite

. (15

a laide
des formules (16) a (20)'. Bien entendu, ceci suppose
que pour les cing phénomenes les conditions aux limites
correspondent a celles admises pour la conduite (fig. 6).

Prenons comme premier exemple le canal découvert de
profil rectangulaire indiqué & la figure 7. D’un coté, il
débouche dans un bassin & niveau constant. De l'autre,
il est fermé. Supposons que — et —— solent petits par

b Hy

rapport & 1. Ce canal satisfait & toutes les conditions
indiquées. /7, et VeIl (racines carrées des termes des
7¢ et 8¢ colonnes) sont approximativement des fonctions

U Comme nous I"avons déja fait remarquer, ces formules ne sont valables
que pour de faibles valeurs de v.
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Niveau conslanh
)
== 7 L L)
______ - PRSI INUIE. [ |
2 1
leay kap (o X % o
| Yom P o N
———————————— r"‘—-“——o—_—_——>
e ! rigine
2X L ,______i____ d25 X\
—~——trla—— — —a{f— —0p{e0— "= ===
[ Obfuralesr , xmer . odin Lo . 2
VR e £ 7o R Wl S T 1) T I S <
IS S RN, . S S -
Fig. 6. — Schéma d’une conduite dont les caractéristiques

varient linéairement le long de I'axe.

s 1 ,
linéaires de x, et 5 (colonne 9) est constant. D’autre

part, les conditions aux limites correspondent a celles
supposées pour la conduite.
Nous aurons donc d’aprés (15) :

W 4 _ Vellm—AH) ,
W \/E
:\/1_9_@_1N_EA_H
|[I17z - 2Iim’

Ba= Fy=(Hp-+AH) (b+ Ab) ~ bH,, + HnAb+ bAH,
8, = F, = (Hn,— AH) (b — Ab) ~ bH,,—H,Ab—bAH,

/. Ab  AH
Lo, 1+T+ng1,\,Ab+AH
"TVE T TN\ A& _aHT T b T H,
T ]Im

Puisque u et v sont petits par rapport & 1, on peut
appliquer (19) ; d’ou
Y

0:H+V—T+
h

1Al
2H,

et les périodes propres sont données par les formules
approximatives (20) :

fondamental : (Td)lzj.] __AAb _}_lé__” lmi
| w2\ b 2 H, ) |VgHn
X " 1] 4 (Ab 1AHN| 4L
« 5 - @ :_1‘*_ —f e —_—
3¢ harmonique: (1), 3] 9112( Y >l\/g”m (21)
: 1 4 , 1AH\| 4L
5¢ harmonique : (7,);= 5{]—93}71'2'(A—bb+§%]1)l"l[—

[VeHn

Ces formules montrent les influences de Ab et AH
sur les différentes périodes.
Prenons comme second exemple une barre homogéne
légerement conique, de profil circulaire, encastrée a une
; ; . oy “AD
extrémité et libre a lautre (fig. 8). 5 est donc sup-
posé petit par rapport & 1. Cette barre satisfait & toutes
les conditions requises. En effet :
10 J (7¢ colonne) est approximativement une fonction
o G )
linéaire de z, o (8¢ colonne) et G (9¢ colonne)

sont constants ;

Noeud Ventre
niveau constant l
x L Coupe
: verticale
A
77777777777
!
! ’.v plan
e i
=== Aitbedb == meme R A 21 A
! i
:, 7
i
7
Fig. 7. — Canal découvert de profil rectangulaire dont la

largeur et la profondeur varient linéairement.

20 a Pextrémité libre, on a 1 = 0 (pour la conduite,

la grandeur correspondante ¢, indiquée par la

5¢ colonne, était effectivement nulle). A D'extré-
mité encastrée, v = 0 (pour la conduite, p était
constant ou nul).

Nous aurons donc d’aprés (15) :

== UJO — Wi

G
=0 (car w = \/B est constant),

n

UJI
B \/JA (DA> 2
! \/so 7, D,
= <Dm - A1)>2 AD

D —AD _1:4D_m'

Puisque v est nul et u petit par rapport a4 1, on peut
appliquer (19) ; d’ou
o=ut+v¢v=4 f)—I:

et les périodes propres ont les valeurs suivantes, données

par (20) :

fondamental :

(), :<1 16 AD) 4L

~m Da J_E
»

3¢ harmonique : (7,); = é (’1 — 91—52 ?)—D> 4—lf_é s
Vi
4
5¢ harmonique : (7,); = % (’J 2:52 ?)D) kl;




314 BULLETIN TECHNIQUE DE LA SUISSE ROMANDE

§ 5. Seconde application. Etude expérimentale
des coups de bélier a I'aide d’un canal découvert.

Ainsi que nous I'avons déja fait remarquer dans I'in-
troduction, un des avantages des analogies consiste en
ce qu’elles permettent souvent de remplacer des expé-
riences difficiles, relatives & un phénomeéne, par d’autres
expériences plus faciles a réaliser. Nous voulons en
donner ici un exemple, en montrant la possibilité d’étu-
dier les coups de bélier des conduites forcées a l'aide
d’un modele de canal découvert. Dans ce but, nous
utiliserons simultanément les propriétés des analogies et
de la similitude mécanique.

Considérons un coup de bélier dans une conduite a
caractéristiques variables. Nous appellerons ce phéno-
méne le premier mouvement ou mouvement donné. Il
satisfait au systéme d’équations (11) et (12). Ce systéme
s’écrit, si nous remplagons la pression p par p gy et en
choisissant les majuscules V, Y, X et T pour désigner
la vitesse, la surpression évaluée en hauteur de liquide,
I’abscisse et le temps :

FaoYy 10
= — 4+ - = (FV)=0, (11~
coup de bélier a*dT ' gdX (£V) w G
(1e* mouvement) | 1 gy )Y
% ar 7 X =0z (12%)

Soit d’autre part un liquide animé d’un petit mouve-
ment non permanent dans un canal découvert de profil
rectangulaire variable. Nous appellerons ce phénoméne
le second mougement ou le modéle. 11 satisfait au systeme
d’équations (13) et (14). Nous écrirons ce systéme en
remplagant la pression p par pgy, ou y désigne la
différence de niveau indiquée & la figure 5, et en écri-
vant ket f a la place de H et F), :

J 10 b
LU =0 )
1dv | dy
gd ' Iv

canal découyert
(2¢ mouvement)

=0. (14

De cette facon, toutes les grandeurs se rapportant au
premier mouvement sont désignées par des majuscules
(a Texception de g et a) et toutes celles se rapportant
au second par des minuscules.

Cherchons maintenant les conditions pour que les
grandeurs jouant le méme réle * dans les deux systémes
d’équations soient dans un rapport constant. A cet

effet posons :
X=\z, Y=M\y, F=Ef, T=1t, V=¢v, a’=ngh (23)
ol Ay, Ny, &, T, € et n  désignent des constantes.

Si nous introduisons ces expressions de X, Y,
dans les équations (11*) et (12*), celles-¢) deviennent :

@. I() v g I(\a) (Ef-e9)-= 0,
1 d(er) | dsy) _ .
g d(u) + o) &5

1 Ce sont les grandeurs qui seraient égales s'il s’agissait d’une analogie.

ou bien :

J M f Oy o)

1
et gh dt g da

’

ey, 1o Ky

™Ny, g Jdt dr
Pour que ces deux derniéres équations soient iden-
tiques au systéme (13*), (14*), il faut et il suffit que

My 1 e\ _
ent Thyt =

Si ces conditions sont remplies, il est possible de pro-
duire dans le canal un mouvement du liquide correspon-
dant & celul dans la conduite. Multiplions membre a
membre les deux relations ci-dessus, ce qui donne :

S y T
_-rz—n:l, d’ou \/nz?l.

La seconde relation devient :

d’ou \/E: % .

=2_ o (24)

Entre les cing rapports Ay, Xy, T, €, 1 existent donc
deux relations. Trois de ces rapports pourront étre
choisis arbitrairement. Le rapport des aires des profils £
n’est astreint &4 aucune condition et peut toujours étre
choisi arbitrairement. Pour le modéle, on peut aussi
choisir un liquide quelconque.

Remarquons que pour établir les équations (24) nous
avons implicitement fait usage des propriétés d’analogie
et de similitude. En effet, c’est parce que les deux phé-
nomeénes envisagés (coups de bélier, mouvement dans
canal découvert) sont régis par le méme systéme d’équa-
tions (conditions nécessaires pour une analogie) qu'il a
été possible d’utiliser ce systéme comme s’il s’agissait de
similitude mécanique, c’est-a-dire comme si le phéno-
méne du modele était le méme — aux dimensions pres
— que le mouvement donné.

Les relations (24) peuvent étre appelées conditions de
stmilitude si 1'on étend la définition du mot similitude
a la transformation que nous avons utilisée.

I’exemple suivant montrera comment appliquer ces
résultats.

Saemple numérique. Soit une conduite forcée de dia-
meétre et d’épaisseur variables, dont les caractéristiques
principales sont :

L =1286,198 m ; Dy = 1,40 m ; D; = 1,00 m ;

ay = 899 m/sec ; aq; = 1190 m/sec.
Nous supposerons que ) et a varient d’aprés une loi
quelconque de I'amont & T'aval, mais que les valeurs

extrémes de ces grandeurs sont celles indiquées ci-dessus.
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Pour fixer les idées, admettons que les conditions aux
limites soient celles de la figure 6. L’extrémité amont
du canal découvert (modeéle) devra alors étre reliée a
un bassin de niveau constant, comme & la figure 7.
L’autre extrémité de ce canal sera munie d’un obtura-
teur réglable.

Choisissons

A =100, A, =2.10%, € =40, £ =5,

et prenons un liquide quelconque pour le modéle.
Nous aurons :
longueur du modéle (canal découvert) :

L 1286,198

R O b

= 12,862 m.

D’autre part,

s 104

rapport des temps : T = % — % =0,2.
: a?
De a* = ngh on tire h = —;
gn

d’ou pour le modéle (canal découvert), en affectant de

I'indice A les grandeurs relatives a4 ’extrémité amont,
de I’indice O celles relatives & I'autre extrémité :

profondeur du liquide, - 11902 . T
3 Taval ; W= ge1.250 — %O ™
, 8992 :
a 1 amont ]LA = m = 0,32b m
- 1,002
surface du profil Fy 4—> . .
’ = U8 N Jbe RTS8
a aval : fo z 5 O Al
<1T . ‘1,402>
F 4
a I’amont : fa= 2: A S S A 0,3070 m?
3 )
largeur du canal, A VAL 5
a laval : b= Fo 0575 U2t
fa 0,3070 e
5 1 ; = A — 0.934
4 Pamont : ba 7 0,398 0,934 m

Les valeurs de h et b aux profils intermédiaires seront
données par des calculs analogues. Ce modéle de canal
découvert serait facile & exécuter.

Supposons la pression statique a l'extrémité aval de
la conduite égale & 280 m de liquide (chute brute). Un
coup de bélier créant a cette extrémité une surpression

relative de 30 9, donnerait :
Y = 0,30-280 = 84 m,
d’ott, pour le modele,

Y 84

U= n = 50t = 0,0042 m = 4,2 mm.

L’onde de translation du modéle qui correspondrait
au coup de bélier dans la conduite aurait donc une

|
|

hauteur trés faible. Elle serait, a Paval, égale 2a
0,0042
0,575
donc bien une intumescence de trés faible hauteur,
comme nous I'avons supposé en établissant les équations
(13) et (14). Cette intumescence se mesurerait facilement
a I'aide d’appareils enregistreurs.

Remarquons en outre que le rapport des temps Tt
étant égal a 0,2, les périodes du modéle seraient cing
fots plus grandes que celles du mougement donné, ce
qui serait trés favorable pour 'enregistrement des phé-
nomenes d’oscillation.

= 0,0073 soit 0,73 9, de la profondeur. Ce serait

Ce modeéle de canal découvert permettrait donc de
reproduire fidélement les coups de bélier de la conduite
donnée, a 'exception des surpressions produites par des
manceuvres brusques de 1’obturateur. A ces mancuvres
correspondraient, en effet, des ondes de translation dont
la téte ne constituerait plus un mouvement trés gra-
duellement varié.

On voit ainsi qu’il serait possible d’étudier sur un
canal découvert de laboratoire le phénoméne du coup
de bélier si difficile & enregistrer dans la nature. Cettc
méthode serait particulierement avantageuse dans le cas
d’un systéme de conduites. En étendant la théorie que
nous avons développée, il est probable que 1'on pour-
rait tenir compte des frottements du liquide, dont jus-
qu'a présent aucune méthode de calcul n’a permis de
déterminer l'influence avec une certaine rigueur.

Dans un remarquable mémoire paru récemment,
M. Karl Lindner, professeur a I’Ecole polytechnique de
Graz, a proposé d’étudier les coups de bélier sur des
modeles de conduites ovales . Cette idée, trés intéres-
sante, est a mettre en parallele avec celle que nous
donnons ci-dessus. Le but est en effet le méme : cher-
cher a réduire autant que possible les vitesses de pro-
pagation dans le modele, afin d’éviter d’avoir a enre-
gistrer des phénomeénes trop rapides. (A suivre.)

Le projet d’extension de la gare
de Berne.

Ce projet, approuvé récemment par le Conseil d’adminis-
tration des Chemins de fer fédéraux, et dont le début d’exé-
cution (travaux préparatoires) est prévu pour 1945 revét,
tant en ce qui concerne les transformations apportées aux
installations ferroviaires que les aménagements des abords
dela gare, une importance telle qu’elle doit retenir 'attention
aussi bien des milieux techniques que de ceux que préoccu-
pent les problémes d’urbanisme.

La solution adoptée en définitive fit, en effet, l'objet de
longues études auxquelles prirent part non seulement les
organes techniques et dirigeants des C.F.F., mais égale-
ment les autorités de la ville et du canton de Berne. On
trouvera plus amples informations au sujet du développe-
ment de ces études, qui viennent ae conduire a un accord
entre les autorités intéressées, au numéro du 4 novembre 1944
de la Schweizerische Bauzettung qui, en plus des documents

!« Modellversuche an  Druckrohrleitungen. » Deutsche Wasserwirtschaft,
August 1942,
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