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Sur la généralisation d'une analogie

entre cinq phénomènes de Mécaqjque,
par Henry FAVRE

professeur à l'Ecole polytechnique fédérale, Zurich.

Introduction.

Plusieurs phénomènes physiques sont dits analogues

lorsqu'ils sont régis par le même système d'équations.
Voici un exemple d'analogie bien connu des ingénieurs.

L'équilibre d'un fil flexible homogène sollicité par une

surcharge verticale répartie, est régi par l'équation
différentielle

dK P(x)
dx*~ H '

où x et Z désignent les coordonnées d'un point du fil,
p(x) la surcharge par unité de longueur et H la composante

horizontale de la traction du fil1.
D'autre part la ligne élastique d'une tige homogène

et approximativement horizontale, soMcitée par des

forces situées dans le plan vertical de syméffle, satisfait
à l'équation

dK= M(x)
dx*~ EJ '

où a; et I ont les mêmes significations que ci-dessus ;

M(x) désigne le moment de flexion, E le module d'élasticité

et J le moment d'inertie du profil.

1 L'axe des x est supposé horizontal, l'axe des Z vertical, positif vers
le bas. Les deux axes sont dans le plan de la courbe.

Si M(x) p(x) et EJ H, les deux équations sont
identiques. Les deux états d'équilibre sont analogues.
La courbe décrite par le fil et la ligne élastique seront
égales öS les conditions aux limites sont les mêmes. Cette

analogie est due à Mohr.
Un autre exemple est donné par le potentiel V d'un

champ électrostatique, et la somme a1 -\- o*2 -\- G3 des

tensions principales en un point d'un corps élastique,
homogène et isotrope. Ces deux grandeurs satisfont à

l'équation de Laplace A 01. Les deux phénomènes
sont analogues pour ces grandeurs.

L'analogie de Prandtl, entre les tensions tangentielles
d'une barre sollicitée à la torsion et les pentes d'une
membrane tendue uniformément, est une des plus belles

que l'on connaisse.
On pourrait citer encore de nombreux exemples8.
Toute analogie présente deux avantages.
Un avantage théorique, en ce sens qu'une propriété ou

une solution du système d'équations régissant un des

phénomènes est immédiatement applicable à tous les

autres constituant l'analogie, puisque les systèmes d'équations

sont identiques.
Un avantage expérimental. Il est en effet souvent

possible de remplacer des expériences difficiles par d'autres
expériences, plus faciles, portant sur un phénomène

1 Cette équation n'est valable, pour le champ électrostatique, qu'en
dehors des masses électrisées et, pour le corps élastique, que là où les forces
massiques sont constantes.

'Signalons ici l'intéressant mémoire sur «Le problème de la torsion et
l'analogie hydrodynamique de Boussinesq» publié par M. le prof. M. Pas-

ctioud, dans le «Bulletin technique» du 7 novembre 1925.
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analogue, jljl.l'on peut en outre utiliser des lois de

similitude, qui permettent dans de nombreux cas de faire
des expériences sur modèles réduits, on pourra remplacer
des expériÉgces à grande échelle — toujours difficiles à

réaliser — relatives à un phénomène, par des exflÉriences

à petite échelle — celle du laboratoire — portant sur
un phénomène analogue. Nous aurons plus loin l'occasion
d'en donner un exemple.

L'application simultanée des propriétés d'analogie et
de similitude sera en général commode et pourra souvent
conduire à la découverte de lois importantes.

On saisit ainsi l'importance des analogies. Leur champ
d'application augmente d'ailleurs avec leur degré de

généralité.
C'est pourquoi nous croyons utile de montrer qu'il est

possible de généraliser une analogie bien connue en
Mécanique. Il s'agit des cinq phénomènes suivants :

1° vibrations transversales d'une corde homogène,
soumise à une traction constante ;

2° vibrations longitudinales d'une barre prismatique
homogène (ondes planes) ;

3° vibrations de torsion d'une barre cylindrique homogène,

de profil circulaire ;

4° mouvements non permanents d'un liquide dans

une conduite forcée dont les caractéristiques du

profil sont constantes (coups de bélier) ;

5° petits mouvements non permanents d'unfjjiquide
dans un canal découvert d'axe r4lf|iligne et
horizontal, de profil constant (ondes de translation
engendrant des intuntjescences de très petite
hauteur).

Ces phénomènes sont régis par le même système
d'équations différentielles, comme nous le rappellerons
plus loin H Ils ont ceci de commun que toutes les

caractéristiques (masse par unité de longueur, traction de la

corde, profils de la barre, de la conduite, du canal, etc.)
sont constantes, indépendantes de l'abscisse x mesurée
le long de l'axe. Il s'agit donc de phénomènes à

caractéristiques constantes dans le temps et dans l'espace.
Nous nous proposons de démontrer que l'analogie entre

ces cinq phénomènes subsiste lorsque les caractéristiques
varient en fonction de l'abscisse x, pourvu que la loi de

variation soit la même pour tous les phénomènes.
Nous rappellerons tout d'abord l'analogie pour le cas

des caractéristiques constantes (§ 1), puis établirons les

systèmes d'équations régissant les cinq phénomènes
correspondants à caractéristiques variables (§ 2), ce qui
nous permettra de généraliser l'analogie (§ 3). Nous
ferons ensuite deux applications (§ § 4 et 5) et indiquerons

quelques cas d'intégration du système commun
d'équations (§ 6).

1 Cette analogie peut être encore étendue a la propagation des ondes

électriques dans les fils conducteurs. Nous ne nous occuperons pas de ce

phénomène, désirant limiter les considérations qui suivent aux phénomènes
mécaniques.

§ 1. Rappel de l'analogie pour le cas
des caractéristiques constantes.

Les cinq phénomènes à caractéristiques constantes
sont régis par les deux équations différentielles suivantes

(la première est l'équation du mouvement, la seconde

celle de continuité) :

r't

i 1
~2' %

0,

UJ en dx

(1)

(2)

M 1 ,*v
II

|É UJ2 ot*

ci2p 1 dzp n
<Jx* tu2 ot*

où les variables v, p, x, t et les constantes p, uj2 ont
les significations indiquées au tableau 1 1.

Ces phénomènes constituent donc une analogie. Les

grandeurs analogues sont celles d'une même colonne
du tableau. Il est intéressant de constater que les
grandeurs qui figurent dans chaque colonne ont les mêmes

dimensions. On peut donc dire que l'analogie est parfaite,
puisqu'elle existe non seulement au point de vue
mathématique mais aussi au point de vue physique.

En éliminant p, puis v, du système (1), (2), on obtient

(3)

(4)

v et p satisfont donc à la relation connue sous le nom
d'équation des cordes vibrantes. Cette équation représente
deux ondes indéformables se propageant en sens inverses

a\ ec la vitesse uj (célérité). Les deux ondes p ne sont

pas indépendantes des deux ondes v, puisque p et v

doivent satisfaire au système (1), (2). Ce système étant
du second ordre, deux seulement des quatre ondes p, v

peuvent être choisies arbitrairement.
En permutant v, p et en remplaçant p par 1/pui8

dans les équations (1), (2) on retrouve le même système,
les deux équations ont simplement été permutées. On

peut donc permuter deux grandeurs figurant, sur la
même ligne, dans les colonnes (4) et (5), à condition
de remplacer p par 1/puu2 dans la sixième colonne. Ceci

montre que les vitesses v d'un des cinq phénomènes sont

aussi analogues aux pressions p d'un autre de ces phénomènes

et réciproquement. Cette propriété de l'analogie
est confirmée par le fait que v et p satisfont séparément
à la même équation (3) ou (4).

1 Le lecteur trouvera dans tous les traités classiques de Physique ou de

Mécanique la démonstration des équations (1) et (2) pour las phénomènes

en question. On retrouve d'ailleurs ces équations comme cas particuliers
de celles que nous établirons au paragraphe suivant. Ceci nous dispense de

donner plus 4e détails à leur sujet.
Nous avons choisi la vitesse v pour l'une des deux fonctions inconnues

du problème. On pourrait utiliser, à la place, l'élongation E I v — )•

L'utilisation des fonctions inconnues p et w offre l'avantage de permettra l'application

directe de la méthode graphique de Schnyder-Bergeron à tous oes

phénomènes, comme l'a montré L. Bergeron dans son remarquable mémoire :

« Méthode graphique générale de calcul des propagations d'ondes planes ».

Société des Ingénieurs civils de France. Bulletin de juillet-août 1937.
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Tableau 1.

Analogie dans le cas des caractéristiques constantes.
Signification des différentes grandeurs figurant dans les équations (1) et (2) pour les cinq phénomènes.

Objet x t v ..#*•' P U)a

cm | sec. cm.sec-1 dyne.cm 2 (barye) grâcm—8 cm3.sec—a

1

Corde
(vibrations

transversales).

Abscisse
d'un

profil.

Temps Vitesse
d'un point de la

corde.

Composante
suivant la direction
des vibrations, de la
« traction de la corde
par unité de surface

6 ».

Masse spécifique
de la matière consti-

tuant la corde.

£

P

quotient de la « traction

de la corde par
unité de surface e »,

par la masse spéci¬
fique p.

2

Barre
(vibrations

longitudinales). » »

Vitesse
des points d'un profil

de la barre.

Tension normale
agissant dans un

profil.

Masse spécifique
de la matière constituant

la barre.

E
P

quotient du module
d'élasticité E de la
barre par la masse

spécifique p.

3

Barre
circulaire

(vibrations de
torsion).

» tëfU£»%t

Vitesse
des points d'un profil
situés à la distance 1

de l'axe.

Tension tangentielle
agissant aux points
d'un "profil situés à la
distance 1 de l'axe.

Masse spécifique
' de la matière consti¬

tuant la barre.

G

P

quotient du module
de cisaillement G de
la barre par la masse

spécifique p.

4

5

Conduite forcée
circulaire

(coups de bélier). » »

Vitesse
du liquide dans la

conduite.

Pression
du liquide, évaluée

à l'axe.

Masse spécifique
du liquide dans la

conduite.

1 •»)

P

1 \ D
éo F"ë

Canal découvert
(ondes

de translation). » »

Vitesse '

du liquide dans le
canal.

Pression
du liquide, évaluée
à un niveau déter¬

miné.

Masse spécifique
du liquide dans le

canal.

g.H
produit de l'accélération

de la pesanteur
g par la profondeur
moyenne H du canal.

1 2 3 4 5 6 7

désigne le coefficient de cc-mpressibilité du liquide, D le diamètre de la conduite, e l'épaisseur des parois et E leur module d'élasticité.

§ 2. Systèmes d'équations régissant les cinq phénomènes
dans le cas des. caractéristiques variables.

Nous établirons successivemenfl|pes cinq systèmes.

1° Vibrations transversales d'une corde hétérogène soumise

à une traction variable.

Soit une corde hétérogène animée de vibrations
transversales autour d'une position d'équilibre rectiligne.
Choisissons un système cartésien rectangulaire x, y dans
le plan du mouvement, l'axe des x coïncidant avec la
corde à l'état de repos (fig. 1). Désignons par x, y les

coordonnées d'un point quelconque P, par x +dx,
y -\-dy celles d'un point infiniment voisin Q. Soit F

t»

0\- j y\

dx

y*dy

Fig. 1. — Vibrations transversales d'une corde
hétérogène soumise à une traction variable.

l'aire du profil, p la masse spécifique ; ces deux
grandeurs sont des fonctions connues de x.

Nouîpjerons au sujet du mouvement les mêmes
hypothèses que pour les cordes homogènes de traction
constante îmP la vibration transversale est infiniment petite :
P se déplace très peu sur une parallèle à y ; 2° l'angle
que fait la tangente en P avec l'axe x est infiniment
petit quel que soit le temps t.

On déduit immédiatement de ces hypothèses que
PQ dx (aux infiniment petits du troisième ordre
près) : la longueur d'un élément quelconque de corde
reste constante pendant le mouvement. D'autre part, la

composante de l'accélération de PQ suivant t£ est nulle.
La traction est donc indépendante du temps mais peut
dépendre de x. Soit S sa valeur en P. En Q elle sera

S -f--,— da;. Remarquons que les angles de la tangentedx
(/y

avec l'axe x, en P et Q, sont respectivement - - et

I + -^ilÉÉil
La somme des projections, sur l'axe y, des forces agis-
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sant sur l'élément PQ est, aux infiniment petits d'ordres

supérieurs près :

S +^dx
dx dx dxydxi dx \ dar dx dx)

d'où l'équation du mouvement :

>-. t d*y l o dhi dS dy\
*Fd*-dJ= (s£+iz-£*°>

ou bien

masse accélé¬
ration

cfhj 1

F dx\

force

0. i)

Posons encore
S dy

e et t —e dx

e est la traction par unité de surface du profil. C'est

une tension. Elle ne dépend que de x, car S et F sont
uniquement fonctions de cette variable, t est la
composante de la tension e suivant la direction y. Cette
composante dépend de x et t. Nous avons la relation

Fr -S^.dx

L'équation du mouvement ou « équation dynamique »

peut alors s'écrire, en remarquant que
d'un point de la corde) :

dy
dt

m
dt F' dx (Ft) 0.

v (vitesse

(5)

Dérivons d'autre part les deux membres de la relation
dy p

— e t^ par rapport à t, multiplions par - et mtro-
ox e

dyduisons -M- v. On obtient
dt

1 dx
L

e\ dt
P

pdx °- (6)

Cette relation peut être appelée « équation de continuité

».

Les vibrations transversales d'une corde hétérogène
soumise à une traction variable sont donc régies par le
système :

p \--p • jr-(Ft)=0 (équation dynamique) (5)
(s 1/ P CrX

ch dv n
1

+ p y- U (équation de continuité) (o)e\ dt W&
P

où v, t sont des fonctions inconnues des variables
indépendantes x, l ; p, F, e sont des fonctions données de x.

1 Nous avons déjà établi cette équation dans un mémoire intitulé : « Les
vibrations transversales des cordes pesantes verticales ». Schweizerische
Bauzeitung des 20 novembre et 4 décembre 1943. En faisant u=p.F dans

l'équation (3) de ce mémoire, on obtient l'équation ci-dessus.

2° Vibrations longitudinales d'une barre hétérogène d'axe

rectiligne et de profil variable.

Soit une barre hétérogène d'axe rectiligne, animée de

vibrations planes parallèles à l'axe. Désignons par x
l'abscisse d'un profil quelcwque à l'état de repos, par
x -\- dx celle d'un profil infiniment voisin (fig. 2). Soit

f *-t* dxdx

element
à l'état de repos

r element
au temps t

iNN+^r^dxûx

I

OF'F+^dxdx

Fig. 2. — Vibrationäpngitudinales d'une barre
hétérogène d'axe rectiligne et de profil variable.

F l'aire du profil, p la masse spécifique et E le module
d'élasticité de la barre. Ces trois grandeurs sont des

fonctions données de x.
Soit encore, à l'époque t pendant le mouvement, N

la résultante des pressions normales G relatives au

profil x1), E le déplacement infiniment petit des points
de ce profil.

L'équation dynamique s'écrit :

pFdx dt*
dN
dx

dx,

masse accélé-
ratleo

ou bi

9 dt* + F' dx
0.

dl
Remplaçons -p par v (vitesse des points du profil x

dt

au temps if) et N par Fa, il vient :

^_i_ 1 d'tvn\
P öl + i7 • ô: (Fa)dt j f dx

D'autre part, la loi de Hook donne

§

0. (7)

dx
dx fd*.

Dérivons les deux membres de cette relation par
P • • <*

rapport a L multiplions par -=- et introduisons — v.r * dx < t

1 Contrairement à l'usage, iV et tj seront considérés ici comme positifs
s'il s'agit d'une pression, négatifs dans le cas d'une traction. Nous supposons
la variation des profils suffisamment faible pour que a ne varie pas d'un
point à l'autre d'un même profil.
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On obtient l'équation de continuité suivante

_J_dtS dv

(E\ A"* P dx

\P

(8)

Les vibrations longitudinales d'une barre hétérogène
d'axe rectiligne et de profil variable sont donc régies par
le système :

p -—[---y- (Fa) 0 (équation dynamique) (7)
ot t dx

1 da dv
Pô:

'E_\ dt v dx

P,

0 (équation de continuité) (8)

où v, a sont des fonctions inconnues des variables
indépendantes x, t ; p, F, E sont des fonctions données de x.

3° Vibrations de torsion d'une barre hétérogène d'axe

rectiligne et de profil circulaire variable.

Soit une barre hétérogène de profil circulaire (corps
de rotation), animée de vibrations de torsion. Désignons

par x l'abscisse d'un profil quelconque, par x -\- dx celle

d'un profil infiniment voisin (fig. 3). Soit J le moment

fv^dxj
(v

dM

"-3
dx

e

dx
ÙF

"37

Fig. 3. — Vibrations de torsion d'une barre
hétérogène d'axe rectiligne et de profil circulaire variable.

d'inertie polaire du profil par rapport à son centre de

gravité (intersection avec l'axe), p la masse spécifique
et G le module de cisaillement. Ces trois grandeurs sont
des fonctions données de x.

Soit encore, à l'époque t pendant le mouvement, M le

moment de torsion relatif au profil x, Y la rotation
infiniment petite de ce profil mesurée à partir de l'état
de repos.

L'équation dynamique s'écrit :

p J dx
dt*

dM
— dx,
dx

moment d'Inertie accéléra- moment résultant
ce l'élément dx lion

par rapport i X angulaire

OU bi

dt*
i^dM
J dx

0.

i-. dV
Remplaçons -=- par v (vitesse des points du profil x

situés à la distance 1 de l'axe) et M par J.t, il vient :

(9)
dv 1 d

Pir +-röz(^-T) 0-
dt J dx

t est la tension tangentielle agissant à la distance 1
de V

D'autre part, la loi de Hook donne

dV
dx

dx M
J^G dx.

M

et introduisons

nuité suivante :

dt

Remplaçons -Ç par t, dérivons les deux membres

de cette relation par rapport à t, multiplions par -=-
(9Y

v. On obtient l'équation de conti-

:*;:::;,:;:,",;; É0SBÈ H(10)

Les vibrations de torsion d'une barre hétérogène d'axe

rectiligne et de profil circulaire variable sont donc régies

par le système :

dv 1 d
PJt+Jdx{jT)

1 ch dv

f G\ dt + P
dx

0 (équation dynamique) (9)

0 (équation de continuité) (10)

où v, T sont des fonctions inconnues des variables
indépendantes x, t ; p, J, G sont des fonctions données de x.

4° Mouvements non permanents d'un liquide dans une
conduite forcée à caractéristiques variables le long de

l'axe (coups de bélier) 2.

Soit une conduite de section circulaire contenant un
liquide en mouvement, par exemple de l'eau (fig. 4a).
Nous admettrons qu'elle satisfasse aux conditions
suivantes :

1° son axe est rectiligne ou de faible courbure ;

2° le diamètre D 2 r est une fonction continue de

l'abscisse x mesurée le long de l'axe ;

3° l'épaisseur e et le module d'élasticité E des parois
sont constants pour une section donnée, mais sont
des fonctions continues de x ;

4° l'angle -=- que forme le profil longitudinal avec

l'axe est petit par rapport à 1.

1 Nous supposons la variation des profils suffisamment lente pour que

la formule t — al soit applicable.

a Nous avons déjà indiqué ces équations dans un mémoire intitulé a

e Théorie des coups de bélier dans les conduites à caractéristiques linéairement

variables le long de l'axe ». Revue générale de Vhydraulique, n0B 19 à
24, Paris, 1938. Ce sont les équations (1) et (2) de ce mémoire, où v doit
être remplacé par — v.
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Fig. 4 a. — Tronçon élémentaire d'une conduite
à caractéristiques variant d'une façon continue le

long de l'axe.

paroi au temps t* dtj
paroi au temps-1
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vit
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Fig. 4 6. — Mouvements non-permanents d'un
liquide dans une conduite forcée à caractéristiques

variables le long de l'axe.

Le mouvement du liquide dans la conduite est donc
« graduellement varié » (dans le sens attribué par Bous-
sinesq à cette expression).

Les variations de pression constituant le phénomène
du coup de bélier proviennent de l'inertie du liquide et
des élasticités combinées de ce dernier et des parois. La

pesanteur ne joue aucun rôle dans le phénomène. Nous
établirons donc les équations en supposartfÈûfaxe de la
conduite rectiligne et horizontal. Les résultats que nous
obtiendrons seront évidemment valables pour une
conduite d'axe quelconque, de faible courbure ou rectiligne,
incliné ou non.

Equation dynamique. Désignons par :

p et v la pression à l'axe et la vitesse moyenne de

l'eau, au temps t, au profil d'abscisse x (le sens des vitesses

positives coïncide avec la direction positive de l'axe
des x) ;

p la masse spécifique du liquide.
Considérons la masse d'eau comprise entre deux profils

voisins d'abscisses x et x + dx ; écrivons l'équation
du mouvement relative à l'axe :

Pm*dx g v + g*

v[r + Tx rf {p + dl <**)+2™^ 1 ¦ \

D'où, en effectuant les calculs et en négligeant les

infiniment petits d'ordres supérieurs :

ïdpov dv

ox ot p dx

r, dV e.V
Lomme — v est toujours très petit par rapport a —

dx dt
le membre de gaucho se réduit à son second terme (cette
hypothèse simplificatrice, justifiée par l'expérience dans
le cas d'un diamètre constant, est valable ici pour les

mêmes raisons).

L'équation dynamique est finalement

ot p c/$

1 Nous négligeons les frottements du liquide.

(12')

Cette équation est la même que lorsque D, e, E sont
constants le long de l'axe.

Equation de continuité. Considérons la masse liquide
qui, au temps t, est comprise entre les profils x et x -\- dx.
Au temps t -\- bt, cette masse se sera déformée comme
l'indique la figure 4b (trait interrompu).

Nous désignerons, au temps t -f- bt, la longueur de

|Q||ment considéré par dx et la masse spécifique de l'eau

par p. Soit encore e0 le coefficient de compressibilité
du liquide ; cie et p ont pour expressions :

~dx dx-^vbt + (v + '-^- dx\ bt=( 1+ -^ bt) dx,

drt
(dans cette dernière, nous avons supposé J- v négli-

dx
J dp. ¦geable par rapport a—); d autre partet

dr v lf"ffp1
-r- bt -=, i- bt.
dt h e it

L'éqiMtion de continuité exprime le fait que la masse
de l'élément considéré est, au temps t + bt, la même

qu'au temps t :

ptr
Ja*

dx

masse au temps t

¦Ç>TC

\ dt dx I \ dt <-x dx

masse au temps / -r c/

dr
Remplaçons dx, p et -y bt par les expressions trou-

Clt

vées plus haut, effectuons les opérations en négligeant
les infiniment petits d'ordres supérieurs. On obtient :

t'v 2 dr

en h e I dt x r cx

Remarquons encore que
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Le hasard d'une lecture, nous a, en effet, mis sous les yeux
un document fort significatif. Voifiypomment J.-R. Perronet
s'exprime lui-même dans une lettre de sa main adressée le
7 août 1783 •— il avait alors septante-cinq ans et était au
faîte des honneurs — à M. Reyter, à Berne (fig. 1) :

Monsieur et bon ami.

^mm 0. (11)

nous obtenons finalement Mpquation de continuité
vante :

J_ dp id
pa* dt

Les mouvements non permanents d'un liquide dans une
conduite forcée à caractéristiques variables le long de

l'axe sont donc^égis par le système x :

i^4WÈpa

19
a* rit

HL/KM
FTxW

pa*dx

=0 (équation de continuité) (11)

0 (équation dynamique) (12)

où p, v sont des fonctions inconnues des variables
indépendantes x, t ; p, F, a sont des fonctions données de

x. * (A suivre.)

Notes sur

Jean-Rodolphe Perronet

à l'occasion du 1 SO""5 anniversaire de sa mort,
par J.-P. DAXELHOFER, ingénieur.

I. Un grand constructeur d'origine vaudoise.

Il y a cent cinquante ans, mourait à Paris, à l'âge de

quatre-vingt-six ans, Jean-Rodolphe Perronet, un des plus
grands ingénieurs de tous les temps. Comme

il est plutôt rare que l'on rende

hommage aux grands constructeurs dont les

œuvres défient souvent les siècles mais
dont les noms s'estompent vite dans la
mémoire des hommes, nous pensons qu'il
est juste de rappeler celui de Perronet, qui
bouleversa les conceptions de son époque
en ce qui concerne la construction des

ponts et dont les réalisations firent l'admiration

de ses contemporains tant par leur
hardiesse que par leurs belles proportions.
Ce fut, comme nous le verrons, un novateur

dans bien des domaines, un magnifique

organisateur et réalisateur. Comme tel,
ses écrits demeurent intéressants à plus
d'un titre. Mais ce qui doit nous rendre
sa mémoire plus chère et ce qui devrait '

rendre son nom plus familier dans notre
pays, c est qu'il en était originaire.

1 Pour obtenir l'équation (12), nous avons divisé
les deux termes de (12*) par a-. Ceci est nécessaire

pour l'analogie, comme nous le verrons plus loin. C'est
dans le même but que nous avons écrit l'équation de
continuité avant l'équation dynamique.

2 p sera en général une constante. Toutefois, pour
de très grandes chutes d'eau, la masse spécifique croit
légèrement de haut en bas de la conduite.

Vous trouverez, Monsieur, dans la même caisse, un second

exemplaire que je vous prie de vouloiriMien présenter de ma
part à LL. EE. les Seigneurs du Canton de Berne. Je les

supplie de vouloir bien l'accepter pour leur Bibliothèque comme
un hommage inspiré par la sagesse de leur gouvernement, et
à l'avantage que j'ai d'en être originaire, mon père étant né
à Château-d'Œx.

Je suis avec un sincère attachement, Monsieur et bon ami,
votre très humble et très obéissant serviteur.

Perronet.

Ainsi, Perronet, alors Premier Ingénieur des 'Ponts et
Chaussées de France, Chevalier de l'ordre de Saint-Michel
Membre des Académies des sciences de Paris et de Stockholm,
de la Société Royale de Londres, etc., n'avait pas oublié
son pays d'origine et lui faisait hommage d'une magnifique
édition de ses œuvres complètes.

Et nous avons effectivemenf|îretrouvé que sa famille était
bourgeoise de Vevey et d'Aigle depuis le XVIe siècle et que
son père, né à Château-d'Œx, fut officier suisse au service
de France ls

C'est pourquoi nous voulons rappeler brièvement les
principales étapes de sa vie :

Il naquit à Suresnes, près de Paris, le 25 octobre 1708. Son

père meurt quand il est encore jeune. A quinze ans, un ami de

son père, le Maréchal Berchiny, détermine sa mère à le faire

1 L'Historisches-biographisches Lexikon der Schweiz 1929 ne consacre
que huit lignes à sa famille. — Lesage-Notice pour servir à l'éloge de
Perronet-1805 indique à tort que sa famille est « originaire de Lauzanne «.

— Dans «Männer der Technik» de Matschoss 1925, V. D. I. Verlag,
Perronet n'est même pas mentionné

(//SiC--^W/4*"l*j^c?e-~J&&-^&^r£— t£3 et-A-C-C;.
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Fig. 1. — Fin de la lettre autographe adressée par Perronet à M. Reyter à Berne,
en date du 7 août 1783,

Dec Bibl. cantonale de Lausanne.
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