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Sur la généralisation d'une analogie

entre cinq phénoménes de Mécanique,
Hexry FAVRE

professeur a 1’Ecole polytechnique fédérale, Zurich.

par

Introduction.

Plusieurs phénomeénes physiques sont dits analogues
lorsqu’ils sont régis par le méme systéme d’équations.
Voici un exemple d’analogie bien connu des ingénieurs.

[équilibre d’un fil flexible homogeéne sollicité par une
surcharge verticale répartie, est régi par I’équation
différentielle

d*t  pa)

et~ H’
ot z et L désignent les coordonnées d’un point du fil,
p(x) la surcharge par unité de longueur et / la compo-
sante horizontale de la traction du fil %

D’autre part la ligne élastique d’une tige homogeéne
et approximativement horizontale, sollicitée par des
forces situées dans le plan vertical de symétrie, satisfait

a I’équation

2 M(a)
&= EJ

ot & et L ont les mémes significations que ci-dessus ;
M(z) désigne le moment de flexion, I le module d’élas-

ticité et J le moment d’inertie du profil.

I L’axe des x est supposé horizontal, I'axe des T vertical, positif vers

le bas. Les deux axes sont dans le plan de la courbe.

Si M(x) = p(x) et EJ = H, les deux équations sont

identiques. Les deux états d’équilibre sont analogues.
La courbe décrite par le fil et la ligne élastique seront
égales si les conditions aux limites sont les mémes. Cette
analogie est due a Mohr.

Un autre exemple est donné par le potentiel V d’un
champ électrostatique, et la somme 0, 4+ 0, + 03 des
tensions principales en un point d’un corps élastique,
homogene et isotrope. Ces deux grandeurs satisfont &
I’équation de Laplace A = 01. Les deux phénomeénes
sont analogues pour ces grandeurs.

L’analogie de Prandtl, entre les tensions tangentielles
d’une barre sollicitée a la torsion et les pentes d’une
membrane tendue uniformément, est une des plus belles
que l'on connaisse.

On pourrait citer encore de nombreux exemples?.

Toute analogie présente deux avantages.

Un avantage théorique, en ce sens qu'une propriété ou
une solution du systéme d’équations régissant un des
phénomenes est immédiatement applicable a tous les
autres constituant ’analogie, puisque les systémes d’équa-
tions sont identiques.

Un avantage expérimental. 11 est en effet souvent pos-
sible de remplacer des expériences difliciles par d’autres
expériences, plus faciles, portant sur un phénomene

! Cette équation n'est valable, pour le champ électrostatique, qu’en
dehors des masses électrisées et, pour le corps ¢élastique, que la oules forces
massiques sont constante

¢ Signalons ici Uintéressant mémoire sur « Le probléme de la torsion et
I'analogie hydrodynamique de Boussinesq» publié par M. le prof. M. Pas-
choud, dans le « Bulletin technique » du 7 novembre 1925,
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analogue. Si 'on peut en outre utiliser des lots de simi-
litude, qui permettent dans de nombreux cas de faire
des expériences sur modéles réduits, on pourra remplacer
des expériences & grande échelle — toujours difficiles &
réaliser — relatives 4 un phénomene, par des expériences
a petite échelle — celle du laboratoire — portant sur
un phénomeéne analogue. Nous aurons plus loin 'occasion
d’en donner un exemple.

L’application simultanée des propriétés d’analogie et
de similitude sera en général commode et pourra souvent
conduire & la découverte de lois importantes.

On saisit ainsi 'importance des analogies. Leur champ
d’application augmente d’ailleurs avec leur degré de
généralité.

C’est pourquoi nous croyons utile de montrer qu’il est
possible de généraliser une analogie bien connue en
Mécanique. Il s’agit des cinq phénomeénes suivants :

10 vibrations transversales d’une corde homogene,
soumise 4 une traction constante ;

20 vibrations longitudinales d’une barre prismatique
homogeéne (ondes planes) ;

30 vibrations de torsion d’une barre cylindrique homo-
geéne, de profil circulaire ;

40 mouvements non permanents d’un liquide dans
P q

une conduite forcée dont les caractéristiques du
profil sont constantes (coups de bélier) ;

50 petits mouvements non permanents d’un liquide
dans un canal découvert d’axe rectiligne et hori-
zontal, de profil constant (ondes de translation
engendrant des intumescences de trés petite hau-
teur).

Ces phénomeénes sont régis par le méme systéme
d’équations différentielles, comme nous le rappellerons
plus loin L. Ils ont ceci de commun que toutes les carac-
téristiques (masse par unité de longueur, traction de la
corde, profils de la barre, de la conduite, du canal, etc.)
sont constantes, indépendantes de 1’abscisse @ mesurée
le long de 'axe. Il s’agit donc de phénomeénes a carac-
téristiques constantes dans le temps et dans Iespace.

Nous nous proposons de démontrer que Uanalogie entre
ces cing phénomeénes subsiste lorsque les caractéristiques
parient en fonction de Uabscisse x, pourvu que la loi de
pariation soit la méme pour tous les phénomenes.

Nous rappellerons tout d’abord ’analogie pour le cas
des caractéristiques constantes (§ 1), puis établirons les
systémes d’équations régissant les cing phénomenes cor-
respondants & caractéristiques variables (§ 2), ce qui
nous permettra de généraliser Panalogie (§ 3). Nous
ferons ensuite deux applications (§§ 4 et 5) et indique-
rons quelques cas d’intégration du systéme commun
d’équations (§ 6).

! Cette analogie peut étre encore étendue & la propagation des ondes
électriques dans les fils conducteurs. Nous ne nous occuperons pas de ce
phénoméne, désirant limiter les considérations qui suivent aux phénoménes
mécaniques.

|
|

§ 1. Rappel de I’'analogie pour le cas
des caractéristiques constantes.

.

Les cing phénomeénes a caractéristiques constantes
sont régis par les deux équations différentielles suivantes
(la premiére est ’équation du mouvement, la seconde

celle de continuité) :

fv ‘ p o
P 7{ + (_/TU - Os (1)

1 ()p o9
o TPy =0; (2)

ou les variables v, p, x, ¢ et les constantes p, w? ont
les significations indiquées au tableau 1 1.

Ces phénomeénes constituent donc une analogie. Les
grandeurs analogues sont celles d’'une méme colonne
du tableau. Il est intéressant de constater que les gran-
deurs qui figurent dans chaque colonne ont les mémes
dimenstons. On peut donc dire que I’analogie est parfaite,
puisqu’elle existe non seulement au point de vue mathé-
matique mais aussi au point de vue physique.

En éliminant p, puis v, du systéme (1), (2), on obtient

(/2V 1 1«20

E e Y =
2 / 2

op_ 1 &p_ 0. (4)

Jdr2  w? o2

¢ et p satisfont donc & la relation connue sous le nom
d’équation des cordes vibrantes. Cette équation représente
deux ondes indéformables se propageant en sens inverses
avec la vitesse w (célérité). Les deux ondes p ne sont
pas indépendantes des deux ondes ¢, puisque p et ¢
doivent satisfaire au systéme (1), (2). Ce systéme étant
du second ordre, deux seulement des quatre ondes p, ¢
peuvent étre choisies arbitrairement.

En permutant ¢, p et en remplacant p par 1/pw?
dans les équations (1), (2) on retrouve le méme systeme,
les deux équations ont simplement été permutées. On
peut donc permuter deux grandeurs figurant, sur la
méme ligne, dans les colonnes (4) et (5), & condition
de remplacer p par 1/pw? dans la sixieme colonne. Ceci
montre que les vilesses ¢ d'un des cing phénoménes sont
aussi analogues aux pressions p d’un autre de ces phéno-
ménes et réciproquement. Cette propriété de I’analogie
est confirmée par le fait que ¢ et p satisfont séparément
a la méme équation (3) ou (4).

1 Le lecteur trouvera dans tous les traités classiques de Physique ou de
Mécanique la démonstration des équations (1) et (2) pour les phénoménes
en question. On retrouve d’ailleurs ces équations comme cas particuliers
de celles que nous établirons au paragraphe suivant. Ceei nous dispense de
donner plus de détails a leur sujet.

Nous avons choisi la vitesse ¢ pour I'une des deux fonctions inconnues

= f)_‘). Luti-

A
lisation des fonctions inconnues p et ¢ offre 'avantage de permettre appli-
cation directe de la méthode graphique de Schnyder-Bergeron a tous ces

du probléme. On pourrait utiliser, & la place, I'élongation E | ¢

phénoménes, comme I'a montré L. Bergeron dans son remarquable mémoire :
« Méthode graphique générale de caleul des propagations d’ondes planes ».
Société des Ingénieurs civils de France. Bulletin de juillet-aout 1937.
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TasrLeau 1.

Analogie dans le cas des caractéristiques constantes.

Signification des différentes grandeurs figurant dans les équations (1) et (2) pour les cing phénom?nes.

Objet @ t ‘ v | p p w2
cm | seec. l cm.sec—! I dyne.cm—2 (barye) gr.cm—3 cm?.sec—2
1
Corde Abscisse | Temps Vitesse Composante Masse spécifique €
(vibrations d’un d'un point de la | suivant la direction | de la matiére consti- Bl
transversales). profil. corde. des vibrations, de la tuant la corde. quotient de la « trac-
1 « traction de la corde tion de la corde par
par unité de surface unité de surface € »,
€ 9. par la masse spéci-
fique p.
Barre J Vitesse Tension normale Masse spécifique E
(vibrations i | des points d’un profil agissant dans un de la matiére consti- o
5 | longitudinales). 5 [ de la barre. profil. tuant la barre. quotient du module
d’élasticité E de la
barre par la masse
spécifique p.
Barre Vitesse Tenston tangentielle Masse spécifiqu: G
circulaire des points d’un profil | agissant aux points | de la matiére consti- D .
3 (vibrations de » » situés a la distance 1 | d’un profil situés a la tuant la barre. quotient du module
torsion). de I'axe. distance 1 de 1'axe. de cisaillement G de
la barre par la masse
spécifique p.
Conduite forcée Vitesse Pression Masse spécifique 1 1)
4 circulaire . du liquide dans la | du liquide, évaluée | du liquide dans la )
(coups de bélier). 2 conduite. a I'axe. conduite. 1 1D
&TET
Canal décousert Vitesse Pression Masse spéci fique H
£ (ondes du liquide dans le | du liquide, évaluée | du liquide dans le | produit de ’accéléra-
o de translation). » » canal. a un niveau déter- canal. tion de la pesanteur
miné. g par la profondeur
moyenne H du canal.
1 2 3 4 | 5 6 7

! €, désigne le coefficient de compressibilité du liquide, D le diamétre de la conduite, e 'épaisseur des parois et E leur module d’élasticité.

§ 2. Systémes d’équations régissant les cinq phénoménes
dans le cas des caractéristiques variables.

Nous établirons successivement ces cingq systémes.

10 Vibrations transyersales d’une corde hétérogéne soumise
a une traction yariable.

Soit une corde hétérogéne animée de vibrations trans-
versales autour d’une position d’équilibre rectiligne.
Choisissons un systéme cartésien rectangulaire x, y dans
le plan du mouvement, 'axe des x coincidant avec la
corde a I’état de repos (fig. 1). Désignons par z, y les
coordonnées d’un point quelconque P, par a 4 da,
y +dy celles d’un point infiniment voisin Q. Soit F

S Y gty
L S T
b oo g e
Iig. 1. — Vibrations transversales d’une corde

hétérogéne soumise a une traction variable.

Paire du profil, p la masse spécifique ; ces deux gran-
deurs sont des fonctions connues de a.

Nous ferons au sujet du mouvement les mémes hypo-
theses que pour les cordes homogeénes de traction cons-
tante : 1° la vibration transversale est infiniment petite :
P se déplace trés peu sur une parallele & y ; 2° I’angle
que fait la tangente en P avec I'axe 2 est infiniment
petit quel que soit le temps ¢

On déduit immédiatement de ces hypotheses que
PQ = dx (aux infiniment petits du troisitme ordre
prés) @ la longueur d’un élément quelconque de corde
reste constante pendant le mouvement. D’autre part, la
composante de I'accélération de PQ suivant 2 est nulle.
La traction est donc indépendante du temps mais peut
dépendre de 2. Soit S sa valeur en P. En Q elle sera

ds
S+ -—

dx n
avec 'axe x, en P et (@, sonl respectivement (~‘{
oy J {)y d X -
+ ()."v<«/x> ¥

Ju
L‘cl somime dCS )I‘O‘(‘,CtiODS sur l’axe 1 (IOS fOPCGS a iS'
) )

dz. Remarquons que les angles de la tangente

et
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sant sur ’élément PQ est, aux infiniment petits d’ordres
supérieurs pres :

(s+g0e) 3+ l)es] 55 ~(s 2

d’ou I’équation du mouvement :

Py | dSdy
e mz)d

Py ds (7y>
PFd”atz—< o= e e o L
-mgzéléldé- force

ration

ou bien
1 0 dy 5
Pm—z—v'?x<sax>—0 )
Posons encore
S My

€= — et T=——€— -
F Jdx

e est la traction par unité de surface du profil. Clest
une tension. Elle ne dépend que de z, car S et F sont
T est la com-
posante de la tension € suivant la direction y. Cette com-

uniquement fonctions de cette variable.

posante dépend de x et t. Nous avons la relation

Ay
Jx’

L’équation du mouvement ou « équation dynamique »

Fr=—S8=

peut alors s’écrire, en remarquant que-% = ¢ (vitesse

d’un point de la corde) :

J

—|— F ()x(FT) 0.

(5)

Dérivons d’autre part les deux membres de la relation

= dy : o 9} .
T = — € =— par rapport a ¢, multiplions par = et intro-

Jx

duisons %: 9. On obtient
IC

Lor & _ o (6)

@%“m
P

Cette relation peut &tre appelée « équation de conti-
nuité ».

Les vtbrations transyersales d’une corde hétérogéne sou-
mise & une traction variable sont donc régies par le sys-

teme :
o | I S , . ;
- i oo (F1)=0 (equatl?n dynamique) (5)
1 ot Jy

+p i 0 (équation de continuité)  (6)

ou ¢, T sont des fonctions inconnues des variables indé-

pendantes 2, t ; p, I, € sont des fonctions données de a.

« Les
vibrations transversales des cordes pesantes verticales ». Selsveizerische Bau-
1943. M= p.F dans
I"équation (3) de ce mémoire, on obtient I'équation ci-dessus.

1 Nous avons déja établi cette équation dans un mémoire intitulé :

zeitung des 20 novembre et 4 décembre En faisant

20 Vibrations longitudinales d’une barre hétérogéne d axe
rectiligne et de profil variable.

Soit une barre hétérogéne d’axe rectiligne, animée de
vibrations planes paralleles & 1’axe. Désignons par z
I’abscisse d’un profil quelconque & I’état de repos, par
a2 +dx celle d’'un profil infiniment voisin (fig. 2). Soit

f*[)—é dx
ox
£ 4%
TR
o) e —==—]1 o
element :— e element
& /'etat de repos | | : u temps ¢
| |
A —L e =
i v | | oN
; | | N+ o7 ax
| | |
i o I
E =
SN S e OX
! : ! o)
rF rFt ()— ax
Fig. 2. — Vibrations longitudinales d’une barre

hétérogene d’axe rectiligne et de profil variable.

F Taire du profil, p la masse spécifique et E le module
d’élasticité de la barre.
fonctions données de a.

Soit encore, a ’époque t pendant le mouvement, N

Ces trois grandeurs sont des

la résultante des pressions normales o relatives au
profil #1), £ le déplacement infiniment petit des points
de ce profil.

L’équation dynamique s’écrit :

() z JN
‘msse :ccélé- force
ratien
ou bien
%z 1 IN
PETF ="
Remplagons }—E par v (vitesse des points du profil

au temps ¢) et N par Fo, il vient :

—i— = (F o) = 0. (7)
D’autre part, la loi de Hook donne
JE o
B E
Dérivons les deux membres de cette relation par

T P g 3 JE
rapport a ¢, multiplions par i et introduisons i
T «

! Contrairement a l'usage, N et ¢ seront considérés ici comme positifs
s'il s’agit d'une pression, négatifs dans le cas d'une traction. Nous supposons
la variation des profils suffisamment faible pour que ¢ ne varie pas d'un
point & l'autre d’un méme profil.
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On obtient I’équation de continuité suivante :

1 Jdo dy
——(E-)%-FP(—)—Q::O' (8)
\ P

Les vibrations longitudinales d’une barre hétérogéne
d’aze rectiligne et de profil variable sont donc régies par
le systéme :

(Fo) =0 (7)

17 , . .
T (équation dynamique)
1 Jdo L dy

@%

ou ¢, 0 sont des fonctions inconnues des variables indé-

N
oy

P
ot

=0 (équation de continuité)

(8)

Jx

pendantes z, ¢ ; p, I, E sont des fonctions données de x.

3° Vibrations de torsion d’une barre hétérogene d’axe
rectiligne et de profil circulaire variable.

Soit une barre hétérogéne de profil circulaire (corps
de rotation), animée de vibrations de torsion. Désignons
par a 'abscisse d’un profil quelconque, par z + da celle
d’un profil infiniment voisin (fig. 3). Soit J le moment

/V*(;)—XV dx]

Fig. 3. — Vibrations de torsion d'une barre
hétérogene d’axe rectiligne et de profil circulaire variable.

d’inertie polaire du profil par rapport a son centre de
gravité (intersection avec l'axe), p la masse spécifique
et G le module de cisaillement. Ces trois grandeurs sont
des fonctions données de a.

Soit encore, a I’époque ¢t pendant le mouvement, M le
moment de torsion relatil au profil z, ¥ la rotation
infiniment petite de ce profil mesurée a partir de I'état
de repos.

L’équation dynamique s’écrit :

moment d'inertie acceléra- moment résultant

de I'elément dx  tion
par rapport a x angulaire

ou bien
e d 1 oM

e s 0.
P {)lz J Jx

¥ . :
Remplacons (Z)—t par ¢ (vitesse des points du profil =

situés & la distance 1 de I’axe) et M par J.t, il vient :

d 1J
Py T 551 =0. ()
T est la tension tangentielle agissant & la distance 1
de Uazel.
D’autre part, la loi de Hook donne

ad M
Tdr=— . da.
dx J-G
M o
Remplacons - par T, dérivons les deux membres
de cette relation par rapport & ¢, multiplions par (—;—
2
et introduisons {(7_t = ¢. On obtient I'équation de conti-
nuité suivante :
1 Jr Iy
_— = 1
+o (10)

G

Les vibrations de torsion d’une barre hétérogéne d’aze
rectiligne et de profil circulaire variable sont donc régies
par le systeme :

% 1 . !
P i)—: + 7 (% (J1) =0 (équation dynamique) (9)
I %

)T Jy . : o a )
ﬁ(}—t +p R 0 (équation de continuité) (10)
p

ou ¢, T sont des fonctions inconnues des variables indé-
pendantes a, t ; p, J, G sont des fonctions données de .

40 Mougements non permanents d'un liquide dans une
condutte forcée a caractéristiques variables le long de
Uaxe (coups de bélier) 2.

Soit une conduite de section circulaire contenant un
liquide en mouvement, par exemple de I'eau (fig. 4a).
Nous admettrons qu’elle satisfasse aux conditions sui-
vantes :

10 son axe est rectiligne ou de faible courbure ;

20 le diametre D = 2 r est une fonction continue de
I’abscisse @ mesurée le long de 'axe ;

30 I’épaisseur e et le module d’¢élasticité E des parois
sont constants pour une section donnée, mais sont
des fonctions continues de x ;

ar

v

I’axe est petit par rapport a 1.

40 P’angle que forme le profil longitudinal avec

! Nous supposons la variation des profils suffisamment lente pour que

M

la formule T = 7 .1 soit applicable.

* Nous avons déja indiqué ces équations dans un mémoire intitulé :
« Théorie des coups de bélier dans les conduites A caractéristiques linéaire-
ment variables le long de P'axe ». Revue générale de Uhydraulique, n° 19 a
24, Paris, 1938. Ce sont les équations (1) et (2) de ce mémoire, o ¢ doit
étre remplacé par — .
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Fig. 4a. — Troncon élémentaire d’une conduite

a caractéristiques variant d'une facon continue le
long de I’axe.

Le mouvement du liquide dans la conduite est donc
« graduellement varié » (dans le sens attribué par Bous-
sinesq a cette expression).

Les variations de pression constituant le phénomene
du coup de bélier proviennent de I'inertie du liquide et
des élasticités combinées de ce dernier et des parois. La
pesanteur ne joue aucun role dans le phénoméne. Nous
établirons donec les équations en supposant ’axe de la
conduite rectiligne et horizontal. Les résultats que nous
obtiendrons seront évidemment valables pour une con-
duite d’axe quelconque, de faible courbure ou rectiligne,
incliné ou non.

Equation dynamique. Désignons par :
q

p et ¢ la pression & l'axe et la vitesse moyenne de
I’eau, au temps ¢, au profil d’abscisse z (le sens des vitesses
positives coincide avec la direction positive de 'axe
des: @)

p la masse spécifique du liquide.

Considérons la masse d’eau comprise entre deux pro-
fils voisins d’abscisses @ et @ + dx ; écrivons 1’équation

)

du mouvement relative a I'axe :

oy oy
2 -
i <i)a; . (7t>

masse accélération
r 2 J o 1)
sl S : p Ierdazn — -
r?p rr<1 + g dm) <p + o d:c>+ 2mrdap 5

force

D’ot, en effectuant les calculs et en négligeant les
infiniment petits d’ordres supérieurs :

oy Iy 1dp
T ot P Jz
{;V p
Comme — v est toujours trés petit par rapport a i
ax

le membre de gauche se réduit & son second terme (cette
hypotheése simplificatrice, justifiée par 'expérience dans
le cas d’un diameétre constant, est valable ici pour les
) I
mémes raisons).
L’équation dynamique est finalement
U 1
Y 14 .
C L E g, (12
ol p dx

' Nous négligeons les frottements du liquide.

|

ra-‘)—"dha vdt

parol au temps t+ St ==

paro/ au temps t No,- dn ( ey ‘W
0 X
g e e e e
; p
vét! SE=s
B a2 et : {V*g—;dx st
Fig. 4 b. — Mouvements non-permanents d’un

liquide dans une conduite forcée a caractéristiques
variables le long de I'axe.

Cette équation est la méme que lorsque D, e, E sont
constants le long de l'axe.

Equation de continuité. Considérons la masse liquide
qui, au temps ¢, est comprise entre les profils z et @ -+ dz.
Au temps ¢ -+ d¢, cette masse se sera déformée comme
I'indique la figure 4b (trait interrompu).

Nous désignerons, au temps t +d¢, la longueur de
I'élément considéré par dx et la masse spécifique de 'eau
par p. Soit encore > € le coefficient de compressibilité
du liquide ; dz et p ont pour expressions :

%zdm—ubz+<v+ﬂdx> bz=(1+‘£bz> da,
Jx ox
_ )
mp (144230,
(7]‘1

(dans cette derniére, nous avons supposé 75 ® négli-
o

)
geable par rapport a(—It)), d’autre part
o

dr 17
— 0t = —
ot Ee
L’équation de continuité exprime le fait que la masse
de I’élément considéré est, au temps ¢ - d¢, la méme
qu'au temps ¢ :
ar 2
r—+ <r + — dx>
Jx

P 5 dx =

masse au temps ¢

1 | '(/‘r ﬂ
L R e Al

2

‘l—}—— bt+ (dx%—vbl'v)[l -

d.

temps ¢ + &t

masse au

ar :
— 0t par les expressions trou-

Remplagons dx, p et
o

vées plus haut, effectuons les opérations en négligeant

les infiniment petits d’ordres supérieurs. On obtient :

(Leim® o
€ v e) dt o

Remarquons encore que
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) r
%‘(d_f = ’%;)—; 5 ot F=rmr et posons
1
p
<o Tﬁ
E ¢
nous obtenons finalement léquatlon de continuité sui-
vante :
Pl ) = (. 11
pa® Jt F()z (FQ ()

Les mouyements non permanents d’'un liquide dans une
conduite forcée & caractéristiques variables le long de
Paze sont donc régis par le systeme ! :

piz :7f — ). (Buj—0 (iation de continuite) A1)
a—zi/—: + pia,z;}: = 0 (équation dynamique) (12)

_

ot p, v sont des fonctions inconnues des variables indé-
t; p, F, a sont des fonctions données de
(A suipre.)

pendantes ,
e

Notes sur

Jean-Rodolphe Perronet

a I'occasion du 150™ anniversaire de sa mort,
-P. DAXELHOFER

, ingénieur.

par J.

I. Un grand constructeur d'origine vaudoise.

Il y a cent cinquante ans, mourait a Paris, a I'dge de
quatre-vingt-six ans, Jean-Rodolphe Perronet, un des plus
grands ingénieurs de tous les temps. Com-
me il est plutot rare que I'on rende hom-
mage aux grands constructeurs dont les
ceuvres défient souvent les siecles mais
dont les noms s’estompent vite dans la
mémoire des hommes, nous pensons qu’il
est juste de rappeler celui de Perronet, qui
bouleversa les conceptions de son époque
en ce qui concerne la construction des
ponts et dont les réalisations firent 'admi-
ration de ses contemporains tant par leur
hardiesse que par leurs belles proportions.

Ce fut,

teur dans bien des domaines,

7N

comme nous le verrons, un nova-

un magnilfi-
que organisateur et réalisateur. Comme tel,
ses écrits demeurent intéressants a plus
d’un titre. Mais ce qui doit nous rendre
sa mémoire plus chére et ce qui devrail
rendre son nom plus familier dans notre
pays, c’est qu’il en était originaire.

! Pour obtenir I'équation (12), nous avons divisé

les deux termes de (12°) par a® Ceei est nécessaire

pour Vanalogie, comme nous le verrons plus loin. C'est
dans le méme but que nous avons écrit I'équation de
continuité avant I'équation dynamique.

0 sera en général une constante. Toutefois, pour Fie. 1.
de trés grandes chutes d’eau, la masse spécifique croit -
légérement de haut en bas de la conduite.

Jszzzes
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F'in de Ta lettre autographe adressée par Perronet a M. Reyter & Berne

Le hasard d’une lecture, nous a, en effet, mis sous les yeux
un document fort significatif. Voici comment J.-R. Perronet
s’exprime lui-méme dans une lettre de sa main adressée le
7 aout 1783 — il avait alors septante-cing ans et était au
faite des honneurs — a M. Reyter, & Berne (fig. 1) :

Monsieur et bon ami,

Vous trouverez, Monsieur, dans la méme caisse, un second
exemplaire que je vous prie de voulotr bien présenter de ma
part & LL. EE. les Seigneurs du Canton de Berne. Je les
supplie de vouloir bien U'accepter pour leur Bibliothéque comme
un hommage inspiré par la sagesse de leur gouvernement, et
a Uavantage que j’ar d’en étre originaire, mon pére étant né
a Chiteau-d’ (Ex.

Je suis avec un sincére attachement, Monsieur et bon ami,

potre trés humble et trés obéissant serviteur.
PERRONET.

Ainsi, Perronet, alors Premier Ingénieur des Ponts et
Chaussées de France, Chevalier de I'ordre de Saint-Michel
Membre des Académies des sciences de Paris et de Stockholm,
de la Société Royale de Londres, etc., n’avait pas oublié
son pays d’origine et lui faisait hommage d’une magmﬁque
édition de ses ceuvres complétes.

Et nous avons effectivement retrouvé que sa famille était
bourgeoise de Vevey et d’Aigle depuis le XVIe siécle et que
son pére, né a Chateau-d’(Ex, fut officier suisse au service
de Francel.

C’est pourquoi nous voulons rappeler briévement les prm-
cipales étapes de sa vie :

Il naquit & Suresnes, prés de Paris, le 25 octobre 1708. Son
pere meurt quand il est encore jeune. A quinze ans, un ami de
son pére, le Maréchal Berchiny, détermine sa meére a le faire

t L'Historisches-biographisches Lexikon der Schweiz 1929 ne consacre
que huit lignes a sa famille. — Lesage-Notice pour servir a 1'éloge de
Perronet-1805 indique a tort que sa famille est «originaire de Lauzanne «
— Dans «Miénner der Techniky de Matschoss 1925, V. D. 1. Verlag,
Perronet n’est méme pas mentionné !
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en date du 7 aout 1783,
Dce. Bibl. cantonale de Lausanne,
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