Zeitschrift: Bulletin technique de la Suisse romande

Band: 70 (1944)

Heft: 10

Artikel: Les améliorations techniques du chemin de fer Montreux-Oberland

bernois

Autor: Zehnder, R.

DOI: https://doi.org/10.5169/seals-53246

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 09.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

BULLETIN TECHNIQUE

DE LA SUISSE ROMANDE

ABONNEMENTS:

Suisse: 1 an, 13.50 francs Etranger: 16 francs

Pour sociétaires :

Suisse: 1 an, 11 francs Etranger: 13.50 francs

Prix du numéro : 75 centimes.

Pour les abonnements s'adresser à la librairie F. Rouge & C¹e, à Lausanne. Paraissant tous les 15 jours

Organe de la Société suisse des ingénieurs et des architectes, des Sociétés vaudoise et genevoise des ingénieurs et des architectes, de l'Association des anciens élèves de l'Ecole d'ingénieurs de l'Université de Lausanne et des Groupes romands des anciens élèves de l'Ecole polytechnique fédérale.

COMITÉ DE PATRONAGE. — Président: R. Neeser, ingénieur, à Genève; Vice-président: † M. Imer, à Genève; secrétaire: J. Calame, ingénieur, à Genève. Membres: Fribourg: MM. L. Herrling, architecte; P. Joye, professeur; Vaud: MM. F. Chenaux, ingénieur; E. Elskes, ingénieur; EPITAUX, architecte; E. Jost, architecte; A. Paris, ingénieur; Ch. Thévenaz, architecte; Genève: MM. L. Archinard, ingénieur; E. Martin, architecte; E. Odier, architecte; Neuchâtel: MM. J. Béguin, architecte; R. Guye, ingénieur; A. Méan, ingénieur; Valais: M. J. Dubuis, ingénieur; A. De Kalbermatten, architecte.

RÉDACTION: D. BONNARD, ingénieur, Case postale Chauderon 475, LAUSANNE.

Publicité:
TARIF DES ANNONCES

Le millimètre
(larg. 47 mm.) 20 cts.
Tarif spécial pour fractions
de pages.
En plus 20 % de majoration de guerre.
Rabais pour annonces

répétées.

ANNONCES-SUISSES s. A.
5, Rue Centrale,
LAUSANNE
& Succursales.

CONSEIL D'ADMINISTRATION DE LA SOCIÉTÉ ANONYME DU BULLETIN TECHNIQUE A. STUCKY, ingénieur, président; M. Bridel; G. Epitaux, architecte.

SOMMAIRE: Les améliorations techniques du chemin de fer Montreux-Oberland bernois (suite et fin), par le D^r R. Zehnder, ingénieur.

— Société suisse des ingénieurs et des architectes: Extrait du procès-verbal de la séance du Comité central du 18 février 1944. —

Société vaudoise des ingénieurs et des architectes: Assemblée générale du jeudi 30 mars 1944. — Divers: La Foire de Bâle. —

Communiqué: 2 me congrès des urbanistes suisses. — Service de placement.

Les améliorations techniques du chemin de fer Montreux-Oberland bernois

par le D^r R. ZEHNDER, ingénieur, directeur des Chemins de fer Montreux-Oberland bernois et Territet/Montreux-Glion-Naye.

(Suite et fin).1

D. Amélioration du tracé.

Avantages résultant de l'élimination des courbes à faible rayon.

Le coefficient de roulement p dépend :

de la construction des véhicules (empattement; paliers; diamètre des roues; etc.),

de la vitesse de marche du train (V),

du rayon des courbes (R).

Pour le train M. O. B. on a, par des essais, obtenu pour la vitesse de 36-37 km/h, et dans les alignements, une valeur de $\rho = \sim 7$ à 8 kg par t.

Dans les courbes de faible rayon, cette valeur de ρ subit une sensible augmentation.

Nous pouvons cependant constater que la formule de la « Hütte » pour la résistance au roulement dans les courbes

$$\rho \, c = \frac{400}{R - 20}$$

donne pour les courbes de très petit rayon des valeurs trop élevées.

Selon nos expériences la formule suivante correspond mieux à la réalité :

a)
$$\rho_{\rm total} = \rho_{\rm c} + \rho_{\rm V} = \sim \frac{400}{0.55R} + 0.045 \ V^2 - 0.12 \ V.$$

¹ Voir Bulletin technique du 15 avril 1944, p. 93.

Pour la résistance additionnelle dans les courbes pe on obtient les valeurs suivantes :

R:m 36 40 50 60 70 80 100 120 150 $\rho_c: kg/t$ 20 18 14,5 12 10 9 7,3 6,1 4,8

La formule a) est applicable pour des rayons de 40 m à environ 225 m.

Pour les rayons supérieurs, on peut s'en tenir à la formule trouvée par le soussigné au M. O. B. (voir sa thèse de doctorat de 1920 1).

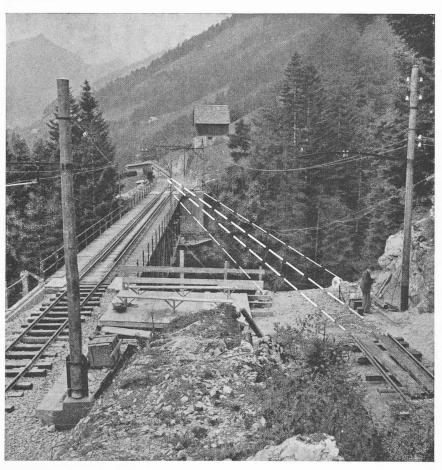
b) $\rho_{\text{total}} = 3,45 + 0,045 \ V^2 - 0,12 \ V \text{ (pour } V \leq 35 \ \text{km/h, la}$ formule a été simplifiée en supprimant le dernier facteur $0,12 \ V$).

Il ressort de ce qui précède que l'agrandissement du rayon de 36 à 80 m entraı̂ne — pour la même vitesse de marche — une réduction de l'effort de traction correspondant à un abaissement d'environ $10~\rm ^o/_{oo}$ de la rampe.

Avec V = 25 km/h et R = 36 m et s = 67 o/oo,

l'effort de traction est de $Z_1 = 67 + 21,1 = 88,1$ kg p. t. Avec V = 25 km/h et R = 80 m et s = 67 °/00,

Avec V = 25 km/h et R = 80 m et $s = 67^{-6}/_{00}$, l'effort de traction est de $Z_2 = 67 + 11,1 = 78,1$ kg p. t. = 0,885 Z_1 .


Le poids du train peut ainsi être augmenté d'environ 13 %, si l'on substitue un rayon de 80 m à 36 m. La capacité de transport en est augmentée d'autant.

C'est là un avantage qui s'ajoute à d'autres dont nous mentionnons notamment les suivants :

la possibilité d'augmenter dans les courbes de 80 m la vitesse de 23 km/h à 36 km/h ;

comme dans de nombreux endroits les rayons sont portés à 120, 150, 200 m, la vitesse de marche peut être augmentée proportionnellement, si bien que la durée du trajet Montreux-Zweisimmen des trains directs, actuellement d'envi-

¹ Etude avec abaques et diagrammes relative à l'échauffement des bandages des roues de véhicules de chemins de fer, par le D^r ing. R. Zehnder (Imprimerie La Concorde, Lausanne).

Autorisé le 31. 3. 44 selon A. C. F. du 3. 10. 39.

Fig. 12. — Photographie du pont du Flon déplacé.

ron 2 h 20 min, pourra, pour les trains légers, être abaissée à environ 1 h 35 min;

la vitesse moyenne des trains directs Montreux-Zweisimmen aujourd'hui de 26 km/h pourra être portée à 40 km/h;

l'usure et la fatigue moins grandes de la superstructure et du matériel roulant, diminution des frais d'entretien;

déplacement latéral moins grand du milieu et des extrémités des véhicules dans les courbes;

pour une voiture d'une longueur L=16 500 mm, avec une distance de l =11 250 mm entre pivots des bogies, le déplacement latéral est pour un rayon

au milieu:
$$R = 36 \text{ m}$$
 80 m
$$d_m = \frac{\left(\frac{l}{2}\right)^2}{2R} = 0,44 \text{ m}$$
 0,198 m
aux extrémités:
$$d_e = \frac{L^2 - l^2}{8R} = 0,505 \text{ m}$$
 0,228 m

suppression des complications et dangers pour les appareils de choc et de traction, les passerelles, les conduites de frein, les nombreux câbles d'accouplement électriques;

plus grande stabilité de la ligne de contact ; diminution du risque de déraillement des pantographes;

augmentation de la distance d'un poteau à l'autre de la ligne de contact; dans les courbes à rayons de 36-40 m un poteau est nécessaire tous les 5,5 à 6 m;

diminution des risques d'accident.

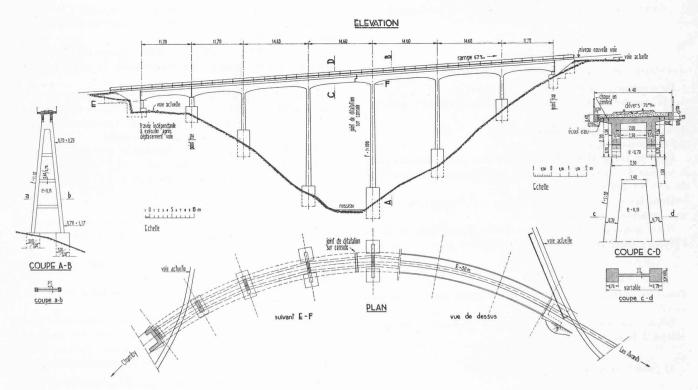


Fig. 13. — Projet de pont en béton armé du Bois des Chenaux sur la ligne du Montreux-Oberland bernois.

Le redressement des courbes a, à certains endroits, occasionné des dépenses assez élevées. Il fut nécessaire de construire un nouveau tunnel de 310 m de longueur, ainsi que plusieurs nouveaux ponts et de déplacer d'environ 9 m latéralement et d'environ 1,35 m dans le sens de l'axe le pont métallique du Flon au km 19,4. Ce pont a une longueur de 46 m et pèse 90 t. (Fig. 12 et 13).

E. Matériel roulant.

Le M. O. B. possède (y compris les véhicules en construction) le matériel roulant suivant :

Véhicules-moteurs.

	1	P par véh	uissa icule					Date de la mise en service	Puis- sance totale	Tare par véhi-	Poids max. du train remorqué sur 70 º/00 en simple traction
1	autom.	à 4 ess.	$4\times$	30	PS =	120	PS	1901	120 PS	5 22 t	15 t
3))	× n	$4 \times$	45	=	180		1903	540	27	22
17))	n	$4 \times$	65	=	260		1904/8	4420	28	22/24
4))))	4×	120	=	480		1912	1920	33,5	36
2)))	$4\times$	165	V 4=	660		1924	1320	36	40
2	loc. à 6	ess.*)	$6 \times$	184	=	= 1100		1932	2200	63	87-90
	autor. l										
	4 ess		$4\times$	150	=	600		1944/45	3600	35,7	42,5
35	véhicul	es-moter	ırs a	vec	env.	1400 p	olace	es .	14120 PS	3	

Les locomotives supportent une charge de 1200 PS. 4 autorails légers seulement ont été livrés jusqu'au printemps

Le M. O. B. dispose en outre d'un tracteur Diesel de 22 PS. On se rend compte que la puissance des 21 vieilles automotrices, datant de 1901-1908, est insuffisante pour une ligne à fortes déclivités.

Voitures de remorque à voyageurs (46).

Il y a 43 voitures à voyageurs de Ire cl. ; Ire/IIe cl. ; IIe cl. ; Ire/IIe/IIIe cl.; IIe/IIIe cl. et IIIe cl., ainsi que 3 wagonsrestaurants. La plupart de ces voitures sont à bogies, soit à 4 essieux. Le nombre total des places est d'environ 2000.

Wagons à marchandises (140).

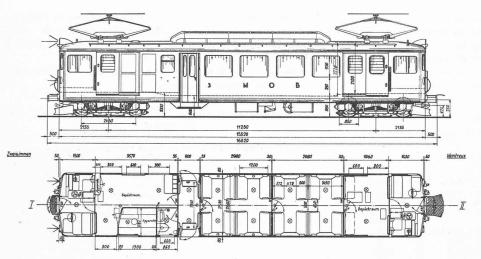
Les 30 wagons pour transports de bois et les 4 trucs-transporteurs pour wagons à voie normale sont à bogies. La plupart des 106 autres wagons à marchandises n'ont que 2 essieux. Les wagons sont construits pour une charge utile de 10, resp. 12,5, resp. 15 t, les trucs-transporteurs pour une charge de 30 t.

Tout le matériel roulant possède le frein à vis à main et le frein automatique à vide (avec valves à action rapide) système Hardy. La timonerie des freins est disposée selon le système Zehnder pour autant qu'elle n'a pas le régulateur automatique « Stopex ». Les véhicules-moteurs sont en outre équipés avec le frein électro-magnétique agissant sur les rails, ainsi qu'avec le frein rhéostatique. Les locomotives et les autorails légers sont encore construits pour marche à récupération. En raison du poids élevé des locomotives, leur frein à main à vis est muni d'un dispositif de servo-

Les châssis des remorques légères s'appuient sur les bogies au moyen d'un anneau circulaire reposant sur des plots en liège, ce qui, avec la double suspension à ressorts, leur assure un roulement extrêmement doux et agréable. Leur marche, ainsi que celle des autorails, est silencieuse en raison du double plancher avec couche isolante.

L'appareil central de choc et de traction a été simplifié ces derniers temps par la suppression du crochet de sûreté et du tendeur de réserve qui n'ont jamais servi mais qui ont compliqué et alourdi le service des manœuvres.

La Société Industrielle Suisse à Neuhausen a construit la partie mécanique de la plupart des véhicules.


Quelques voitures à voyageurs et wagons ont été livrés par la «Schweiz. Wagons- & Aufzüge-Fabrik » à Schlieren.

La partie électrique de tout le matériel roulant (à l'exception de 2 automotrices construites par les Ateliers de construction Oerlikon) a été livrée par la S. A. Brown, Boveri et Cie à Baden.

Les locomotives 2001-2 et les autorails légers 3001-6 sont de vrais chefs-d'œuvre techniques.

Les locomotives Bo-Bo-Bo No 2001-2 et autorails CFe 4/4 No 3001-6.

	No	3001-6					
	Caractéristiques méd	aniques	et éleci	triaues	des		
	our deter terry are	loco	motives	3	autorails	légers	
		IVo	2001-	2	No 30	01-6	
Longueur totale		17 000 r			6 520 et 1		
Longueur de la	caisse	16 000 une cal		le mé	15 520 et 1 canicien		
		un com	pbag	extréi rages	mité 2, resp.	3 co	mp.
		» x	-po	ste II	Ie cl. 38	pl., co	mp.
		toilettes		I	toilettes, oostal, u	n con	np
			abines		agages appareil	e	
D' 1	to the best of						
	pivots des bogies es essieux des bogies	2×5500 2300		1	11 250 et 1	2 450	mm
Largeur extérieu		2700				2 680	
	u toit (sans la cage	0000				0.450	
des résistan		3300				3 150	mm »
Hauteur du fil d	e contact maximum minimum	5750 4000				5 750 4 000	3)
Haut, des frotte	urs des pantograph					1 000	
	ition supérieure	6400	»			5 950	. »
» »	inférieure	3700	3)			3 750	19
	otteurs en charboi	1000	- 1			4 050	
ou en alum		1300 1850				1 050 1 650))))
Largeur du pan Diamètre des roi	iographe	945				850	»
Diametre des roi	à l'état moyen	920					D
Diamètre de l'es		160	D			150))
	à la fusée	100		7.45			»
					graisseu (syst. Ro		
Rapport de la t	imonerie du frein	10,5	961			10,3	
	imonerie du frein	1750				1210	
	les sabots du frein	5670			28 800		
en % de la	tare on des sabots du		%		82 9		
	-magnétique	30-4	0 t		17-19	t	
	n par essieu env.		00 kg		10 000		
onargo manamar	par roue env.		00 kg		5 300		
Suspension du cl		3 ressor		érie	2 ressorts a lames, l	en se	érie,
0 1		à lames			10.00		
Suspension des	moteurs	système			entièrem. avec arl		
		sorts (s		oth) s	système B	rown,	
Tension movent	ne de la ligne de				veri & C16		
contact	ie de la lighte de	760-	830 Vo	olts	760-830	0 Volts	3
	e aux sous-stations		810	30		0 »	
» maximu			000	»	900		
	ne des moteurs			»	76		
Nombre de mote		4	6 4,94		1:5		
	oraire des 6 resp.			4400 D			n ne
4 moteurs Nombre de te	ours de moteur				S 4×150		PS
	sance à 760 V	env. 7	20/mi	n.	1.20	/min	
	he correspondante 0 000 kg; resp. =						
env. 4 600 k			km/h		36,4 k		
Puissance en ser		6×140	= 840	PS	$4 \times 115 =$	460 PS	5
de 150 t res	démarrage du train p. 76 t sur 70 º/ºº	0,0	8 m/se	c ²	0,2 n	n/sec²	
	sur 40 º/00				0,45	»	
Vitesse de marc	en palier he du train autorail				0,70))	
	760 V avec roues						
	traction de 5700 kg				32 k	m/h	
	3650 »				41,5	»	
	2900 »				48	3)	
Vitesse maximu	1400 »	60	km /h		60 70-75))	
Vitesse maximu Vitesse d'emball		60	km/h		70-73	33	
roues $ø = 920 \text{ m}$	nm (n = 2050/min)		5 km/	h			
p = 830			48.00		88	»	
	jante au démarr.		17 000		7 500-8 0		
Asservissement		électro-	Pneum		électro-pn électro-ma		. et
					o.como inte	B.100.	

autorails légers Nº 3001-6

oui

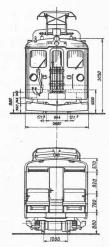


Fig. 14. Dessin type des autorails CFe 4/4.

Nº 3001-6

Commande multiple pour 2 véhicules-moteurs Freins

tare totale

chargé

à main à main à servo-moteur sur frein à main; à vide à action à vide à action rapide ; rapide; rhéostatique : rhéostatique : à récupération; à sabots électroà récupération; à sabots électromagnétiques ; magnétiques; disposit. de l'homme mort disposit. de l'homme mort Poids de la loc. resp. de l'autorail: tare : partie électrique 23 t 12 t 23,7 t 35,7 t¹ 38,7 t partie mécanique 40 t 63 t 66 t 1880 kg Poids d'un moteur avec pignon 800 kgPoids d'un moteur par cheval de puissance-horaire 10,16 kg Tare par cheval de puissance-hor. 57,5 kg 0 59.5 kg Nombre de places assises Nombre de places assises (assises et debout 50 60 et debout) dans un train de locom. de 151 t, resp. dans un train autorail de 80 t env 300 (360) 165 (200) Tare du train-locomot. de 151 t resp. du train-autorail de 80 t par place assise (par place assise ou debout) env. Charge totale max. du train, kg 450 (380) 400 (330) (locom. resp. autorail compris): sur les rampes supér. à 43 °/°° 151 t 79-81 t infér. à 43°/00 175-200 t 101 t 155 t resp. 173 t Rapport entre le poids du véhi-cule-moteur et du train entier sur rampe de 70 °/° Positions de marche économiques : 1:2,38 1:2,24140 % 100 % 65 % 40 % champ renforcé 130 % 00 % 80 % 64 % 100 normal affaibli

locomotives Nº 2001-2

non

Parallèle (locom.), resp. série-parallèle (autorail): Eclairage électrique

en dou'le traction

Série :

Chauffage électrique (env. 250 à 300 Watts par m³), à monteux-Zweisimmen (63 km) pour les trains directs Constructeurs: partie mécanique partie électrique

les mêmes 4 degrés d'excitation 810 et 36 Volts 810 et 40 Volts batt, cadm,-nick, groupe-couvert. chargée par le cou- et batt. cadm.-nickel rant des moteurs des compresseurs et de la pompe à vide 810 Volts 810 Volts

125-130 min. 95-96 min Société Industrielle Suisse, Neuha S. A. Brown, Boveri & Cle, Baden Neuhausen

Dans les autorails CFe 4/4 3001-6, il y a deux circuits différents :

a) le circuit principal comportant également les services

auxiliaires, parcourus par le courant fort de 800-900 Volts de la ligne de contact, ou produit - en couplage de récupération ou de freinage rhéostatique - par les moteurs de traction travaillant comme génératrices et alimentant - en passant par le disjoncteur principal (marche-traction et marcherécupération) et les contacteurs, les résistances de démarrage et de freinage, les résistances de réglage (et d'affaiblissement) des champs — les moteurs de traction, les moteurs de la pompe du frein à vide, du compresseur et du groupe convertisseur, ainsi que les sabots de frein électro-magnétique, le chauffage électrique et l'unique série des 7 lampes branchées sur le circuit de 800-900 Volts.

En cas de marche à récupération ou avec le frein rhéostatique, les moteurs de la pompe du frein à vide et du compresseur, ainsi que les sabots électro-magnétiques sont également alimentés par le courant produit par les moteurs de traction. Le moteur du groupe convertisseur reçoit du courant à la marche à récupération, mais non à la marche avec le frein rhéostatique. Dans ce dernier cas, le courant pour l'asservissement doit être fourni exclusivement par la batterie cadmium-nickel.

b) les circuits de commande, à basse tension de 36 Volts, pour l'asservissement électro-pneumatique et électro-magnétique, et les nombreux relais.

Ces circuits sont alimentés par une batterie cadmium-

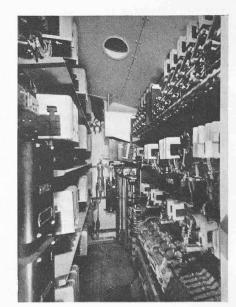
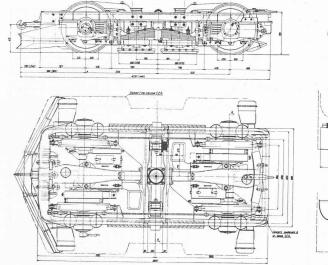
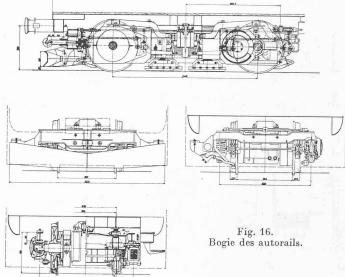




Fig. 15. Cabine des appareils des autorails.

¹ Poids du bogie de l'autorail = 7650 kg.

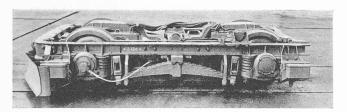


Fig. 17. — Bogie des autorails.

nickel de 30 éléments (capacité de 80 ah pour décharge en 4 heures) et la génératrice du groupe convertisseur (2 Kw en service permanent), la tension de celle-ci pouvant être élevée jusqu'à 50 Volts pour la charge de la batterie.

L'éclairage à basse tension et le chauffage des glaces des postes du mécanicien sont également branchés sur ces circuits à basse tension.

Dans le controller principal des autorails, il n'y a pas de courant de 800-900 Volts.

Le controller du frein à vide est parcouru par le courant de 800-900 Volts.

Les moteurs-série sont bobinés pour la moitié de la tension normale.

Ainsi les 4 moteurs sont connectés en série au démarrage, soit sur position «série» du controller. Sur position «sérieparallèle » deux moteurs sont connectés en série et les deux groupes de moteurs se trouvent en parallèle.

Les autorails sont construits pour

marche en traction avec 4, exceptionnellement avec 3 ou 2 moteurs;

marche à récupération avec 4, ou exceptionnellement avec 3 moteurs;

marche avec frein rhéostatique avec 4, ou exceptionnellement avec 3 moteurs.

Pour la marche en traction avec 4 moteurs, il y a 8 positions économiques, soit : en position série :

avec champ renforcé env. 140 %; démarrage touches 1-12

normal env. 100 %; pos. N du levier d'affaibliss.

affaibli env. 65 %; " I " " "

normal env. 40 %; " I " " " en position série-parallèle :

avec champ renforcé env. 140 %; démarrage touches 13-20;
normal env. 100 %; pos. N du controller de commande ou pos. N du levier d'affaiblissement
affaibli env. 65 %; pos. I du levier d'affaiblissement
n env. 40 % n II n

Pour la marche à 3 moteurs (cas d'avarie d'un moteur) les 3 moteurs en service sont connectés en série.

Les autorails sont munis des dispositifs pour «homme mort » et pour commande multiple, permettant de commander, en cas de double traction, les 2 autorails par le mécanicien du premier autorail.

Dans ce but, l'appareillage de l'asservissement des deux autorails est relié par 2 câbles d'accouplement intermédiaires électriques, chacun composé de 37 âmes avec autant de contacts.

Il y a, en sus, encore un câble d'accouplement électrique pour le frein électro-magnétique du deuxième autorail, un autre pour la sonnerie, et enfin les câbles d'accouplement électriques pour l'éclairage et le chauffage.

Toutes les opérations indiquées ci-dessus sont autorisées et possibles avec la commande multiple, à la condition toutefois que le nombre des moteurs en circuit soit toujours le même sur les 2 autorails accouplés.

Il est aussi possible de manœuvrer depuis le premier autorail les éléments suivants des installations du second autorail:

Le groupe convertisseur, le moteur du compresseur, les pantographes, le disjoncteur principal, le frein électromagnétique, le frein à vide Hardy (mais la pompe du second autorail ne travaille pas), et enfin l'éclairage et le chauffage électriques.

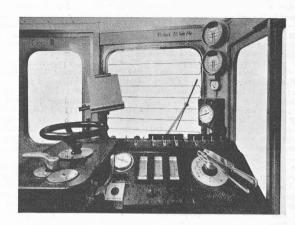


Fig. 27. — Autorail, cabine de mécanicien.

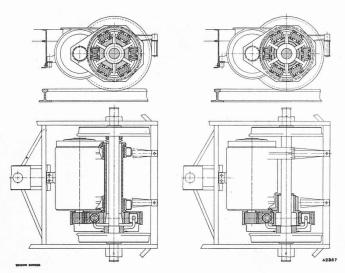


Fig. 18. — Transmission élastique des moteurs des autorails.

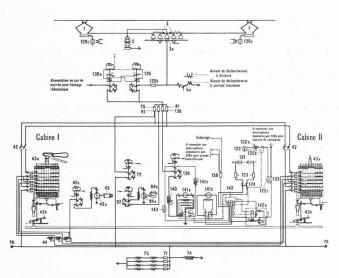


Fig. 20. - Schéma des circuits auxiliaires.

1 = Pantographe ; 2 = Parafoudre à résorbite ; 3 = Sectionneur pour pantographe ; 3a = Isolateur de traversée de toit ; 5a = Disjoncteur principal ; 41 = Coupe-circuit pour moteur de la pompe à vide et pour le frein à sabots électro-magnétiques ; 43a = Contrôleur pour la pompe du frein à vide et le frein à sabots électro-magnétiques ; 43a = Contrôleur pour le pompe du frein à vide et le frein à sabots électro-magnétiques ; 43b = Dispostif de sécurité ; 44 = Résistance additionnelle et de réglage pour le moteur de la pompe à vide ; 45c = Pompe à vide ; 45a = Moteur de la pompe à vide ; 45c = Contacteur pour moteur de la pompe à vide ; 70 = Coupe-circuit principal pour frein à sabots électro-magnétiques ; 71 = Coupe-circuit séparés pour frein à sabots électro-magnétiques ; 72 = Contacteur électro-magnétique pour frein à sabots électro-magnétiques ; 73 = Sabots électro-magnétiques ; 74 = Résistance de protection pour frein à sabots électro-magnétiques ; 74 = Résistance de protection pour frein à sabots électro-magnétiques ; 76 = Accouplements pour frein à sabots électro-magnétiques ; 76 = Accouplements pour frein à sabots électro-magnétiques ; 76 = Accouplements pour frein à sabots électro-magnétiques ; 76 = Moteur de compresseur ; 92 = Contacteur électro-magnétique ; 94a = Moteur de compresseur ; 94b = Compresseur ; 12 = Batterie d'accumulateurs 12b = Interrupteur unipolaire pour voltmètre ; 122a = Résistance additionnelle pour pos. 122 ; 122c = Coupe-circuit pour pos. 122 ; 123 = Coupe-circuit de la batterie d'accumulateurs pos. 121 ; 124 = Interrupteur bipolaire de la batterie d'accumulateurs pos. 121 ; 124 = Interrupteur bipolaire de la batterie d'accumulateur pour circuits auxiliaires ; 130c = Contacteur bipolaire électro-magnétique pour circuits auxiliaires ; 130c = Contacteur bipolaire électro-magnétique pour circuits auxiliaires ; 130c = Contacteur bipolaire électro-magnétique pour les circuits auxiliaires ; 130c = Contacteur rage de l'autorail,

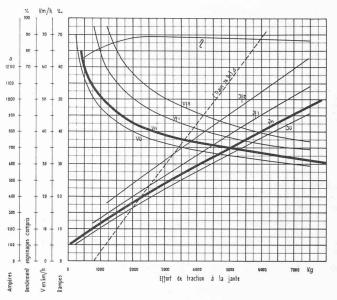
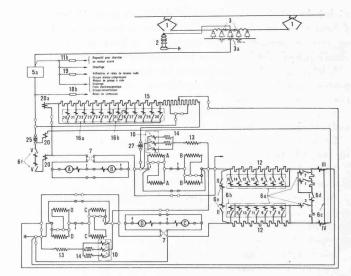



Fig. 21. — Diagramme caractéristique des moteurs de l'autorail.

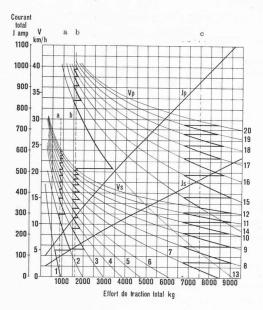
Equipement de 4 moteurs de traction 4 × 129 Kw pour voie de 1 m Tension aux bornes des moteurs $=\frac{760}{2}$ volts ——— rampe en %

Rapp. des engrenages = 1:5,67 Index $\ddot{u} = \text{champ renforce} = 130 \%$ » n = » normal = 100 % » $f_1 =$ » affaibli = 70 % » $f_2 =$ » affaibli = 50 %

- Schéma simplifié des circuits de traction, de récupération et de freinage rhéostatique.

A = Moteur de traction 1; B = Moteur de traction 2; C = Moteur

A = Moteur de traction 1; B = Moteur de traction 2; C = Moteur de traction 3; D = Moteur de traction 4.
1 = Pantographes; 2 = Parafoudre à résorbite; 3 = Sectionneurs pour pantographes; 3a = Isolateur de traversée de toit; 5a = Disjoncteur principal; 6a = Contacteurs unipolaires des résistances de démarrage et de freinage (n° 1 ÷ 16); 6b = Contacteur unipolaire des résistances de démarrage et de freinage (n° 10); 6c = Contacteur bipolaire (II); 6c = Contacteur bipo


Pour la double traction, les pantographes des deux autorails doivent être levés.

L'air comprimé nécessaire aux sifflets, aux essuie-glaces, aux rétroviseurs et à la commande électro-pneumatique est fourni par le groupe moteur-compresseur débitant 400 l. par minute à une pression de 6 atm. (moteur auto-ventilé de 3,8 PS, 1500 tours-min à 850 Volts). Un régulateur de pression sert à maintenir la pression de l'air dans le réservoir entre 5,5 et 7 atm.

Les appareils suivants sont commandés par les valves électro-pneumatiques:

les pantographes; le disjoncteur principal; l'inverseur de marche; le combinateur de marche, récupération et freinage rhéostatique : les sablières.

La pompe double rotative (puissance du moteur = 3,7 Kw) du frein automatique à vide de l'autorail possède 2 moitiés dont chacune travaille indépendamment de l'autre et aspire

Courbes de démarrage pour une tension de 760 volts à la ligne de contact.

Jp=Courant total absorbé en couplage parallèle ; Js=Courant total absorbé en couplage série ; Vp=Vitesse de marche avec groupes de moteurs en parallèle ; Vs=Vitesse de marche avec groupes de moteurs en série ; a=Autorail vide, service de manœuvre ; b=Autorail vide, démarrage normal ; c=Train de 76 tonnes, démarrage sur rampe de 73 °/°°.

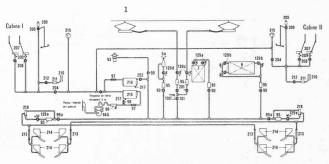
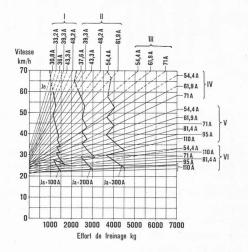



Schéma de l'installation à air comprimé.

1= Pantographe ; 5a= Disjoncteur principal ; 7= Inverseur de marche ; 9= Combinateur de marche, de récupération et de freinage rhéostache; 9 = Combinateur de marche, de recuperation et de freinage rheostatique; 93 = Régulateur de pression pour groupe compresseur; 94b = Compresseur; 95 = Attrape-poussière; 96 = Séparateur d'huile; 97 = Valve de retenue; 98 = Soupape de sûreté; 99 = Robinet d'arrêt avec orifice d'échappement; 99a = Robinet d'isolement pour sablières; 100 = Pompe à main; 101 = Robinet à 3 voies pour pompe à main; 129a = Valve électro-pneumatique pour pos. 9; 129b = Valve électro-pneumatique pour pos. 9; 129c = Valve électro-pneumatique pour pos. 129c = Valve électro-pneumatique pour pos. 129c = Robinet d'arrêt avec orifice d'échappement pour pos. 9; 129c = Valve électro-pneumatique pour pos. 1 125u - 125u - 125u electro-pneumatique pour pos. 5a; 129c = Valve électro-pneumatique pour pos. 214; 201 = Robinet d'arrêt avec orifice d'échappement pour pos. 1; 202 = Robinet d'isolement pour réservoir à air; 203 = Tuyau de raccordement pour pantographe; 204 = Robinet d'arrêt avec orifice d'échappement pour les pos. 205, 207 et 210; 205 = Sifflet; 206 = Valve de commande pour sifflet; 207 = 125u pour sifflet pneumante pour pantographe; 205 = Sifflet; 207 = 125u pour sifflet pneumante pour partographe pour partographe; 207 = 200 pour partographe; 208 = 200 pour partographe; 200 pou

Essuie-glace avec commande pneuma-tique; 208 = Robinet de commande (avec orifice d'échappement) pour pos. 207; 209 = Dispositif de réglage pour essuie-glace; 210 = Rétroviseur; essuie-glace; 210 = Rétroviseur; 211 = Cylindre d'actionnement pour pos. 210; 212 = Robinet de commande cavec orifice d'échappement) pour pos. 210; 213 = Tuyau de raccordement pour sablières; 214 = Sablière; 215 = Manomètre; 216 = Réservoir à air 150 l ; 217 = Robinet de vidange ; 218 = Valve de commande pour sablière.

une tension de 850 volts à la ligne de contact.
Ja = Courant d'induit des moteurs de traction Je = Courant d'excitation des moteurs de traction;
I-VI = Zones de vitesse avec résistances addition-
nelles (différentes dans chaque cas) insérées dan le circuit des induits des moteurs de traction.

					1										chement					
									_	0=	Disjone	eur pri	incipal	et cor	itacteurs fe	ermés				1
	Ma	rche	en tractio				sition M. T.									ur en p	osition M. Ré.)			alique (Combinateur en pos. Fr. I
		fising- terr	Contactours principant		ntacteurs démarrag			Entirteur e allaités, ce champs		tisjee- teer	Contacteurs principaex			age et de	sistances E freinage		Contacteurs de résistances de réglage des champs		inse Contacteurs our principaus	Contacteurs de résistances de démarrage et de treinage
Couplage	Cran	s proops	1 3 33 77 8	1 2 3 4	5 6 7 8	9 10 11	12 13 14 15 16	17 11 12 13	Crans	P-may-	1 8 10 11	1 2 3	4 5 6 7	8 9 10 1	1 12 13 14 15 16	7 Crans	20 21 22 23 24 25 26 27 28 29 30 3	Crass "	1 11 111 14	¥ 1 2 3 4 5 6 7 8 5 10 11 12 13 14 15 1
4 Noteurs on série	0 1 2 3 4 5 6 7 8 9 10 11 12 12 12 12 12 12 12 12 12 12 12 12	000000000000000000000000000000000000000		00 00 00 00 00 00 00 00 00 00 00 00	0000	0000	000000000000000000000000000000000000000		0 1 2 3 4 5 6 7 8 9 10 11	000000000000000000000000000000000000000	000000000000000000000000000000000000000					2 3 4 5 6 7 8 9 10	000000000000000000000000000000000000000	5 C 5 C 7 C 8 C 9 C		
r change return Trans	F 12 item	0000		00			00	000	15	0000	000		0			14 15 18	000			
status es seves	13 14 15 16 17 18 19 20 21 12 13	000000000000000000000000000000000000000		00	0000	000	20 0000 0000 0000 0000	000000000000000000000000000000000000000	18 19 20 21 22 23 24 25 25 27 28 29 30 31 31		000000000000000000000000000000000000000		5 00 5 00 5 00 5 00 6 00 6 00 6 00 6 00	000	60 00 00 00 00 00 00 00 00 00 00 00 00	18 19 20 21 22 23 24 25 25 27 28 29 30 31 31	880 880 800 800 800 800 800 800 800 800			

Fig. 22. — Tableau d'enclenchement de l'autorail.

l'air, l'une de la conduite II de l'autorail, l'autre de la conduite I du train remorqué.

Le controller du frein a les positions suivantes:

Pos. « O » : déclenché, la pompe ne travaille pas.

Pos. « frein desserré » : la pompe marche, son moteur étant successivement enclenché en passant par les résistances.

Pos. « marche I » : la pompe tourne à vitesse moyenne.

Pos. « marche II » : la pompe aspire à vitesse réduite.

Si la manette est tournée un peu plus loin, l'orifice d'entrée de la conduite du train est peu à peu ouvert ; l'air entre et produit le freinage successif; la pompe continue à tourner et à évacuer de l'air des 2 conduites à frein ; cela permet une graduation fine de freinage.

Pos. « voitures bloquées » : les voitures seules sont freinées jusqu'au moment où le vide dans la conduite du train est détruit jusqu'à 32 cm. A ce moment la valve retardatrice se soulève et laisse entrer l'air de la conduite du train dans

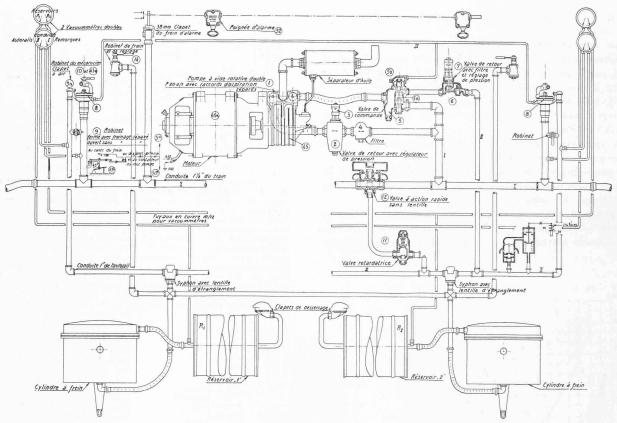


Fig. 28. — Schéma des conduites du frein à vide de l'autorail.

celle de l'autorail; ce dernier participe dès lors aussi au freinage, mais avec une pression d'air moins grande inférieure d'environ 20 cm.

Pos. « frein à vide à bloc » : l'autorail et les voitures sont freinés avec la pression maximum.

Pos. « frein électro-magnétique » : les 8 sabots électromagnétiques sont enclenchés ; ils tombent sur les rails, exerçant un effort d'attraction de 18-19 t. Par leur frottement sur les rails, ils contribuent au freinage.

Les circuits du frein rhéostatique présentent une grande analogie avec ceux de la marche à récupération. Toutefois, pour la marche avec le frein rhéostatique, la connexion des moteurs avec la ligne de contact est interrompue. Le courant produit par les moteurs travaillant comme génératrices est envoyé dans les résistances de freinage. Les résistances du

Sistens - Irais

Sisten

Fig. 29. — Représentation schématique du contrôleur du frein à vide de l'autorail.

circuit des champs ne servent plus au réglage, mais uniquement pour obtenir un certain shuntage des champs.

Le frein rhéostatique n'est employé que dans des cas exceptionnels et pour les vitesses inférieures à 30 km/h. Il peut être utilisé simultanément avec le frein à vide.

Pour la marche à récupération le circuit des champs des moteurs est connecté en parallèle avec les induits. Par un réglage spécial, la graduation de la vitesse de marche s'obtient moyennant le réglage simultané combiné du courant des induits (par les résistances de démarrage) et du courant des champs (par les résistances de récupération).

A remarquer que les doigts de contact du controller de récupération qui servent à la graduation de l'excitation des champs sont magnétiques (magnétisme rémanent) pour garantir, en combinaison avec des ressorts, une interruption prompte du courant. Afin de diminuer les étincelles d'inter-

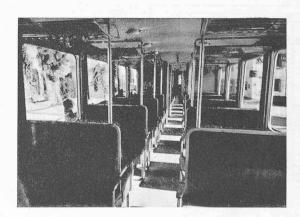


Fig. 31. — Intérieur d'une voiture légère à voyageurs.

ruption aux doigts de contact, ceux-ci sont protégés par des petits condensateurs.

Les moteurs travaillant à la descente comme génératrices passent automatiquement en régime de moteurs de traction (évidemment avec un coefficient de rendement très réduit!) lorsque le train arrive dans une partie en palier ou en rampe.

En cas d'interruption involontaire du

freinage par récupération, il se produit automatiquement un freinage limité de résistance (rhéostatique), car les induits travaillent alors sur les champs des moteurs et les résistances de réglage des champs.

En même temps, la soupape électro-pneumatique du frein à vide s'ouvre et ce dernier arrête le train.

Le frein à récupération est utilisé normalement comme frein sur les fortes et longues pentes, ce qui évite un trop grand échauffement des bandages de roues et leur usure rapide. Toutefois, le frein à récupération est, dans la règle, soutenu dans une certaine mesure par le frein à vide.

VII. Consommation d'énergie.

L'énergie théorique A nécessaire à la roue du véhiculemoteur pour la marche normale d'un train de poids G sur le parcours $L = L_1 + L_2 + L_3$ s'obtient par la formule

$$A = G \left[100 \ h + L_1 \rho + L_2 \Sigma \left(\rho - s \right) \right] \quad (\text{kgm})$$

ou pour une tonne:

$$a = \! \frac{A}{G} \! = \! 1000 \; h + L_{\! 1\rho} \! + L_{\! 2} \; \Sigma \left(\rho \! - \! s \right) \, \times \, \frac{0,\! 736}{75,\! \times 3600} \; (\mathrm{Kwh})$$

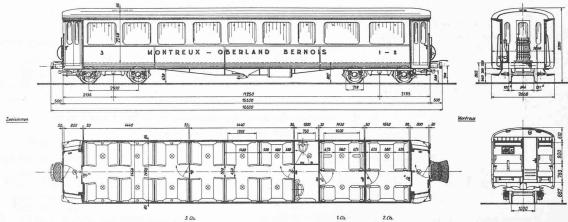


Fig. 30. — Dessin type des voitures légères à voyageurs.

 $= 24 \ 200 \ kg$

= 69,7 %

 $L_1 = \text{longueur}$ (en m) des parcours en rampes ou en palier en pentes de $s \leq \rho$)))) où il faut freiner)) h = différence de niveau à surmonter.

1. Calcul de a.

	L	L_1	L_2	L_3	h	a, en Wh à par t	la roue par km-t		
	m	m	m	m	m	Kwh Wh	erla.		
1. Montreux-Montbovon	22 143	14 600	1350	6 193	720	2,53			
						3,67	83,5		
2. Montbovon-Montreux	22 143	7 843	0	14 300	318	1,12			
3. Montbovon-Gstaad	23 608	20974	750	1 884	296	1,40			
						1,765	37,5		
4. Gstaad-Montbovon	23608	7 828	280	15 500	43	0,365			
5. Gstaad-Zweisimmen	16682	8 019	0	8 663	225	0,86			
						2,080	62,5		
6. Zweisimmen-Gstaad	16 682	10 300	279	6 403	334	1,22			
7. Zweisimmen-Lenk	12 857	11 600	0	1 257	151	0,76			
			4			0,905	35,2		
8. Lenk-Zweisimmen	12 857	2 550	2 107	8 200	25	0,145			
Total 1-6 : pour la ligne	Montre	ıx-Zwei	simme	n =	1936	7,515 7,515	60		
Total 1-8 : pour la ligne					2112	8,420 8,420	56,5		

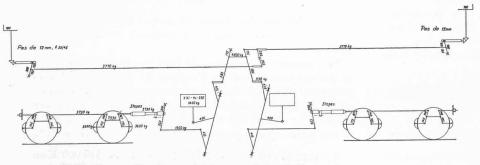


Fig. 23. — Schéma des freins de l'autorail.

Frein à vide.

$$\begin{array}{c} \text{Rapport de la timonerie} \\ \text{des freins d'un bog'e}: \ i_v = \frac{400}{415} \cdot \frac{553}{200} \cdot \left(\frac{167}{173} + \frac{340}{173} \cdot \frac{140}{285} + \frac{340}{173} \cdot \frac{145}{285} \cdot \frac{140}{145} + \frac{340}{173} \cdot \frac{145}{285} \cdot \frac{285}{145} \cdot \frac{140}{285} \right) = 10,3 \\ \\ \text{Pression totale des sabots de frein:} \\ \text{Pression totale en} \\ \text{% de la Tare:} \\ \\ \end{array} \quad \begin{array}{c} 2 \cdot 1400 \cdot 10,3 \\ \hline 28 \cdot 800 \\ \hline 35 \cdot 000 \end{array} \cdot 100 \\ \end{array} \quad = 28 \cdot 800 \text{ kg}$$

Frein à main.

Rapport:
$$i_4 = \frac{2 \cdot 180 \cdot \pi}{12} \cdot \frac{300}{150} \cdot \frac{175}{585} \cdot \frac{415}{415} \cdot \frac{553}{200} \left(\frac{167}{173} + 3 \cdot \frac{340}{173} \cdot \frac{140}{285}\right) \cdot 2 = 1210 \cdot \frac{1}{120} \cdot \frac{1}{120}$$

Rendement: $\eta = 0.4$ Effort à la manivelle du frein = 50 kg Pression totale des

 $0.4 \cdot 50 \cdot 1210$ sabots de frein : 24 200 Pression totale en % de la Tare: $\frac{200}{35000} \cdot 100$

3. Energie nécessaire pour les changements de vitesse en cours de route: Il faut un supplément d'énergie a2 qui peut atteindre environ 4 %.

2. Energie nécessaire par t pour

$$a_1 = \frac{1000 \ p}{75 \ g} \times \frac{V}{2} \Sigma \times t \times \frac{1000 \times 0,736}{3600} =$$

$$= 0,68 \times 1,15 \times \frac{0,736}{3,6} \times V^2 = 0,16 \ V^2$$

Elle dépend uniquement de la vitesse finale V. En admettant qu'elle soit, en moyenne pour tous les trains, de 11 m/sec, on a pour $a_1 = 19,4 Wh$.

Si l'on compte en moyenne 20 démarrages pour chaque voyage Montreux-Zweisimmen, resp. Zweisimmen-Montreux, un certain nombre de ces démarrages s'opérant dans le sens de la pente, on aurait à ajouter environ 450 Wh, ou environ 3,6 Wh par km-t, soit environ 6 % de l'énergie nécessaire à la marche normale.

L'usure du bandage doit être compensée au point « A ».

Fig. 32. — Schéma des freins des remorques C^4 49-50 et ABC^4 96-98.

Rapport de la timonerie du frein à vide.:

Tare = $14\ 300\ kg$.

$$\begin{split} i_v &= \frac{371}{475} \cdot \left(\frac{350}{153} + \frac{197}{153} \cdot \frac{350}{197} \right) \cdot \frac{135}{120} \cdot \left(\frac{135}{245} + \frac{110}{245} \cdot \frac{135}{110} \right) \cdot \\ & \cdot \left(\frac{110}{110} + \frac{220}{110} \cdot \frac{110}{220} \right) = 8,86 \end{split}$$

Pression totale des sabots de frein $\Sigma P = 8,86 \cdot 1400 = 12400$ kg. Pression en % de la tare = $\frac{100 \cdot 12400}{14300} = \infty$ 87 % 14 300

$$\begin{split} \text{Tare} &= 14\ 700\ \text{kg}.\\ i_v = \frac{371}{475} \cdot \left(\frac{350}{145} + \frac{204}{145} \cdot \frac{350}{204}\right) \cdot \frac{135}{120} \cdot \left(\frac{135}{245} + \frac{110}{245} \cdot \frac{135}{110}\right) \cdot \\ \cdot \left(\frac{110}{110} + \frac{220}{110} \cdot \frac{110}{220}\right) = 9,27 \\ \text{Pression totale des sabots de frein } \Sigma P = 9,27 \cdot 1400 = 12\ 960\ \text{kg}. \\ \text{Pression en } \% \text{ de la tare} = \frac{100 \cdot 12\ 960}{14\ 700} = \sim 88\ \% \end{split}$$

14 700

 $ABC^{4\ddot{u}}$

Rapport de la timonerie du frein à main:

Effort à la manivelle = 30 kg.

$$ih = \frac{2 \cdot 165 \cdot \pi \cdot 1 \cdot 1}{10 \cdot 1 \cdot 1} \cdot \frac{860}{430} \cdot \frac{115}{415} \cdot \frac{203}{475} \cdot \left(\frac{350}{153} + \frac{197}{153} \cdot \frac{350}{197}\right) \cdot \frac{135}{120} \cdot \left(\frac{135}{245} + \frac{110}{245} \cdot \frac{135}{110}\right) \cdot \left(\frac{110}{110} + \frac{220}{110} \cdot \frac{110}{220}\right) = 1000$$

Pression totale des sabots de frein = $30 \cdot 0 \cdot 4 \cdot 1000 = 12\,000$ kg. Pression en % de la tare = $\frac{100 \cdot 12\,000}{44\,300} = 84\%$ 14 300

4. Energie nécessaire pour les manœuvres a₃. Il résulte des calculs approximatifs qu'elle est de l'ordre de grandeur d'environ 2,5 %.

L'ensemble de $a + a_1 + a_2 + a_3 = 1,12a = 63$ Wattheures par km-t à la roue.

5. Energie nécessaire au chauffage.

Nombre annuel de km-train = 685 000

685 000 $\frac{365}{365} = 1900$ Nombre journalier de km-train = -

Vitesse moyenne des trains =25 km/h

Durée du trajet journalier $\frac{1000}{25 \text{ km/h}}$ = 76 heures

Durée du chauffage pendant 4 mois et demi ou

135 jours = $135 \times 76 = \sim 10000$ heures.

Composition et capacité de chauffage inst. moy. des trains : 1 autom. +2 voit. à voyag. $=190 \text{ m}^3 \times 0.275 \text{ Watts} = \sim 52 \text{ Kw}$. En moyenne deux tiers des radiateurs sont enclenchés.

Energie annuelle de chauff. = $10\,000 \times 34 = 340\,000$ Kwh (au pantogr.)

resp. au wattmètre à Montbovon = $\frac{340\ 000}{0.77} = \underline{440\ 000\ \text{Kwh.}}$

6. Energie pour l'éclairage.

Environ un cinquième de toutes les heures de la circulation des trains, soit 685 000 km-train = \sim 27 500 h, sont des 25 km/h

Effort à la manivelle = 30 kg.
$$i_h = \frac{2 \cdot 165 \cdot \pi \cdot 1 \cdot 1}{10 \cdot 1 \cdot 1} \cdot \frac{860}{430} \cdot \frac{115}{115} \cdot \frac{203}{475} \cdot \left(\frac{350}{146} + \frac{204}{145} \cdot \frac{350}{204}\right) \cdot \frac{135}{120} \cdot \left(\frac{135}{245} + \frac{110}{245} \cdot \frac{135}{110}\right) \cdot \left(\frac{110}{110} + \frac{120}{110} \cdot \frac{110}{220}\right) = 1050$$
Pression totale des sabots de frein = $30 \cdot 0 \cdot 4 \cdot 1050 = 12600$ kg. Pression en % de la tare = $\frac{100 \cdot 12600}{14700} = \infty 86\%$

heures d'éclairage $=\frac{27500}{5}=5500$ heures. La composition moyenne de 3 voitures, avec $7 \times 7 = 49$ lampes à incandescence absorbe environ 1,2 Kw.

Energie annuelle =
$$\frac{5500 \times 1,2}{0,77} = \underline{8500 \text{ Kwh.}}$$

Il faut y ajouter l'éclairage des gares = env. 120 séries =

840 lampes
$$\frac{840 \times 16 \times 1,5}{1000} = 20$$
 Kw.

Pendant 365 jours à 5 heures = 1800 heures on obtient $1800 \times 20 = 36\,000$ Kwh.

Total pour l'éclairage =
$$\frac{44500}{0.77}$$
 = ~ 58000 Kwh.

7. Energie pour les moteurs des pompes du frein, les moteurs pour compresseurs, groupes convertisseurs et ventilation des automotrices.

La puissance des moteurs du frein des locomotives 2001-2 et des autorails 3001-6 est d'environ 3,7 Kw en service ininterrompu. Toutefois ils ne marchent pas continuellement à pleine charge. Nous nous basons sur 3 Kw. Les pompes marchent pour les 685 500 km-train pendant environ 27 500 h. A cela il faut ajouter pour les manœuvres, etc., environ 15 %.

3 Kw × 27 500 heures × 1,15 ×
$$\frac{1}{0.78}$$
 = $\sim \frac{120\ 000\ \text{Kwh.}}{1}$

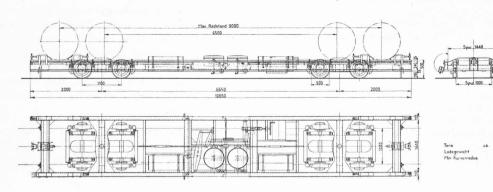
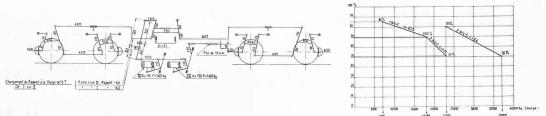



Fig. 33. Dessin type du truc-transporteur.

Caractéristiques du frein à vide.

I. Rapport du frein pour le truc non chargé et pour 1 cylindre de frein $i = \frac{215 \cdot 395}{210 \cdot 665} \left[\left(\frac{260}{150} + \frac{410}{150} \cdot \frac{260}{410} \right) \cdot \frac{260}{150} \cdot \frac{210}{150} + \frac{300}{150} \cdot \frac{90}{150} \right] = \frac{4 \cdot 22}{150}$ provoquant un effort de freinage de $P = 1400 \cdot 4 \cdot 22 = 5900$ kg. $= \frac{84}{0}$ de la tare
Avec rapport de $4 \cdot 22$ et 2 cylindres de frein et 10.000 kg. de charge, on obtient un effort de freinage de $P = 1400 \cdot 2 \cdot 4 \cdot 22 = 11.820$ kg. $= \frac{11.820}{7000 + 10.000} = \frac{69.5}{0} \cdot \frac{\%}{0}$ Avec rapport de $4 \cdot 22$ et 2 cylindres de frein et 16.000 kg. de charge, on obtient un effort de freinage de $\frac{11.820}{7000 + 16.000} = \frac{51}{0} \cdot \frac{\%}{0}$ Avec rapport de $6 \cdot 6$ et 2 cylindres de frein et 16.000 kg. de charge, on obtient un effort de freinage de $\frac{18.480}{7000 + 16.000} = \frac{80}{0} \cdot \frac{\%}{0}$ Avec rapport de $6 \cdot 6$ et 2 cylindres de frein et 30.000 kg. de charge, on obtient un effort de freinage de $\frac{18.480}{7000 + 16.000} = \frac{80}{0} \cdot \frac{\%}{0}$

Caractéristiques du frein à main.

Rapport du frein à main pour true non chargé avec point fixe I $i_m = \frac{2 \cdot 165 \cdot \pi}{10} \cdot \frac{230}{210} \cdot \frac{395}{665} \cdot 6 \cdot 92 = \frac{467}{665}$ Rapport du frein à main pour true non chargé avec point fixe II $i_m = \frac{2 \cdot 165 \cdot \pi}{10} \cdot \frac{230}{210} \cdot \frac{510}{550} \cdot 6 \cdot 92 = \frac{467}{7000}$ Pression totale aux sabots pour le freinage du true non chargé = $50 \cdot 0 \cdot 33 \cdot 467 = 7700$ kg. = $\frac{7700}{7000} = \frac{110 \%}{12000} = \frac{110 \%}{7000} = \frac{110 \%}{7000$

Pression totale aux sabots pour la charge maximum de 30 000 kg. = $50 \cdot 0 \cdot 33 \cdot 728 = 12\,000$ kg. = $\frac{12\,000}{7000 + 30\,000}$ = $\frac{32 \cdot 5}{6}$ de la tare + 30 000 kg. de charge.

Pour tenir compte des moteurs compresseurs et des groupes convertisseurs, etc., des véhicules-moteurs, il faut arrondir ce chiffre à environ 150 000 Kwh.

Les coefficients de rendements approximatifs suivants sont à porter en compte :

moteurs de traction : $\eta 1 = 0.82$ ligne de contact : $\eta 2 = 0.92$ sous-stations : $\eta 3 = 0.80$ lignes primaires : $\eta 4 = 0.95$

Pour environ 42 650 000 km-t par an on aurait ainsi:

$\frac{42\ 650\ 000\ \times\ 0,63}{255} =$	4 650 000
0,575 plus pour chauffage	440 000
plus pour éclairage	58 000
plus pour moteurs	150 000

Consommat. annuelle du M. O. B. = 5298000 Kwh (au wattmètre, côté primaire à Montbovon), ou env. 125 Wh par kmt.

L'énergie récupérée par les trains descendants n'est pas portée en déduction (en 1942 où 2 locomotives à récupération seulement ont circulé, environ 5 % de l'énergie nécessaire pour la marche normale, 5 % de 42 650 000 \times 0,563 = \sim 120 000 Kwh).

En sus de cette consommation du M. O. B., les lignes fournies en courant par lui absorbent par an encore l'énergie électrique approximative suivante comptée aux barres primaires à Montbovon: Montreux-Glion env. 220 000 Kwh ou env. 340 Wh/km-t Clarens-Blonay env. 130 000 » 155 » Les Avants-Sonloup 25 000 » 2,5 Kwh par course-funiculaire.

La consommation annuelle du Glion-Naye mesurée du côté primaire dans la sous-station de Crêt d'y Bau s'élève à environ 350 000 Kwh ou 450 Wh par km-t.

L'énergie journalière moyenne, mesurée au wattmètre côté primaire à Montbovon est d'environ 15 000 Kwh.

La journée du 17 février 1944 a accusé des transports extraordinairement importants. En voici quelques chiffres :

Nombre de trains 2184 km Parcours total de tous les trains Nombre de tonnes (tare et charge utile) 7414 tn Nombre de km-t 207,444 km-t Poids moven par train 28,85 kmParcours moyen par train 28 km Parcours moyen par tn Energie consommée mesurée au wattmètre à 27 100 Kwh Montbovon Energie consommée par km-tn au wattmètre à 131 wh Montboyon Pointe au wattmètre de Montbovon, côté continu 3050 KwPointe du débit côté continu (machines et bat-

teries)

Le mois de février 1944 (29 jours) a accusé un record de consommation par 623 300 Kwh. La pointe la plus élevée qui a été enregistrée depuis le début s'est produite le 18 février 1944 par 4450 Kw (machine 3400; batteries 1050).

Nous avons, sur la base de l'horaire d'été 1944, et en supposant que les trains aient les poids ci-après indiqués, dessiné le diagramme de l'ampèrage journalier absorbé aux pantographes. Direction Montreux-Lenk.

Direction Lenk-Montreux.

Nº des trains	Poids tonnes	Par- cours km	km-t	Nº des trains	Poids tonnes	Par- cours km	km-t
219	65	19	1 235	220	65	33	2 140
221	70	63	4 310	222	100	63	6 300
263	100	63	6 300	48	150	63	9 450
223	100	63	6 300	264	100	63	6 300
49	150	63	9 450	504	65	11	715
49 A	76	63	4 800	50	150	63	9 450
225	150	63	9 450	228	150	63	9 450
513	65	11	715	228 bis	76	63	4 800
229	150	63	9 450	512	65	11	715
231	100	46	4 600	230	100	63	6 300
233	150	63	9 450	518	40	11	440
269	100	63	6 300	232	100	63	6 300
55	150	63	9 450	268	100	63	6 300
519	40	11	440	270	100	63	6 300
239	80	63	5 050	56	150	63	9 450
521	65	11	715	238	100	63	6 300
243	65	63	3 970	240	65	30	1 950
525	40	5	200	242	65	19	1 235
527	65	11	715	526	40	5	200
+ 11 Zweis.		143	7 150	+ 11 Lenk-2		143	7 150
30 tr	ains	1010	101 050	30 tr	ains	1019	101 245

Total:

60 trains 2029 km-trains

202 295 km-t

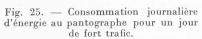
Poids moyen par train = 100 tn

Pointe de charge aux pantogr. = 3290 amp. non compris démarrages, manœuvres, changements de vitesses, éclairage, chauffage, moteurs des compresseurs, des pompes à vide et des groupes-convertisseurs des locomotives et autorails.

Grâce aux puissantes batteries d'accumulateurs et à une organisation rationnelle du service des sous-stations concernant la répartition judicieuse de la charge entre les diverses sous-stations, et entre machines et batteries, le M. O. B. a réussi - malgré les grandes pointes momentanées du débit côté continu — à réaliser une durée d'utilisation annuelle Kwh/Kw très élevée. Elle était de 6412 pour 1942 (avec une consommation totale de 5 213 000 Kwh) et de 7590 pour 1943 (consommation totale de 5 662 000 Kwh).

Fig. 36. — Train-marchandises avec locomotive.

Pour la détermination du facteur Kwh/Kw on se base sur la moyenne annuelle des 10 maxima de 10 minutes ou plus de chaque jour, samedis après-midi, dimanches et jours fériés non compris.

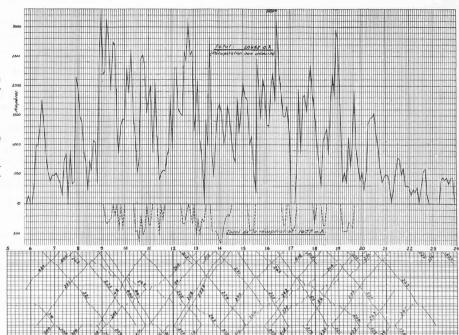

VIII. Les tarifs du M. O. B.

Les tarifs de chemins de fer doivent être suffisamment élevés pour assurer la viabilité de l'entreprise; ils doivent d'autre part tenir compte, dans la mesure du possible, des conditions économiques de la région desservie, ainsi que des intérêts légitimes du public-voyageur et du pays.

Pour respecter ce dernier principe, le M. O. B. a introduit - il était sauf erreur le premier à le faire - des abonnements kilométriques régionaux ainsi que des billets du dimanche extrêmement avantageux pour la population.

Contrairement à la plupart des principaux chemins de fer suisses, les billets du dimanche sont délivrés sur le M. O. B. durant toute l'année.

Les tarifs des chemins de fer privés desservant une région avec une population peu dense, et des chemins de fer de montagne à fortes rampes, doivent être plus élevés que ceux des C. F. F. - La plupart des chemins de fer privés appliquent donc, sous forme de majoration des distances, des surtaxes. Les C. F. F. avaient d'ailleurs pendant des années eux-mêmes des surtaxes de montagne sur certaines de leurs lignes.


sans démarrages

sans manœuvres

sans chauffage (env. 350 KW au moment de la plus forte pointe)

sans éclairage

sans moteurs des pompes à vide, des com-presseurs et des groupes convertispresseurs et des groupes convertis-seurs des locomotives et autorails.

Montreux Les Avants Montbovon Château d'Œx Gstaad

Zweisimmen Lenk

Les bases de taxes et les majorations de distances pour l'établissement des tarifs-voyageurs et des bagages ne sont pas uniformes pour toute la ligne du M. O. B. Ces éléments sont, dans une certaine mesure, fonction des dépenses spécifiques de construction, ainsi que des conditions d'exploitation plus ou moins difficiles des divers tronçons de ligne, soit notamment des déclivités, frais de traction, frais d'entretien, mais aussi de la densité du trafic et de la capacité de transport.

Il serait trop long d'entrer dans tous ces détails. Notons seulement que les tarifs-voyageurs et bagages par kilomètre effectif du M. O. B. sont supérieurs à ceux des C. F. F. et des autres lignes à voie normale ; ils ne s'écartent dans leur moyenne pas beaucoup de ceux des Chemins de fer rhétiques ; ils sont sensiblement inférieurs aux tarifs-voyageurs de certaines lignes analogues et à ceux des chemins de fer de montagne proprement dits.

Les tarifs-voyageurs du M. O. B. sont formés sur le barème et les bases de taxe des C. F. F. avec les majorations de distance suivantes:

> Montreux-Chamby 125 % 320 % Chamby-Allières 145 % Allières-Lenk

Le rabais pour la double course est de 20 %, comme aux C. F. F., etc.

Les billets du dimanche du M. O. B. jouissent d'un rabais de 50 % sur le tarif normal aller et retour (Chemins de fer rhétiques et C. F. F. = 37.5 %).

Les tarifs de sociétés et d'écoles du M. O. B. sont ceux des C. F. F., mais les distances sont uniformément majorées de 100 %.

La recette moyenne par kilomètre-voyageur a été au M. O. B. en 1942 de 9,6 ct ; elle a été en 1941 p. e. à l'A. S. D. de 14,7 ct, aux Chemins de fer rhétiques de 8 ct, aux C. F. F. de 4,2 ct.

Pour les tarifs de bagages, le M. O. B. s'en tient au barème des C. F. F. en majorant les distances comme pour les tarifsvoyageurs.

Les tarifs du bétail et des marchandises du M. O. B. sont établis sur la base des tarifs des C. F. F., avec une majoration uniforme de 100 % des kilomètres effectifs (Chemins de fer rhétiques = 60 à 140 %, C. E. V. = 120 %, C. E. G. = 68 à 150 %, E. Z. B. = 80 %).

Par kilomètre-tonne, la recette moyenne pour les transports-bagages, bétail, marchandises et poste s'élève au M. O. B., en 1942, à 38 ct (en 1941 : A. S. D. = 45,8 ct ; Rhétiques = 30,2 ct; C. E. G. = 43,3 ct; C. F. F. = 7,9 ct).

Les recettes-bagages, bétail, marchandises et poste font au M. O. B., en 1942, 27 % des recettes d'exploitation totales (1941 : Chemins de fer rhétiques = 49 %; C. F. F. =

A remarquer que les chemins de fer suisses n'avaient pas augmenté leurs tarifs jusqu'au 1er mars, respectivement 1er avril 1944, malgré la forte hausse des prix de tous les matériaux intervenue depuis le commencement de la guerre en septembre 1939, et malgré la nécessité de verser au personnel des allocations importantes de renchérissement. Ils avaient au contraire encore introduit les abonnements de vacances à demi-taxe et effectué également au demi-tarif tous les transports militaires (hommes et marchandises).

Le produit des surtaxes de guerre ne suffit de loin pas à couvrir la hausse des prix des matériaux et de la maind'œuvre.

SOCIÉTÉ SUISSE DES INGÉNIEURS ET DES ARCHITECTES

Extrait du procès-verbal de la séance du Comité centra du 18 février 1944.

1. Etat nominatif.

Admissions.

Par voie de circulation du 25 janvier au 18 février 1944 ont été admis:

Nom		Domicile	Section
Strasser, E.	architecte	Broug	Argovie
Thommen, $J. R.$	architecte	Aarau	Argovie
Baer, H., dir.	ing. agr.	Aarau	Argovie
Schaeuble, E.	architecte	Berne	Berne
Thormann, G .	architecte	Berne	Berne
Steiger, H.	ing. méc.	Berne	Berne
Marais, A.	architecte	Carouge/Genève	Genève
de Graffenried, H.	ing. civil	Petit-Lancy	Genève
Kimmerlé, F., dir.	ing. électr.	Petit-Saconnex	Genève
Piguet, P.	ing. méc.	Genève	Genève
Fellrath, H., dir.	ing. électr.	Neuchâtel	Neuchâtel
Roth, E.	ing. méc.	Niederuzwil	Saint-Gall
Halter, W.	architecte	Frauenfeld	Thurgovie
Rovelli, D.	ing. civil	Castagnola	Tessin
Bernardoni, E.	ing. rural	Lugano	Tessin
Dievahirdjian, S.	ing. civil	Lausanne	Vaudoise
Ganguillet, J.	ing. méc.	Lausanne	Vaudoise
Tschappät, L., Dr	chimiste	Lausanne	Vaudoise
Gambaro, H.	ing. civil	Kussnacht a/R.	Waldstätte
Schmitt, P.	ing. électr.	Zurich	Zurich

Par voie de circulation du 7 février au 18 février 1944 ont été admis:

Waeber, M.	architecte	Bulle	Fribourg
Weber, E.	ing. civil	Fribourg	Fribourg
Streiff, F.	ing. civil	Zurich	Zurich
Benninger, H.	ing. électr.	Zurich	Zurich
Gantenbein, A.	ing. électr.	Zurich	Zurich
Geier, E.	ing. électr.	Zurich	Zurich
Hirt, FE., dir.	ing. électr.	Zurich	Zurich
Inhelder, H., dir.	ing. électr.	Zurich	Zurich
Stors and, B.	ing. électr.	Zurich	Zurich
Ernst, W., Dr	physicien	Zurich	Zurich
Huber, R .	ing. électr.	Zurich	Zurich

Dans la séance du Comité central du 18 février 1944 ont été admis:

Torti, A. Bodmer, C. Schiltknecht, E. Nisoli, P.	architecte ing. électr. ing. électr. architecte	Biasca Zurich Zurich Weinfelden	Tessin Zurich Zurich Thurgovie
Démissions :		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2 444 6 4 4 4
Dosch, M. Bodmer, G.	ing. électr.	Ilanz Schaan	Grisons Membre isolé
Décès :			
Von der Mühll, Oetiker, G. Walter, O.	E. ing. civil ing. méc. ing. méc.	Bâle Berne Genève	Bâle Berne Genève
Scherrer, M., Dr Maraini, O. Verrey, JH. Payot, H.	dir. ing. méc. architecte architecte ing. électr.	Landquart Lugano Lausanne Montreux	Grisons Tessin Vaudoise Vaudoise
Grädel, A.	ing. civil	Zurich	Zurich

2. Compte de l'exercice 1943 et budget pour l'année 1944.

Le Comité central approuve les comptes de l'exercice 1943. Au lieu du déficit présumé de 4900 fr., ces comptes se soldent heureusement par un boni de 2101 fr. 57. Le Comité central établit le budget pour l'année 1944 sur la base des comptes de 1943 et décide de soumettre les comptes de 1943 et le budget pour l'année 1944 à l'approbation des sections par votation écrite.