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Transformation de Laplace et

équations différentielles

par Ch. BLANC, professeur à l'Ecole d'ingénieurs
de l'Université de Lausanne.

La recherche de l'intégrale générale d'une équation
différentielle linéaiA à coefficients constants est un
problème assez simple ; il ne se complique guère lorsqu'il
s'agit d'un système d'équations : la méthode est donnée
dans tous les traités d'analyse. Mais, le plus souvent, on
doit chercher une intégrale particAère ; la détermination

des constantes d'intégration conduit alors à la
résolution d'un système d'équations algébriques linéaires
dont on peut dire, à juste titre, qu'elle constitue « un
chiffrage fastidieux sans difficulté ».

Lorsqu'il s'agit d'équations linéaires aux dérivées
partielles, }a rechercMjlpjde l'intégrale générale ne va plus
aussi facilement ; le procédé de séparation des variables,
qu'on emploie si souvent, ne peut être considéré comme
une méthode générale. En outre, on est ensuite obligé
de déterminer des constantes ou fonctions arbitraires, ce

qui représente de nouveau un calcul inutilement long.
On voit du reste sans peine qu'il est peu « économique »

de chercher une intégrale générale pdtyr ensuite la
particulariser, surtout si les deux opérations exigent de longs
calculs.

La transformation de Laplace permet de calculer très
simplement l'intégrale particulière lorsque les conditions
qui fixent les arbitraires sont des conditions initiales ;

elle remplace alors les dérivations par des multiplications,

ce qui transforme l'équation différentielle donnée

en une équation algébrique linéaire.
Nous allons donner un exposé de ce qu'il faut connaître

de la transformation de Laplace pour pouvoir l'appliquer
à l'intégration d'équations différentielles. Nous ne pourrons

être complet : les théorèmes, pour être démontrés

en toute rigueur et en toute généralité, exigent de longs
développements. Nous signalerons en passant les points
qui demanderaient des compléments : le lecteur curieux
d'en savoir plus tiEBivera ces compléments dans le bel

ouvrage de M. Dœtsch M A la fin de cet exposé, nous
donnerons quelques exemples d'application de la transformation

de Laplace à des équations qui se rencontrent en

technique.

I. Définitions et théorèmes.

Soit F (t) une fonction det, définie pour t ^.0. Si l'intégrale

/(«)
00I F(t)dt (1)

a un sens, on dit que/(s) est la transfermée de F (t) par la
transformation de Laplace. La relation (1) définit la

transformation de Laplace. F(t) est la fonction génératrice.

On écrira pour abréger

f(s)=£\F(t)\.
1 Theorie und Anwendung der Laplace-Transformation (Berlin, éd. Sprin*

ger 1937).
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Par exemple, si F(t) t. on a

00

Z\F(t)\ ={ le-'stdi i r
s

ri.
I e~stdt,

d'où ' 9

Nous allons voir que si F(t) satisfait à une équation
différentielle linéaire, /(*) satisfait à une équation
algébrique du premier degré. Le calcul de f(s) ne présente
alors aucune difficulté ; on repasse ensuite à F(t) par une
méthode que nous donnerons.

Toute la théorie nécessaire repose sur quatre
théorèmes que noê» allons énoncer et démontrer.

Théorème 1. La transformation de Laplace est linéaire,
c'est-à-dire que

La démonstration résulte sans autre de propriétés
connues de l'intégrale. Comme l'intégrale (1) est une
intégrale généralisée (limite infinie), il faut supposer, pour
que les relations ci-dessus aient lieu, que tous les termes

qui y figurent existent.

Théorème 2 (Théorème de la dérivée). Si F'(t) existe,

£\F'(t)\=s.2\F(t)\-F(0). (2)

Démonstration: Calculons £)F'(t)[. En intégrant par
parties, il vient

00

f<n*F'{t)dt- -*F(t) + s e-«F(t)dt

— F(0) + s£\F(t)\.

Remarque : Le théorème suppose que s est tel que

lime-!tF(t) 0.
f —>• 00

Corollaire : En faisant les hypothèses nécessaires sur
l'existence des quantités que nous introduisons, on a

£\F»(t)\ s*£\F(t)\-[sF(0) + F'(0)].

Cela résulte de l'application itérée du théorème 2. Par

récurrence, on calculera de même 2 |/<W(i)|.
Ces théorèmes nous permettent déjà d'indiquer

comment on appliquera la transformation de Laplace. Soit

par exemple l'équation différentielle

u" + 4 u' — 5 u 1,

dont on cherche l'intégrale particulière telle que, pour
t 0, u 2, u' 0. On a, en écrivant o(s) £\u{t)\,

£\u'

C!ll

s2v — 2 s,

et en vertu de la linéarité

2s+4(sp — 2) ¦ttv —,
s

d'où
- + 2*+8
s

s2 + 4s —5

Il faut ensuite revenir de v(s) à u(i) ; on verra plus loin
comment on procède.

Théorème 3 (Théorème de composition). Si l'on a
t

P(t)= /a{r)b{t — i)di (3)

0

alors Z\P(t)\=£\a(t)\ £\b{t)\. (3')

(pour autant que les expressions ci-dessus ont un sens).

Remarque : On dit que P(t) résulte de la composition
de a(t) et de b(t). On écrit, à la place de (3),

P(t) a(t)* b(t),

en remarquant que la composition est commutative.
Démonstration du théorème 3: Calculons £!P(t)j :

00 00 *

£\P(t)\ f e-^P^dl^f f e-"a(T)b(t—T)dtà\

e~s'a(T) b(t—i)dtdt,

en renversant l'ordre des intégrations. En posant

t= u, t u + v

dans la dernière intégrale double, on obtient

£\P(t)\= ye-*(u + ,,>a{u)b{v)düdv

f e-™ a(u) du / e—" b {y)

£\a(t)\ Z\b(t)\.

lv

c. q. f. d.

Théorème 4 (Théorème du retard). Soit une fonction

F(t) définie pour t^ 0 : soit à"autre part G(t) une fonction

définie de la façon suivante :

p.. CjP(t — a) si*^.a(a>0)
U:~|o sit<a.

Alors
£|G(t)| e-» Z\F(t)\.

Demonstratio^ On calcule simplement £|G(l)| :

Z\G(t)\=fe-«G(t)dt
0

00 oo

fe-* G(t)dt je-*F(t — a)

a a

M

/ e— C + a)F{t)dt

dt

m

e—a( e~* F (t) dl.
c. q. f. d.
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Ce théorème sera utilisé particulièrement dans
l'intégration d'équations de propagation d'onde.

Transformation inverse de (1). La relation (1) permet
de calculer la transformée à partir de la fonction
génératrice. Il existe une intégrale permettant d'effectuer la
transformation inverse. Mais il est plus simple d'avoir
recours à une table de transformées (de même que pour
calculer une intégrale, on utilise une table de dérivées et
non la définition par une limite de sommes). Nous
donnons ci-dessous une table de transformées : on pourra
vérifier sans peine les calculs.

On peut se poser la question de l'unicité de la
transformation inverse. On démontre que deux fonctions
F(t) et G(t) qui ont même transformée sont égales
partout, excepté peut-être sur un ensemble de mesure
nulle ; il en résulte pratiquement, pour l'ingénieur, que
si une fonction donnée est une transformée, elle n'admet
qu'une fonction génératrice.

Usage de la table. On utilise cette table dans le même
esprit qu'une table de primitives. Si la fonction f(s) dont
on cherche la génératrice figure dans la table, la solution
est immédiate. Sinon, on cherche à s'y ramener, soit par
la transformation de f(s), soit en utilisant les théorèmes
3 et 4. Ainsi, si f(s) est le produit de deux fonctions dont
on connaît les génératrices, le théorème 3 donne la
génératrice de f(s) ; si /ffi e~asg(s), et si on connaît la
génératrice de g (s), la génératrice de f(s) est connue grâce au
théorème 4. Enfin, si f(s) est une fonction rationnelle,
on trouvera sa génératrice en faisant une décomposition
en éléments simples, qui nous donnera des fonctions
figurant dans la table.

La table que nous donnons se limite aux cas usuels :

l'ouvrage cité de M. Dœtsch se termine par une table
sensiblement plus complète. On trouvera d'autre part une
collection fort abondante de transformées (près de 700)
dans le fascicule n° 100 du Mémorial des Sciences
mathématiques : N. W. Me Lachlan et P. Humbert : Formulaire

pour le calcul symbolique (Paris, Gauthier-Villars,
1941)-, dans ce dernier ouvrage, les définitions et les notations

diffèrent quelque peu de celles qui sont données ici.

2. Exemples.

/. Une équation différentielle.

Soit l'équation

Mx" + fx'-2pgx iig. (1)

C'est l'équation différentielle du mouvement d'une
machine d'Atwood lorsqu'on tient compte d'un frottement

proportionnel à la vitesse, ainsi que du poids du
fil. Prenons les conditions initiales

x x0, x' 0 pour t 0.

En posant

i
u

Table de transformées.

N° F(t) f(s)=£\F(l)\

1 1
1

s

2 tn ni
m

3 eat i
s—a

4 sin at a
s2 + a2

5 cos at s

s2+a?

6 sh at a
s2 —a2

7 ch at s

s2 —a2

8 e~^ sin wt w
(s + a)2 -j- w2

9 e~m cos wt
s -f- a

(s + a)2+w2

10 e-"* sh wt w

(s-\-a)2— w2

11 e-°* ch wt
s -f- a

(s + a)2—w2

12 t sin at
2 as

(s2 + a2)2

13 t cos at
s2 — a2

(s2 + a2)2

14 ln em n!
(s-—a)" + 1

15 a gpj
g-aJT

2 \/VT'ï>
°

16
1 Ü 1

~—a Vi
1*

1 «
V/n-J

17 ./„(«) (Bessel) (V^ + ^-sT
\/l + s*

18 Jo (a \/t)
1 *

— e 4»
s

19 F (at) !'©
l'équation (1) devient

My" + fy'-~ 2pgy 0

avec les conditions initiales

y x« + -k- » y' 0 pour t 0.
*d JJ

En posant u £ \yL on transforme (2) en

(2)

(Ms2 + fs-2Pg)u= (xo + ^J (Ms + f),
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d'où

s + M
P/ s2+^s 2pg

ou, en posant

M M

I 2os_L_ 2 b Hë in2 — b2
M ' M

u
u + 26

' 2pJ (s+ b)2 — ü)2

La table des transformées donne alors immédiatement

' e~u | ch\ut-\ sh wty | x0 2 p UJ

d'où

a; x0 + jP- e~M cA uii H sA urt '
2p 5n'

qui est l'intégrale cherchée de (1).

II. Equation des télégraphistes.

Nous allons intégrer l'équation

du dt2
(1)

qui est l'équation de la tension u dans une ligne sans

pertes, de capacité et de self-induction linéaires C et L.
1

Nous poserons CL -j=, et nous choisirons les conditions

initiales

u 0.
du
Tt 0 pour t 0 (2)

(tension et courant nuls au temps t 0), et les conditions

aux limites

u A(t) pour x 0,

u Ri pour x — l.
(3)

Transformons l'équation (1) par la transformation de

Laplace. Il vient, en posant v{x, s) £ \u(x, t)\, et en
tenant compte de (2)

2

V
0. (4)

Les accents désignent des dérivations par rapport à x.
Nous admettons, en écrivant (4), que l'on peut permuter
la dérivation et la transformation de Laplace. Il faut
transformer également les conditions (3). On a

L Ë
àt

du
Tx'

donc, en transformant,

LsZ\i\ =—v',
et les relations (3) deviennent

v a (s) pour x 0, a (s) £ \A (t)\
Lsv + Rv' 0 pour x /.

(5)

L'intégrale générale de (4) est
s s

et les conditions (5) donnent

ci + c2 a (s)

d'où, en posant

L —
R

Y

L +

(x,.
a (s)

1—-ce v

Ü

e —f e

ou encore

w (a;, s) a (s) N f" e ¦a(s) Vf e F
(2ln—x)

Or, par le théorème 4,

a(s) e—<w £ jA (t — a)|, avec A (t) 0 six<0
donc

u(x,t)=^A^t X__j_^T»A^ _
On a une propagation d'onde avec réflexion aux extrémités

de la ligne ; à l'extrémité x l, l'onde est réfléchie

avec multiplication de u par — y- Il y a trois cas
particuliers remarquables :

R 0 ; alors y — 1 j il y a réflexion avec changement
de signe ;

R oo ; alors f — 1 ; réflexion sans changement
de signe ;

R LV ; alors y 0 ; l'onde est complètement
absorbée à l'extrémité x l.

Si maintenant, modifiant (3), nous supposons qu'en
x l la ligne est fermée sur une résistance inductive, les

calculs ne sont guère plus compliqués ; si L* est le coefficient

de self-induction de cette résistance, on a pour v(x, s)

la même expression que ci-dessus à condition de poser

j R + L*s
Xj " ¦ ¦¦¦ ¦ ¦'¦¦

L +
R + L*s'

V

Y dépend alors de s, et il faut en tenir compte. La
première réflexion donne

v-l (x, s) — a («w (s) e~"T^ t-*) — a (s) w(x, s)

avec

w(x,s)=\ 1 +

LV
17

LV+ R
e-F0"-*).

L* + s
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Or
LV_
T7 2LVA LV+*t-1

e L*
*

LV + R, tH
L*

2LV

LV + RI H
-±,2i-X) 2LV p

e ri2l^x>= —prZ msm
L*

d'où par le théorème de composition

/ 21 — x
H (x, t) A t

2L\

V

,V T LV + R / 2 l—x\

P / A(t—r)e l°~ V v~)di,
L

ce qui montre qu'il y a diffusion de l'onde après réflexion.

III. Equation de la chaleur.

On sait que la température u d'un mur indéfini et

homogène, avec sources de chaleur uniformément réparties,

vérifie l'équation aux dérfpees partielles

d2u 1 du
~dx~2==~a~2lï~ A{t) (1)

où a est un coefficient dépendant de la nature physique
du mur : A(t) mesure la quantité de chaleur dégagée par
unité de volume et de temps au temps t ; nous allons

intégrer (1) avec la conditj^i initiale

u 0 si t 0, (2)

et les conditions aux limites

u 0 si x 0 et x l. (3)

En transformant (1) et en posant

v(x,s)=£\u(x, t)\, q>(s) £\A(t)\,
on a

o
v" — —2v — <p(«), (4)

avec les conditions aux limites

v 0 si x 0 et x l.

Il est avantageux d'intégrer (4) au moyea|g'une série

de Fourier. On trouve ainsi

v 2j °n (*) sin —j—
1

avec

Or

bn
2 [1-(-!)»] a2 <p(s)

Rïï

* + an tt\2
"T

* +

(o»irII

d'où

<P(*)

an it
fA(t—r)e \ l /Tdf|

et

a (a:, i) i
2a2^l—(—1)» nttx f., -(^Yt,— V 1 -sm-r- / Ait — t) e V / dx
¦n -t-J n l

qui est l'intégrale cherchée.

Si, en particulier, A(t) constante A, il vient plus
simplement

u (x, t) ;

2Z2A J, 1 Wmw''>
IV. Equation à coefficients variables.

Nous avons appliqué jusqu'ici la transformation de

Laplace à des équations à coefficients constants. Cette

;i§|ilriction peut être levée partiellement : si l'équation
est aux dérivées partielles, par rapport à a: et f, et si l'on
applique la transformation par rapport à t, les coefficients

peuvent être des fonctions de x.
Prenons par exemple l'équation

d*y f 2Ay'(x) y"(x)
dx2 ^ [A\v(x) + B vu' (x) dx

d*y
dpM7d«

Si nous choisissons les conditions initiales

y =o
dy
dt

pour {= 0

0. (1)

(2)

et les conditions aux limites

y Fx (t) pour x 0

y F2 (t) ' pour x — l,
(3)

?_SÜjpient, par la transformation de Laplace, en posant
u £ \y\,

u" +
2 A vu'

_Ai» + B

avec les conditions

u u/2sau 0 (4)

u f1(s) Z |FX (t)\ pour a; 0

u f2(s) £, \Ft (i)| pour a? l.

L'intégrale générale de (4) est

1

(5)

u Aiu + B [c-L&Vf + c2 e—,v].

En introduisant les conditions aux limites, et en procédant

comme plus haut (équation des télégraphistes), on
obtient une somme de termes de la forme

v f{ (s) e-»qpWA(a;),

qui sont les transformées des fonctions

z h(x) Ft[t — <p(x)].
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On met ainsi en évidence une propagation d'onde à

vitesse variable, sans diffusion.
L'équation (1) généralise l'équation des propagations

d'ondes dans les conduites à caractéristiques linéaire,
ment variables1. C'est l'équation du cas le plus général
sans diffusion.

Conclusions. Nous espérons avoir montré que la
transformation de Laplace est une méthode rapide et sûre

pour intégrer les équations différentielles et aux dérivées

partielles linéaires, lorsqu'on cherche une intégrale
particulière fixée par des conditions initiales. Les
problèmes aux limites, ceux de régimes permanents, en
particulier, seggésolvent par d'autres méthodes. Nous

pouvons vérifier ici la remarque que nous avons faite
déjà : « La méthode à choisir pour venir à bout de

l'intégration dépend dans une plus large mesure de la nature
des conditions qui fixent les arbitraires que de la forme
de l'équation elle-même 2 ». Il serait vain, par exemple,
d'utiliser la transformation de Laplace pour calculer des

régimes permanents ; mais il est remarquable qu'il
existe, pour chaque type de coUditions fixant les
arbitraires, une méthode de transformation analogue à celle
de Laplace.

Lausanne, le 15 janvier 1943.

Projet d'accumulation hydraulique
de Rossens-Hauterive sur la Sarine

par J.-F. BRUTTIN, ingénieur aux « Entreprises électriques
fribourgeoises ».

Dans le programme décennal de construction d'usines

hydroélectriques établi par l'Association suisse des
électriciens et l'Union des centrales suisses d'électricité, le

projet de Rossens-Hauterive ne figure que dans un tableau

annexe comme usine d'intérêt régional. Cependant
l'importance de cette installation et le rôle qu'elle sera

appelée à jouer dans l'économie électrique de la Suisse

romande, lui confèrent un intérêt qui dépasse les limites
du canton de Fribourg.

Aussi, pensons-nous qu'il n'est plus prématuré
d'exposer dans cette revue le but de la construction du
barrage de Rossens et les grandes lignes du projet dont la
mise au point vient d'être décidée par le Conseil
d'administration des Entreprises électriques fribourgeoises
(EEF.).

Caractéristiques et but de la nouvelle installation
(voir fig. 1).

Le nouvel aménagement de Rossens-Hauterive
consiste dans la création d'un lac artificiel dans la basse

1 Voir H. Favre : « La résonance des conduites à caractéristiques linéairement

variables », Bulletin technique, numéro du 7 mars 1942.

' Voir: «Les méthodes du calcul symbolique», par Ch. Bianc. Bulletin
technique du 9 janvier 1943. p. 1 a 5.

Gruyère, destiné à régulariser le débit de la Sarine qui
alimente l'usine d'Hauterive construite en 1902 au fil de
l'eau et à en augmenter la chute. Par suite de l'accumulation,

le débit maximum des turbines d'Hauterive passera

de 25 à 75 m3/sec et la chute brute moyenne de 69
à 95 m. La production annuelle d'énergie qui est actuellement

de 40 à 50 millions de kWh, répartie très irrégulièrement

sur l'année, atteindra en moyenne environ 200
millions de kWh, dont 80 au minimum en hiver.

Ces quelques chiffres montrent clairement le premier
but de la nouvelle installation qui est d'augmenter et de
régulariser la fourniture de courant aux réseaux des EEF.

Or, pour cette importante distribution, les EEF. ne
disposent que d'usines au fil de l'eau sur la Sarine et de
l'usine de Broc sur la Jogne. Le bassin d'accumulation de
cette dernière permet une certaine égalisation des pointes,

mais est nettement insuffisant pour compenser les
débits d'étiage pendant des périodes prolongées. Aussi
la fourniture de courant est-elle irrégulière et actuellement

insuffisante pendant de longues périodes de l'année

au cours desquelles les EEF doivent avoir recours
à des sources de courant extérieures.

Par la construction de Rossens, les EEF. seront à
même de fournir pendant toute l'année le courant de
base à leurs réseaux et de couvrir à tout instant des

pointes momentanées de 59 à 70 000 kW, suivant le=

niveau du lac.
Si nous dépassons maintenant le cadre local,

conformément à la tendance actuelle d'organiser la production
d'énergie sur l'ensemble du pays, nous constatons que les.

caractéristiques et la position de Rossens complètent
d'une façon particulièrement satisfaisante l'équipement
électrique de la Suisse romande.

Avec l'usine basse chute du Verbois au fil de l'eau, et
l'usine haute chute de la Dixence à accumulation
essentiellement hivernale, l'usine de Rossens-Hauterive, à.

chute moyenne et accumulation annuelle, forme un
ensemble harmonieux capable de répartir d'une façon à.

peu près régulière sur toute l'année un peu plus de SOO1

millions de kWh, soit un dixième de la production totale
de la Suisse dans ces dernières années.

Signalons enfin que la situation de l'usine d'Hauterive^

au centre du pays et à proximité immédiate des grandes-

lignes d'interconnexion de l'EOS vers la Suisse romande
et de Galmiz-Mühleberg vers la Suisse allemande, l'appellera

sans doute à fonctionner comme usine de secours en
cas d'accident ou d'avarie aux lignes et centrales situées

excentriquement sur les frontières.

Données hydrographiques et production d'énergie.
Le régime de la Sarine, dont le bassin versant ne

comprend qu'une très petite proportion de glaciers, est un
des plus variables que l'on puisse constater en Suisse. La

moyenne des débits journaliers varie à Fribourg, par
exemple, de 5 m8/sec à 150 m8/sec, les crues momentanées

atteignant 300 et 350 m8/sec chaque année et exceptionnellement

600 à 700 m8/sec.
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