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central. — NECROLOGIE :

Extrait des procés-verbaux des 5me et 6me séances du Comité

Transformation de Laplace et
équations différentielles

par Ca. BLANG, professeur a4 I'Ecole d’ingénieurs
de I'Université de Lausanne.

La recherche de I'intégrale générale d’une équation
différentielle linéaire a coeflicients constants est un pro-
bléeme assez simple ; il ne se complique guére lorsqu’il
s’agit d’un systéme d’équations : la méthode est donnée
dans tous les traités d’analyse. Mais, le plus souvent, on
doit chercher une intégrale particuliére ; la détermina-
tion des constantes d’intégration conduit alors & la réso-
lution d’un systéme d’équations algébriques linéaires
dont on peut dire, & juste titre, qu’elle constitue «un
chiffrage fastidieux sans difficulté ».

Lorsqu’il s’agit d’équations linéaires aux dérivées par-
tielles, la recherche de I'intégrale générale ne va plus
aussi facilement ; le procédé de séparation des variables,
qu’on emploie si souvent, ne peut étre considéré comme
une méthode générale. En outre, on est ensuite obligé
de déterminer des constantes ou fonctions arbitraires, ce
qui représente de nouveau un calcul inutilement long.
On voit du reste sans peine qu’il est peu « économique »
de chercher une intégrale générale pour ensuite la parti-
culariser, surtout si les deux opérations exigent de longs
calculs.

La transformation de Laplace permet de calculer tres
simplement P'intégrale particuliére lorsque les conditions
arbitraires sont des conditions

qui fixent les initiales ;

elle remplace alors les dérivations par des multiplica-
tions, ce qui transforme I’équation différentielle donnée
en une équation algébrique linéaire.

Nous allons donner un exposé de ce qu’il faut connaitre
de la transformation de Laplace pour pouvoir 'appliquer
a I'intégration d’équations différentielles. Nous ne pour-
rons étre complet : les théorémes, pour étre démontrés
en toute rigueur et en toute généralité, exigent de longs
développements. Nous signalerons en passant les points
qui demanderaient des compléments : le lecteur curieux
d’en savoir plus trouvera ces compléments dans le bel
ouvrage de M. Daetsch 1. A la fin de cet exposé, nous don-
nerons quelques exemples d’application de la transfor-
mation de Laplace & des équations qui se rencontrent en

technique.

1. Définitions et théorémes.

Soit /' (¢) une fonction de ¢, définie pour ¢ 0. Si I'inté-

grale

filg) = / e F (1) dt (1)

e
o

a un sens, on dit que f(s) est la transformée de F (t) par la
La relation (1) définit la
I'(t) est

trice. On écrira pour abréger

f(s) =2 |F ().

transformation de Laplace.

transformation de Laplace. la fonction généra-

v Theorie und Anwendung der Laplace-Transformation (Berlin, éd. Sprin-
ger 1937).
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Par exemple, si I'(t) =, on a
7 R
o - )
LIF() | :/ te—tdt= l—:a—sfl +?/ e—stdt,
o 0 b

s 3 |

d’ont Q= —-
8§

Nous allons voir que si F(¢) satisfait & une équation
différentielle linéaire, j(s) satisfait & une équation algé-
brique du premier degré. Le calcul de f(s) ne présente
alors aucune difliculté ; on repasse ensuite a [(¢) par une
méthode que nous donnerons.

Toute la théorie nécessaire repose sur quatre théo-
rémes que nous allons énoncer et démontrer.

Théoréme 1. La transformation de Laplace est linéaire,
c'est-a-dire que

{ e Al O [k,
SYF -+ Fol =8\ Fy| £\ Fyl ;

3 — ¥y CICF, | =CL|Fy).

La démonstration résulte sans autre de propriétés con-
nues de l'intégrale. Comme lintégrale (1) est une inté-
grale généralisée (limite infinie), il faut supposer, pour
que les relations ci-dessus aient lieu, que tous les termes
qui y figurent existent.

Théoréme 2 (Théoreme de la dérivée). Si T'(t) existe,
UF @] = 5. SLF )] == F(0)- (2)

Démonstration : Calculons £}/ (¢)!. En intégrant par
parties, il vient
e ow

8

/ e FO) dt—=

(%
o

e F (1)

a:‘.
+ s/ e Ftydt =
.
0 0
=—F(0)+ s2 ().
Remarque : Le théoréme suppose que s est tel que
lim e—*tF (1) = 0.
t—>w»
Corollaire : En faisant les hypothéses nécessaires sur
Pexistence des quantités que nous introduisons, on

LIF" (1) = 22 |F (1) — [s F (0) + F' (0)].

Cela résulte de I'application itérée du théoreme 2. Par
récurrence, on calculera de méme £ /7™ (1){.

Ces théorémes nous permettent déja d’indiquer com-
ment on appliquera la transformation de Laplace. Soit
par exemple I'équation différentielle

w4+ 4u —bu=1,
dont on cherche 'intégrale particuliére telle que, pour

t=0,u=2 u =0.0n a, en écrivant ¢(s) = 2ju ()|,

Liu'| = sv — 2,

Llu"| = sty —2s,
1

= —

S

(K W
£
et en vertu de la linéarité

. _ 1
s2p—2s+4(sy—2) —by=—,
s

i7+28+8

d’out gp—— e B
s2 -+ 4s—5

I1 faut ensuite revenir de ¢(s) & w(t); on verra plusloin

comment on procéde.

Théoreme 3 (Théoreme de composition). St l'on a

t
<

P = / a(t) b(t—1)dr (3)

s
4

alors SIP @) =2la®)| . £]b(8). (37)

(pour autant que les expressions ci-dessus ont un sens).
Remarque : On dit que P (¢) résulte de la composition
de a(t) et de b(t). On écrit, a la place de (3),
P(t)=a(t)+ b(1),
en remarquant que la composition est commutative.
Démonstration du théoréeme 3 : Calculons £|P ()] :
> o ¢
s;pa;::/ P (1) dt :/ / e—sta(t)b(t—1) didt =

e
o 0

:/fe—”u'(r") b (t—r)drdt,
o1

en renversant Pordre des intégrations. En posant
t=u-tv

dans la derniére intégrale double, on obtient

= u,

LIP ()| = /b/?‘*s("*"’) a(u) b(e)dude

:/ ea(u)du . /e_s"b(u) dy =
= Lla(t)l . L]b(o)].

c. qr fods

Théoréme 4 (Théoréme du retard). Soit une fonction
F(t) définie pour t > 0 : soit d’autre part G(t) une fonction
définie de la fagon suivante :

G() = 3 F({t—a) s1 t>a(a>0)
0 s1t< a.
Alors
LIG@) | = e L)F ()},

Démonstration : On caleule simplement £]G ()] :

£1G(1)! :j e G (1) dt

:/ e (J(l) Gi— [('_” ["([ —_— a) di

. v
a a

= ¢ (t+a) 1/‘(() dl

[0

©

— rm/ e F (1) d.
¢ c. q. £ ds

o
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Ce théoréme sera utilisé particulierement dans I'inté- Table de transformées.
gration d’équations de propagation d’onde. = : e =
Transformation ingerse de (1). La relation (1) permet No F (1) f(s) =L |F(e)}
de calculer la transformée & partir de la fonction géné- :
ratrice. Il existe une intégrale permettant d’effectuer la 1 1 ; 1_
transformation inverse. Mais il est plus simple d’avoir ' o
recours a une table de transformées (de méme que pour 9 ” n!
calculer une intégrale, on utilise une table de dérivées et st
non la définition par une limite de sommes). Nous don- 3 ot 1
nons ci-dessous une table de transformées : on pourra ‘ s—a
vérifier sans peine les calculs. —,_i . ‘ a
On peut se poser la question de 'unicité de la trans- ! et ‘ 2L a2
formation inverse. On démontre que deux fonctions ) | s
F(t) et G(t) qui ont méme transformée sont égales par- ] cos at l o
tout, excepté peut-¢tre sur un ensemble de mesure |
nulle ; il en résulte pratiquement, pour 'ingénieur, que 6 sh at 521175
si une fonction donnée est une transformée, elle n’admet
qu’une fonction génératrice. 7 ch at o i pe
Usage de la table. On utilise cette table dans le méme ] o~ sin 4
esprit qu'une table de primitives. Si la fonction f(s) dont (s+a)®+ w?
on cherche la génératrice figure dans la table, la solution 9 i ot s+ a
est immeédiate. Sinon, on cherche & s’y ramener, soit par (s + a)* 4 w?
la transformation de f(s), soit en utilisant les théorémes 10 I @
3 et 4. Ainsi, si f(s) est le produit de deux fonctions dont } B s+ af— w2
on connait les génératrices, le théoreme 3 donne la géné- ’ PEe
ratricede f(s) ; si f(s) = e=%g(s), et si on connait la géné- n | e ch wi (s F a)f—w?
ratrice de g (s), la génératrice de f(s) est connue grice au % as
théoreme 4. Enfin, si f(s) est une fonction rationnelle, 12 tsin at (Sz; a2
on trouvera sa génératrice en faisant une décomposition ‘ 5 8
en éléments simples, qui nous donnera des fonctions 13 | t cos at Sz - (2 ”
figurant dans la table. (s 1 &%)
La table que nous donnons se limite aux cas usuels : 14 | et _n d
Pouvrage cité de M. Detsch se termine par une table e {g=gj®+1
sensiblement plus compléte. On trouvera d’autre part une o " .
collection fort abondante de transformées (prés de 700) 15 e e—aVs
dans le fascicule n® 100 du Mémorial des Sciences mathé- 1\,/, m S
matiques : N. W. Mc Lacnrax et P. HumBerT : Formu- 16 | ,_"‘_: s
laire pour le calcul symbolique (Paris, Gauthier-Villars, { ‘77;\,7 ; \79__8
1941); dans ce dernier ouvrage, les définitions et les nota- i R v — R ~
tions different quelque peu de celles qui sont données ici. 17 Ja (1) (Bessel) (V1 +°__S) (n>—1)
a Vit s '
2. Exemples. 138 ! Jo(aV/1) %(»—ﬁ
1. Une équation différenticlle. 19 ‘ ;‘m[) o 1 / <i>
Soit I'équation ' a' \a
Mot —dp g g 1) I’équation (1) devient
P ] . ) ,
C’est I’équation différentielle du mouvement d’une My" 4 fy' —2p 25 =0 )

machine d’Atwood lorsqu’on tient compte d’un frotte-
ment proportionnel a la vitesse, ainsi que du poids du
fil. Prenons les conditions initiales

z=2a, &' =0 pour {=0.

En posant

avec les conditions initiales

Y= ”‘_ T)p‘ )
Zp

y =0

pour t = 0.

En posant u = £|y|, on transforme (2) en

(Ms?2+ fs—2pg) u= <.T“ - ;)B—)

/

(Ms + |),
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d’ou L’intégrale générale de (4) est
f s s
u S_{_ﬂ p=cre7" Feye 7,
W= <z,, -+ ‘>‘> .
20) o [ . 2ps . B,
s M et les conditions (5) donnent
ou, en posant c; + ¢y = al(s)
! ‘ 2 pg sl sl
A 7 A 1<L—|—%>e7+cz<l,—$> c7=0,
: H s+ 258 d’ou, en posant
"‘(“”+2p> (s + b)F —w? oy R
L— 2
La table des transformées donne alors immédiatement TE=——
v

— (ara = )Lp> e (ch wl + % sh wt)

e — <.T,, + ,)L> et <Chwl —{—ishwt>—,)i,
P w =p

qui est I'intégrale cherchée de (1).

d’ott

II. Equation des télégraphistes.
Nous allons intégrer I'équation

9 u 9 u
Ja? = ‘?

(1)

qui est I’équation de la tension w dans une ligne sans
pertes, de capacité et de sell-induction linéaires C et L.

choisirons les condi-

Nous poserons CL = —;, et nous
P 72
tions initiales
du
u=~0, = 0 pourt=20 (2)
C

(tension et courant nuls au temps ¢ = 0), et les condi-

tions aux limites
u= A(t)
u= R

@ =10;
pour x - 3)

pour @ = .

Transformons I’équation (1) par la transformation de

Laplace. Il vient, en posant ¢(z, s) = £|u(x, t){, et en
tenant compte de (2)
2
4 §
" — <v> o = 0. (4)

Les accents désignent des dérivations par rapport a a.
Nous admettons, en écrivant (4), que 'on peut permuter

la dérivation et la transformation de Laplace. Il faut
transformer également les conditions (3). On a
I i Ju
T v’
done, en transformant,
Ls £ |if = —',
et les relations (3) deviennent
y=ua(s) pouraz=0, a(s)=L}A() (5)
' )
Lsy + R’ =0 poura =1

L2
sz
‘ —V(E —z)
D& 8) = 5
1 —Ye

ou encore

& — S (a+2 n) o 3 o

\ —— (2ln—
Yiqtg W —a(s) W g =5 S8
0

u(z;s) = als)

Or, par le théoreme 4,

avec A (1) =0sit<<0

x 4+ 2in o 2ln —x
__V—> —Zlﬂ A<l —V—>

On a une propagation d’onde avec réflexion aux extré-

a(s)e—us = LA (t— a),

done

7 _-‘%«71, o
lt,\.l,l\—;f A <t.

mités de la ligne ; & Pextrémité @ = [, 'onde est réfléchie

avec multiplication de w par —y. Il v a trois cas parti-

culiers remarquables :
R =0 alors v =13

de signe ;

il v a réflexion avec changement

R = o ; alors y = —1; réflexion sans changement
de signe ;
R=LV; alors y=0; londe est complétement

absorbée & extrémité a = [.

Si maintenant, modifiant (3), nous supposons qu’en
@ = [ la ligne est fermée sur une résistance inductive, les
calculs ne sont guére plus compliqués ; s1 L* est le coefli-
cient de self-induction de cette résistance, on a pour v (z, s)

la méme expression que ci-dessus & condition de poser

R+ L
T“L— v
Ep R—}—l'L s

¥ dépend alors de s, et il faut en tenir compte. La pre-
miere réflexion donne

o1 (0, ) = —a(s) Y (s)e —FeN = g (s) w(x, s)
avec
2 ][‘
* s
ey — [ LY e,
w (, s) | +Ll'—§— i e
¥, T*
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Or
LV
-JL* _.2Lv£§ _LV—}-R”
BT & . Bredoat i
done
2LV
I* _i(gl_x)— WLV _M ;7217‘" ?,
xR _°" = L*g;" - ( ’>,
— T

d’ou par le théoréme de composition

o) Jiee o
uy (z, )= A <L L % l) =

t
2LV _ iR (2w
S fA(t—r)e (=% )dr,

7l
ce qui montre quil v a diffusion de I'onde aprés réflexion.

II1. Equation de la chaleur.

On sait que la température u d’un mur indéfini et
homogene, avec sources de chaleur uniformément répar-
ties, vérifie Péquation aux dérivées partielles

a4 @)

ot @ est un coeflicient dépendant de la nature physique
du mur : A(t) mesure la quantité de chaleur dégagée par
unité de volume et de temps au temps ¢; nous allons
intégrer (1) avec la condition initiale

w—"0 st =0, (2)
et les conditions aux limites
w =10 stz=0c¢et za=1 (3)

En transformant (1) et en posant
v(z,s) =Llu(z, t)], (s) = LA (8},
on a

o= =—0(s), (4)

a?
avec les conditions aux limites
p =10 siz=0etz=1.

Il est avantageux d’intégrer (4) au moyen d’une série
de Fourier. On trouve ainsi

p = Z by (s) sin n‘r;.'c
avec
_2—(—1p)a o
by = — -
s #ol <ﬂlﬁ:>
l
Or
antr\*
1 = £3(,—(T ‘2
anT 2
‘+<'T

d’ott

_ol Sé f A(—) 0_(m+7r> zT‘“g

o ((u; ’IT>

t 2

2% 4 __ [  A\n ~ o anT

w(x,t) =2i§1wsinm;x /A(t—'r) e ( l )TdT
T T‘ n ¢

et

qui est I'intégrale cherchée.
Si, en particulier, A(f) = constante = A, il vient plus

simplement
WA H 1—(—1)r : T
e, )= 2 vl—%il)sinm<1—e (%3 >’>
L n l

IV. Equation a coefficients variables.

Nous avons appliqué jusqu’ici la transformation de
Laplace a des équations & coeflicients constants. Cette
restriction peut étre levée partiellement : si I’équation
est aux dérivées partielles, par rapport a z et ¢, et si 'on
applique la transformation par rapport a ¢, les coefli-
cients peuvent étre des fonctions de z.

Prenons par exemple I’équation

Py 249" (@) W@y L, Py
e e e

Si nous choisissons les conditions initiales

y =10
dy . pour t=10 (2)
o =
et les conditions aux limites
y=Fy(t) pour z = 0 3
y = F,(t) ~ poura =], i

il vient, par la transformation de Laplace, en posant
u=Lyl,

avec les conditions

u=f;(s) =L |Fy(t)]
u=fy(s) = £|F, ()|

L’intégrale générale de (4) est

pour & = 0
pour @=1,

1
u:mg[clew—{—cze v].

En introduisant les conditions aux limites, et en procé-

dant comme plus haut (équation des télégraphistes), on
obtient une somme de termes de la forme

v = f; (s) e 0@ h(z),
qui sont les transformées des fonctions

z=h(z) Fi[t — o ()]
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On met ainsi en évidence une propagation d’onde &
vitesse variable, sans diffusion.

L’équation (1) généralise I’équation des propagations
d’ondes dans les conduites a caractéristiques linéaire_
ment variables!. C’est I'équation du cas le plus généra]
sans diffusion.

Conclustons. Nous espérons avoir montré que la trans.
formation de Laplace est une méthode rapide et stre
pour intégrer les équations différentielles et aux déri-
vées partielles linéaires, lorsqu’on cherche une intégrale
particuliére fixée par des conditions initiales. Les pro-
bléemes aux limites, ceux de régimes permanents, en
particulier, se résolvent par d’autres méthodes. Nous
pouvons vérifier ici la remarque que nous avons faite
déja : « La méthode & choisir pour venir & bout de I'inté-
gration dépend dans une plus large mesure de la nature
des conditions qui fixent les arbitraires que de la forme
de I’équation elle-méme 2». Il serait vain, par exemple,
d’utiliser la transformation de Laplace pour calculer des
régimes permanents; mais il est remarquable qu’il
existe, pour chaque type de conditions fixant les arbi-
traires, une méthode de transformation analogue & celle
de Laplace.

Lausanne, le 15 janvier 1943.

Projet d’accumulation hydraulique
de Rossens-Hauterive sur la Sarine

par J.-F. BRUTTIN, ingénieur aux « Entreprises électriques
fribourgeoises ».

Dans le programme décennal de construction d’usives
hydroélectriques établi par 1’Association suisse des élec-
triciens et I’Union des centrales suisses d’électricité, le
projet de Rossens-Hauterive ne figure que dans un tableau
annexe comme usine d’intérét régional. Cependant I'im-
portance de cette installation et le role qu’elle sera
appelée & jouer dans ’économie électrique de la Suisse
romande, lui conférent un intérét qui dépasse les limites
du canton de Fribourg.

Aussi, pensons-nous qu’il n’est plus prématuré d’ex-
poser dans cette revue le but de la construction du bar-
rage de Rossens et les grandes lignes du projet dont la
mise au point vient d’étre décidée par le Conseil d’admni-
nistration des Entreprises électriques {fribourgeoises

(EEF.).

Caractéristiques et but de la nouvelle installation
(voir fig. 1).
Le nouvel aménagement de Rossens-Iauterive con-
siste dans la création d’un lac artificiel dans la basse
1 Voir . Favee : « La résonance des conduites a caractéristiques linéaire-

ables », Bulletin technique, numéro du 7 mars 1942,
¢ Voir: « Les méthodes du caleul symbolique », par Cu. Braxc. Bulletin
A [ )

technique du 9 janvier 1943, p. 14 5.

Gruyére, desting & régulariser le débit de la Sarine qui
alimente I'usine d’Hauterive construite en 1902 au fil de
I'eau et & en augmenter la chute. Par suite de I"accumu-
lation, le débit maximum des turbines d’Hauterive pas-
sera de 25 & 75 m3/sec et la chute brute moyenne de 69
495 m. La production annuelle d’énergie qui est actuelle-
ment de 40 a 50 millions de kWh, répartie trées irrégulie-
rement sur I'année, atteindra en moyenne environ 200
millions de kWh, dont 80 au minimum en hiver.

Ces quelques chiffres montrent clairement le premier
but de la nouvelle installation qui est d’augmenter et de
régulariser la fourniture de courant aux réseaux des EEF.

Or, pour cette importante distribution, les EEF. ne
disposent que d’usines au fil de I'eau sur la Sarine et de
I'usine de Broc sur la Jogne. Le bassin d’accumulation de
cette derniére permet une certaine égalisation des poin-
tes, mais est nettement insuflisant pour compenser les
débits d’étiage pendant des périodes prolongées. Aussi
la fourniture de courant est-elle irréguliere et actuelle-
ment insullisante pendant de longues périodes de I’an-
née au cours desquelles les EEF doivent avoir recours
a des sources de courant extérieures.

Par la construction de Rossens, les EEF. seront a
méme de fournir pendant toute I'année le courant de
base & leurs réseaux et de couvrir & tout instant des
pointes momentanées de 50 a 70 000 kW, suivant le
niveau du lac.

Si nous dépassons maintenant le cadre local, confor-
mément a la tendance actuelle d’organiser la production
d’énergie sur ’ensemble du pays, nous constatons que les
caractéristiques et la position de Rossens complétent
d’une fagon particulierement satisfaisante 1’équipement
électrique de la Suisse romande.

Avec I'usine basse chute du Verbois au fil de 'eau, et
I'usine haute chute de la Dixence & accumulation essen-
tiellement hivernale, 1'usine de Rossens-IHauterive, &
chute moyenne et accumulation annuelle, forme un
ensemble harmonieux capable de répartir d’une facon a
peu pres réguliére sur toute 'année un peu plus de 800
millions de kWh, soit un dixiéme de la production totale
de la Suisse dans ces derniéres années.

Signalons enfin que la situation de I'usine d’Hauterive
au centre du pays et & proximité immédiate des grandes
lignes d’interconnexion de I'EOS vers la Suisse romande
et de Galmiz-Miihleberg vers la Suisse allemande, I'appel-
lera sans doute & fonctionner comme usine de secours en
cas d’accident ou d’avarie aux lignes et centrales situées

excentriquement sur les fronticres.

Données hydrographiques et production d’énergie.

Le régime de la Sarine, dont le bassin versant ne com-
prend qu'une trés petite proportion de glaciers, est un
des plus variables que I'on puisse constater en Suisse. La
moyenne des débits journaliers varie & Fribourg, par
exemple, de 5 m®/sec & 150 m?/sec, les crues momentanées
atteignant 300 et 350 m®/sec chaque année et exception-

nellement 600 & 700 m?/sec.
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