Zeitschrift: Bulletin technique de la Suisse romande

Band: 69 (1943)

Heft: 17

Artikel: Contribution a I'étude des courants liquides a surface libre: I'énoncé de
Bélanger-Boss généralisé

Autor: Jaeger, Charles

DOl: https://doi.org/10.5169/seals-52524

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 26.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-52524
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

200 BULLETIN TECHNIQUE DE LA SUISSE ROMANDE

Fig. 8.

point (35 000 cal/h) fonctionne par les grands froids et
pour chauffer le bateau & ’arrét.

Tel qu’il sort de cette reconstruction, le Léman a un
déplacement de 163 t a lege, 197 t avec son plein charge-
ment de 450 passagers. Du temps qu’il était & vapeur, avec
220 t a lege, sa machine de 530 CVi lui donnait une
vitesse unihoraire maximum de 27 km/h. Aujourd’hui,
avec ses deux moteurs développant leur puissance
nominale de 340 CVe & 500 t/min, il fait 31,8 km/h ce
qui le place en téte de tous les bateaux des lacs suisses
pour la vitesse. Le bateau me laisse presque pas de
sillage. Sa stabilité est remarquable. Hélices et moteurs
se comportent parfaitement. Les aptitudes manceu-
vrieres ne laissent rien & désirer : les démarrages sont
énergiques.

Cette réadaptation, cette récupération d’un ancien
bateau, est sans conteste une ceuvre réussie ; elle est
des plus intéressantes quand on l’examine sous Pangle
des difficultés des temps présents. Elle tend & prouver
qu’avec des frais relativement peu élevés, de nombreux
bateaux surannés de nos lacs peuvent étre modernisés
avec avantage.

Contribution a I'étude

des courants liquides a surface libre.
L’énoncé de Bélanger-Boss généralisé,

par Cuarces JAEGER, Dr ¢s sc. techn.,
Privat-docent a I’Ecole polytechnique fédérale,
Collaborateur du Laboratoire de recherches hydrauliques E.P.F.
a Zurich.

(Suite et fin.')
Le théoréme de Bélanger-Béss généralisé.

a) Cas d'une fluide parfait en écoulement potentiel.

Dans le cas d’un fluide parfait en écoulement potentiel,
Péquation (g) se réduit
H = const.

* Voir Bulletin technique du 7 aott 1943, p. 185.

Les solutions sont donc données géométriquement par
I'intersection du plan horizontal H? = const. avec la
surface f; = 0. Admettons — seul cas dont la discussion
présente quelque intérét — que la surface f, =0 posséde
au moins une selle. Quelles peuvent étre les positions
respectives des deux surfaces ? En aucun cas la surface
HY = const. ne peut se trouver au-dessous du point
culminant de la selle la plus élevée, car dans ce cas il y
aurait une certaine région ou il n’y aurait point de courbe
d’intersection réelle, ce qui est hydrauliquement impos-
sible®. Si le plan H§ = const. est en tout point au-
dessus de la selle la plus élevée, il y a deux courbes d’inter-
section bien distinctes, I'une sur chaque face de la sur-
face en U, f; = 0. Il se peut que I'une des deux courbes
seule représente une solution hydraulique.

Supposons, seconde possibilité, que la surface Ho—
const. soit tangente au sommet de la selle. Ce point
appartient a la fois aux deux courbes d’intersection et
fait donc partie des solutions. Nous avons vu qu’en ce
point :

dE* =0

avec toutes les conséquences hydrauliques qu’entraine
cette condition. L’écoulement est tel que le débit est
maximum et P'énergie minimum (avec les restrictions
faites) : la condition dE* = 0, appliquée a la selle la
plus élevée, représente vraisemblablement la solution du
probléeme posé par Boussinesq dans le cas particulier
d’écoulements potentiels. Le point o dE* = 0 est un
«point critique réel » de I'écoulement.

Nous verrons un peu plus loin que la condition en
question entraine deux conséquences : il y a passage d’un
régime a4 un autre, et Iécoulement a amont du point
critique est indépendant de ce qui se passe & I’aval.

b) Cas d’écoulements quast parfaits (avec pertes de charge)
et d’écoulements turbulents.

La plupart des écoulements hydrauliques s’effectuent
avec une certaine perte d’énergie, par suite du frotte-
ment le long des parois ou de tourbillons internes. Dans
certains cas, cependant, 'action du frottement reste
confinée dans une mince « couche limite » bordant I’écou-
lement, sans pénétrer dans la masse d’eau dont I’écou-
lement suit, assez sensiblement, les lois d’un écoulement
potentiel. De tels écoulements sont «quasi parfaits ».
L’exemple classique est le déversoir & créte arrondie.

On se fait une idée élémentaire des mouvements tur-
bulents en imaginant ce qui se passe a I'intérieur de la
masse d’eau animée de puissants tourbillons, dans le cas
du ressaut hydraulique, ou dans le cas d’écoulements
avec pertes & la Borda de quelque importance. Entre
les écoulements quasi parfaits et les écoulements a trés
forte turbulence, il y a toute la gamme des possibilités.
Quoiqu’on sache encore fort peu de choses quant aux
mouvements turbulents, on montre qu'ils peuvent &tre
représentés — aux restrictions prés faites — par les

! Boss, par de toul autres arguments, a bien élucidé ce point.
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mémes équations générales que les écoulements poten-
tiels. Certes, nous serions & I’heure actuelle embarrassés
de dessiner exactement la surface ®; =0, ou la surface
f1 = 0 pour un mouvement turbulent. Mais I'existence
de ces surfaces ne fait point de doute et leur forme ne
peut différer essentiellement des surfaces obtenues pour
des écoulements potentiels. Elles seront, par rapport a
ces derniéres, plus ou moins gauchies. La surface f, = 0
reste une surface a double courbure, en forme générale
de vallée, avec deux versants, un talweg et, éventuelle-
ment, un certain nombre de selles.

L’ignorance ou nous sommes quant a la forme exacte
de la surface f; = 0 ne nous empéche nullement de faire
a son sujet des raisonnements analogues a ceux des para-
graphes précédents.

Dans le cas des liquides parfaits en écoulement poten-
tiel, nous avons tracé vn plan [} = const., dont I'inter-
section avec la surface f; = 0 est, pour un probleme
donné, une courbe dont l'une des branches «représente
la solution » de ce probléme. Le procédé est légitime, car
le plan H; = const. est un lieu géométrique des solu-
tions. Ce mode de représentation est d’ailleurs une simple
transposition du procédé employé pour I'étude des écou-
lements normaux dans les canaux cylindriques. Nous
avions alors tracé le plan de bout, d’inclinaison J, = i,
dont lintersection avec la surface fm =0 donne les
deux solutions du probléeme en régime tranquille et en
régime torrentiel.

Tout autre est le cas général. Remarquons que toute
« courbe solution » de la surface f; = 0 peut é&tre consi-
dérée comme l'intersection de f;, = 0 avec une surface
eylindrique ®, = 0 dont la section droite est la courbe:

JH, B
- S
ou J, est nécessairement positif dans le sens du courant.

Cette surface cylindrique ®, =0 coupe la surface
f; = 0 selon deux courbes, puisque f; = 0 est une surface
en forme de vallée. L'une de ces courbes est la solution
réelle que nous examinons ; 'autre, qui lui fait vis-a-vis
sur autre versant de la vallée, est une «pseudo-solu-
tion ». Il peut d’ailleurs exister, dans certains cas, une
seconde solution sur cet autre versant. Elle est donnée
par Dintersection de f, =0 avec une surface ®; =0,
différente de ®, = 0. Si I’écoulement est normal & I'infini
amont, ®, = 0 et ®;=0 sont, & "amont, asymptotiques
au méme plan debout d’inclinaison J. = 1.

Remarquons que nous pourrions nous passer totale-
ment de la surface cylindrique ®, = 0 et raisonner sur la
seule «courbe-solution ». L’emploi de cette surface
®, = 0 est simplement un mode plus commode de repré-
senter les choses et d’exprimer que la pente J. est
toujours positive, seule propriété de la surface ®y =0
dont nous ayons a faire usage au cours de la démonstra-
tion qui va suivre.

Tracons done, dans Uespace a, h, I}, la surface
fi (@, by H}) = 0 et la surface cylindrique ®, = 0 dont
la section droite est définie par I’équation :

I

W =:=—dle
et qui représente la variation le long de I'axe des z de
la loi des pertes de charges totales : pertes par frotte-
ment et pertes par tourbillons (pertes a la Borda) y
comprises. La seule hypothése que nous ayons a faire
quant a ces surfaces, est qu’elles sont continues, tout au
moins dans la région ou nous observons des solutions
réelles. Il ne pourrait guére en étre autrement en hydrau-
lique.

L’une des courbes d’intersection de ces deux surfaces
est, nous ’avons vu, la solution de I’écoulement. On en
tire hoet H.

Si la surface f; = 0 posséde, ainsi que nous I'admet-

| aH;
trons, certains cols, nous avons vu que e =0 au
sommet de ces cols. Mais on voit immédiatement qu’il
n’est pas possible qu’en ces points la surface cylindrique
JH,
23
la pente J. de la ligne d’énergie d’un écoulement avec
pertes de charge et & débit constant étant partout diffé-
rente de zéro. S'il existe un point de contact entre les

= — J, soit tangente a la surface gauche j; =0,

deux surfaces, il se trouvera nécessairement en aval du
point le plus élevé de la selle, en un point o la tangente
commune aura la pente — Je.

L~ point de contact des deux surfaces, s’il en existe
un, est le point critique réel de I’écoulement.

Pour étudier ce point, nous faisons passer par I'origine
des axes une surface parallele & la surface cylindrique
JH,
Jx
courbe Ox’ (Fig. 6), telle que 'ordonnée d’ua point de
cette courbe d’abscisse z est:

= — J.. Elle trace sur le plan vertical H3Ox une

z
(11) AH,=|[(—Jc) da.
0
En désignant par Hj la valeur de Hj a origine @ = 0,
ou A H, = 0, nous avons, pour un point quelconque, la
relation évidente

(12) HY + AH, = HY = const.
et :
(13) JH}
=0
Jx

pour n’importe quel point de la surface réglée et, en parti-
culier, pour le point de contact avec la surface f; = 0.

Le peu que nous savons des pertes de charge nous
apprend que AH, est, en général, une fonction de h (par
exemple relations de Chezy ou Strickler), et que,
IOH JH

2 . R , ¢
0. Si Pon a, au point eritique réel, % ( on
Jh Jh

JI ,.
A}}J,iﬂ, en sorte qu’il n’est pas pos-
Jh

sible de caractériser les propriétés du point critique

aura, par contre,
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réel, dans le cas d’écoulements avec pertes de charge,
par une différentielle totale, comme dans le cas de
liquides parfaits en écoulement potentiel. Nous désigne-
rons cependant symboliquement les propriétés de ce
point par (dE)* = 0, en nous rappelant que

JHs IH5
O dh

90

5 0
(14) (dE)* =0 signifie :
IH;
dx

0 _
&‘_/z'—()

0

L’examen de la figure 6 nous livre, en outre, I'une des
propriétés essentielles du point critique. Le fait que la
surface cylindrique est tangente & la surface f; =0
permet, en ce point, et en ce point seul, le passage d’un
des versants de la surface en forme de U & I'autre ver-
sant, ¢’est-a-dire en nous placant au point de vue hydrau-
lique, le passage d'un régime torrentiel & un régime
tranquille, ou inversement. Il est essentiel de remarquer
que la réciproque de ce théoréme est, elle aussi, nécessai-
rement vraie : si ’'on reconnait, le long d’un écoulement a
surface libre, le passage d’un régime a un autre, on est
certain qu’un point critique réel existe, quelque part,
entre les profils, ou I'on a pu établir avec certitude la
nature de I’écoulement. ‘

Cette remarque est particulierement importante pour
‘¢tude de certains écoulements turbulents, qui échap-
pent encore & une analyse mathématique, mais le long
desquels on peut reconnaitre avec certitude le passage
d’un régime & un autre : par exemple, le ressaut hydrau-

lique.
[autre propriété, non moins importante — quoique
peut-étre moins nette — du point de contact des deux

surfaces, est de marquer une séparation certaine entre
ce qui se passe & amont du point et ce qui se passe a
I’aval. Nous avons vu, et nous le montrerons encore
avec plus de détails ailleurs, que la hauteur critique h, est
une grandeur caractéristique de la seule section en
travers et des sections voisines. Elle ne dépend, par
exemple, pas directement des pertes de charge. Ce qui
se passe 4 I'aval ne peut donc influencer la valeur de h,,
du moins en premiere approximation. Représentons-nous
maintenant, pour fixer les idées, le cas d’un déversoir.
Supposons d’abord I'écoulement «noyé». Cela signifie,
d’aprés ce que nous avons vu, que la surface cylindrique
coupe la surface f; = 0 sans lui étre tangente. Il n’y a
pas de point de contact et nulle part le régime de I'écou-
lement ne change. Supposons maintenant que, peu a peu,
en modifiant I’écoulement a Paval, nous arrivions & bais-
ser la surface cylindrique jusqu’au moment ot elle touche
la surface f, = 0, créant ainsi un point critique réel. A

partir de ce moment, on peut modifier encore le régime

aval : la surface cylindrique ne peut, nous I'avons vu,
descendre plus bas que le point de contact. Elle reste
comme accrochée & ce point : I'écoulement aval est sans
influence sur I'écoulement amont. Cest la seconde carac-
téristique des écoulements ayant un point critique réel.

La réciproque de ce théoreme n’est peut-étre pas aussi
évidente : on peut cependant raisonner comme suit :
que l'écoulement soit normal ou graduellement varié,
toute modification du régime aval ou amont se transmet
indéfiniment (en diminuant asymptotiquement) vers
I'amont ou l'aval. Cette progression vers I'amont ou
I’aval ne peut étre interrompue que par la présence d’un
point critique. On ne peut pas se représenter un écoule-
ment qui, & partir d’'un certain profil, n’est plus influencé
ni par I’écoulement aval ni par 'amont, sans qu’il y ait
en ce point, une section critique, avec h = h,. On doit
cependant signaler, & titre d’exception, le cas d’'un écou-
lement torrentiel sur toute la longueur, influencable
d’amont en aval seulement, mais non d’aval vers 'amont.

Nous avons fait une certaine réserve en écrivant :
«en premiére approximation ». Il existe, en effet, des cas
ot ’écoulement aval peut influencer, en une mesure res-
treinte, la surface f; = 0. On a alors des surfaces f; = 0
qui sont «a double nappe » ou & nappes multiples; ce qui
laisse entrevoir qu’il y a plusieurs solutions hydrauliques
possibles. L’exemple classique de ces types d’écoulement
est le ressaut hydraulique sur fond avec décrochement
(étudié par Escande ).

Les deux propriétés du profil critique que nous venons
de décrire étaient déja connues depuis longtemps pour le
cas des écoulements avec filets rectilignes. Elles restent
donc vraies pour n'importe quel écoulement : a filets cur-
vilignes, potentiel ou turbulent.

C’est donc la méme propriété de la surface f; = 0 qui
explique le passage du régime torrentiel au régime tran-
quille dans le cas d’un ressaut hydraulique, ou le passage
du régime tranquille au régime torrentiel dans le cas
d’une variation de la pente d’un canal, dans le cas d'un
déversoir & large créte (cas de Bélanger), ou encore dans
le cas d’un déversoir & créte arrondie.

Dans ce qui précéde, nous avons étudié les propriétés
des écoulements possédant un point critique réel. Reste-
rait a montrer quelles conditions doivent étre satisfaites
pour qu’un point critique réel s’établisse.

A Pheure actuelle, 'énoncé d’un théoréme général qui
se prononcerait sur cette question nous échappe. Conten-
tons-nous de deux remarques : quand un point critique
réel existe, la surface réglée ®, = 0 ne peut descendre
plus bas, et la position de la ligne d’énergie est mini-
mum. D’autre part, il est diflicile de se représenter un
écoulement entierement « & I'air libre » qui ne possede
point, quelque part, un point critique réel. Prenons le
cas d’un déversoir noyé. Pour noyer I’écoulement par-
dessus le déversoir, il nous faut relever artificiellement le
niveau aval, soit par un second déversoir, soit par une

! L. Escanpe: Recherches théoriques et expérimentales sur U'écoulement par
vanne de fond. Revue générale de I'Hydraulique, janvier a juin 1939,
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vanne. Dans les deux cas, il y a un point critique et
minimum d’énergie au droit du second ouvrage.

On peut cependant décrire un cas d’écoulement ou 1l
n’y a aucun point critique : considérons deux bassins
infiniment grands, & niveau stable, réunis par un canal
profond et peu incliné, dans lequel le seul régime possible
est le régime tranquille. Nulle part il n’y a de point
critique et, cependant, la ligne d’énergie occupe bien
une position parfaitement déterminée dont dépend le

débit.

Enoncé de Bélanger-Bdss généralisé.

Tout courant permanent & surface libre et a débit
constant, qu’il soit potentiel ou turbulent, avec ou sans
débit solide, peut étre représenté par Iintersection de
deux surfaces : la surface fi(x, h, H}) = 0 et la surface
®, =0. La surface f; = 0 est une surface a double cour-
bure, en forme de vallée. La surface ®, =0 est une sur-
face cylindrique dont la pente est constamment négative
dans le sens du courant.

En aucun cas, la surface ®, = 0 ne peut passer au-
dessous de la surface f1 = 0. Elle est constamment au-
dessus de cette derniére, ou peut lul étre tangente en un
ou plusieurs points. Lorsque les deux surfaces sont tan-
gentes, le point de contact est dit « point critique réel de
I’écoulement ».

Dans le cas d’un liquide parfait en écoulement poten-
tiel, dont I’énergie totale, mesurée par rapport a un
plan de référence fixe, est £* =y H} - Q, le point critique
coincide avec une selle de la surface f; = 0, et 'on a :

dE* = 0.

Dans le cas général d’'un écoulement turbulent, avec
pertes de charge par frottement, s’il existe un point de
contact des deux surfaces, il ne peut coincider avec une
selle. On aura toujours, en un point critique réel :

2 _, s s
Jh y o I
0] ;.

dx 4 Jr v

conditions que nous écrivons symboliquement :
(dE)* = 0.

et qui exprime, entre autres, qu’en ce point la position
occupée par la ligne d’énergie est minimum pour un débit
donné et que pour I donné, le débit est maximum.

Le sens physique du théoréme de Boussinesq serait
donc de ramener I’étude des courants a surface libre a
des considérations d’énergie.

En un point critique réel, la hauteur d’eau h, prend
une valeur caractéristique h,, que I'on obtient en écri-
vant :

I J0
= 0  ou %

Cette valeur ne dépend pas du frottement.

Une premiére propriété du point critique réel est de
permettre le passage d’un écoulement tranquille & un
écoulement torrentiel, ou inversement. Une seconde
propriété non moins essentielle du point critique est que,
tant que le point critique existe, I’écoulement aval est
sans influence sur 'écoulement amont. Il est essentiel
de remarquer que les réciproques de ces énoncés sont
vrales. Si I'on observe I'une des deux propriétés, I'autre
doit nécessairement étre satisfaite, elle aussi, et il existe
un point critique réel de I'écoulement.

L’écoulement en régime uniforme ou normal (b = h,)
correspond a I'intersection de la surface f; = 0, dégénérée
en surface cylindrique, & courbure simple, avec le plan

JH,
—— — const.

Jx

Il importe, pour calculer les lignes de remous, de
connaitre exactement la position du profil critique et la
valeur de la hauteur critique k.. C’est parce qu’il permet,
dans un certain nombre de cas, le calcul des valeurs k.,
que I’énoncé de Bélanger-Boss a une portée pratique
immédiate.

DIVERS

Assemblées générales de I’Association suisse
des Electriciens et de I'Union des centrales
suisses d’électricité.

Les assemblées générales de ces deux importantes associa-
tions auront lieu a Montreux, les 28 et 29 aolt 1943 ; des
excursions suivront le 30 aott.

En plus des séances administratives, sont inscrites au
programme des conférences sur les usines a bassins d’accu-
mulation du Rheinwald et de la vallée d'Urseren ; sur le
passé, le présent et 'avenir de la traction électrique en Suisse.
Des excursions sont prévues aux Ateliers de constructions
mécaniques 4 Vevey, a la fabrique de produits chimiques de
la « Ciba» a Monthey, a la S. A. pour I'industrie de I’Alu-
minium & Chippis, a I'Usine de Chandoline et au barrage de
la Dixence. Les dames sont priées de prendre part & une
course en funiculaire aux Rochers de Naye et a4 une visite du
chiateau de Chillon.

Les inscriptions doivent parvenir & 'administration com-
mune de 'A. S. E. et de I'U. C. S., Seefeldstrasse 301, Zurich,
avant le 24 aott 1943. On peut obtenir a cette adresse tous
renseignements concernant ces manifestations.

Assemblée générale de la Société suisse de
I’'industrie du gaz et des eaux.

Cette assemblée générale aura lieu les 4 et 5 septembre
1943, a Berne. Elle coincidera avec la commémoration du
centenaire de I'Usine a gaz de cette ville et de I'industrie
gaziére suisse. Diverses manifestations sont prévues au pro-
gramme de ces journées. Notons en particulier des exposés sur
les sujets suivants : « 100 Jahre Gasindustrie in der Schweiz »,
« Die Technischen Leistungen der Schweizerischen Gaswerke »,
« Die Bedeutung der Schweizerischen Gasindustrie fir die
Industrie unseres Landes ».

Des excursions sont prévues le lundi 6 septembre 1943,
Tous renseignements peuvent étre obtenus auprés du secré-
tariat de la Société suisse du gaz et des eaux, Dreikonig-
strasse 18, Zurich.
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