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Fig. 8.

point (35 000 cal/h) fonctionne par les grands froids et
pour chauffer le bateau à l'arrêt.

Tel qu'il sort de cette reconstruction, le Léman a un
déplacement de 163 t à lège, 197 t avec son plein chargement

de 450 passagers. Du temps qu'il était à vapeur, avec
220 t à lège, sa machine de 530 CVi lui donnait une
vitesse unihoraire maximum de 27 km/h. Aujourd'hui,
avec ses deux moteurs développant leur puissance
nominale de 340 CVe à 500 t/min, il fait 31,8 km/h ce

qui le place en tête de tous les bateaux des lacs suisses

pour la vitesse. Le bateau ne laisse presque pas de

sillage. Sa stabilité est remarquable. Hélices et moteurs
se comportent parfaitement. Les aptitudes manœu-
vrières ne laissent rien à désirer : les démarrages sont
énergiques.

Cette réadaptation, cette récupération d'un ancien
bateau, est sans conteste une œuvre réussie ; elle est
des plus intéressantes quand on l'examine |pi|||g|'angle
des difficultés des temps présents. Elle tend à prouver
qu'avec des frais relativement peu élevés, de nombreux
bateaux surannés de nos lacs peuvent être modernisés
avec avantage.

Contribution à l'étude
des courants liquides à surface libre.

L énoncé de Bélanger-Boss généralisé,

par Charles JAEGER, Dr es se. techn.,
Privat-docent à l'Ecole polytechnique fédérale,

Collaborateur du Laboratoire de recherches hydrauliques E.P.F.
à Zurich.

(Suite et fin.1)

Le théorème de Bélanger-Boss généralisé.
a) Cas d'une fluide parfait en écoulement potentiel.
Dans le cas d'un fluide parfait en écoulement potentiel,

l'équation (g) se réduit à
Hg const.

* Voir Bulletin technique du 7 août 1943, p. 185.

Les solutions sont donc données géométriquement par
l'intersection du plan horizontal H* const, avec la
surface /x 0. Admettons — seul cas dont la discussion
présente quelque intérêt — que la surface /i 0 possède
au moins une selle. Quelles peuvent être les positions
respectives des deux surfaces En aucun cas la surface
H*a const, ne peut se trouver au-dessous du point
culminant de la selle la plus élevée, car dans ce cas il y
aurait une certaine région où il n'y aurait point de courbe
d'intersection réelle, ce qui est hydrauliquement impossible

h Si le plan H% const, est en tout point au-
dessus de la selle la plus élevée, il y a deux courbes d'intersection

bien distinctes, l'une sur chaque face de la
surface en U, /] 0. Il se peut que l'une des deux courbes
seule représente une solution hydraulique.

Supposons, seconde possibilité, que la surface HZ
const, soit tangente au sommet de la selle. Ce point
appartient à la fois aux deux courbes d'intersection et
fait donc partie des solutions. Nous avons vu qu'en ce
point :

dE* 0

avec toutes les conséquences hydrauliques qu'entraîne
cette condition. L'écoulement est tel que le débit est
maximum et l'énergie minimum (avec les restrictions
faites) : la condition dE* 0, appliquée à la selle la
plus élevée, représente vraisemblablement la solution du
problème posé par Boussinesq dans le cas particulier
d'écoulements potentiels. Le point où dE* 0 est un
« point critique réel » de l'écoulement.

Nous verrons un peu plus loin que la condition en
question entraîne deux conséquences : il y a passage d'un
régime à un autre, et l'écoulement à l'amont du point
critique est indépendant de ce qui se passe à l'aval.

b) Cas d'écoulements quasi parfaits (avec pertes de charge)
et d'écoulements turbulents.

La plupart des écoulements hydrauliques s'effectuent
avec une certaine perte d'énergie, par suite du frottement

le long des parois ou de tourbillons internes. Dans
certains cas, cependant, l'action du frottement reste
confinée dans-une mince « couche limite » bordant
l'écoulement, sans pénétrer dans la masse d'eau dont
l'écoulement suit, assez sensiblement, les lois d'un écoulement
potentiel. De tels écoulements sont « quasi parfaits ».

L'exemple classique est le déversoir à crête arrondie.
On se fait une idée élémentaire des mouvements

turbulents en imaginant ce qui se passe à l'intérieur de la
masse d'eau animée de puissants tourbillons, dans le cas
du ressaut hydraulique, ou dans, le cas d'écoulements
avec pertes à la Borda de quelque importance. Entre
les écoulements quasi parfaits et les écoulements à très
forte turbulence, il y a toute la gamme des possibilités.
Quoiqu'on sache encore fort peu de choses quant aux
mouvements turbulents, on montre qu'ils peuvent être
représentés — aux restrictions près faites — par les

1 Boss, par da tout autres arguments, a bien élucidé ce point.
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mêmes équations générales que les écoulements poten-
tiels. Certes, nous serions à l'heure actuelle embarrassés
de dessiner exactement la surface 0^ 0, ou la surface

fi 0 pour un mouvement turbulent. Mais l'existence
de ces surfaces ne fait point de doute et leur forme ne

peut différer essentiellement des surfaces obtenues pour
des écoulements potentiels. Elles seront, par rapport à

ces dernières, plus ou moins gauchies. La surface f1 0

reste une surface à double courbure, en forme générale
de vallée, avec deux versants, un talweg et, éventuellement,

un certain nombre de selles.

L'ignorance où nous sommes quant à la forme exacte
de la surface f1 0 ne nous empêche nullement de faire
à son sujet des raisonnements analogues à ceux des

paragraphes précédents.
Dans le cas des liquides parfaits en écoulement potentiel,

nous avons tracé un plan Hg const., dont
l'intersection avec la surface fx 0 est, pour un problème
donné, une courbe dont l'une des branches « représente
la solution » de ce problème. Le procédé est légitime, car
le plan H0 const, est un lieu géomêj^rjque des

solutions. Ce mode de représentation est d'ailleurs une simple

transposition du procédé employé pour l'étude des

écoulements normaux dans les canaux cylindriques. Nous
avions alors tracé le plan de bout, d'inclinaison Je i,
dont l'intersection avec la surface fnorm 0 donne les

deux solutions du problème en régime tranquille et en

régime torrentiel.
Tout autre est le cas général. Remarquons que toute

« courbe solution » de la surface /j 0 peut être considérée

comme l'intersection de fx 0 avec une surface

cylindrique <t>2 0 dont la section droite est la courbe :

dm
da

—Je

où Je est nécessairement positif dans le sens du courant.
Cette surface cylindrique 4>2 0 coupe la surface

fl 0 selon deux courbes, puisque /i 0 est une surface

en forme de vallée. L'une de ces courbes est la solution
réelle que nous examinons ; l'autre, qui lui fait vis-à-vis

sur l'autre versant de la vallée, est une « pseudo-solution

». Il peut d'ailleurs exister, dans certains cas, une
seconde solution sur cet autre versant. Elle est donnée

par l'intersection de f1 0 avec une surface 4>2 0,

différente de <t>2 0. Si l'écoulement est normal à l'infini
amont, (J>2 0 et <t>2 0 sont, à l'amont, asymptotiques

au même plan debout d'inclinaison Jt i.

Remarquons que nous pourrions nous passer totalement

de la surface cylindrique <t>2 0 et raisonner sur la

seule « courbe-solution ». L'emploi de cette surface

<J>2 0 est simplement un mode plus commode de

représenter les choses et d'exprimer que la pente Je est

toujours positive, seule propriété de la surface $2 0

dont nous ayons à faire usage au cours de la démonstration

qui va suivre.
Traçons donc, dans l'espace x, h, Ha, la surface

/j (a;, h, Hg) 0 et la surface cylindrique <t>2 0 dont
la section droite est définie par l'équation :

dHl
dx -Je

et qui représente la variation le long de l'axe des x de

la loi des pertes de charges totales : pertes par frottement

et pertes par tourbillons (pertes à la Borda) y
comprises. La seule hypothèse que nous ayons à faire

quant à ces surfaces, est qu'elles sont continues, tout au
moins dans la région où nous observons des solutions
réelles. Il ne pourrait guère en être autrement en hydraulique.

L'une des courbes d'intersection de ces deux surfaces

est, nous l'avons vu, la solution de l'écoulement. On en
tire h et H*..

Si la surface fx 0 possède, ainsi que nous l'admet-
dH*a

trons, certams cols, nous avons vu que -tt— 0 au
dx

sommet de ces cols. Mais on voit immédiatement qu'il
n'est pas possible qu'en ces points la surface cylindrique
3Ha
-^— — Je soit tangente à la surface gauche f1 0,
dx

la pente Je de la ligne d'énergie d'un écoulement avec

pertes de charge et à débit constant étant partout
différente de zéro. S'il existe un point de contact entre les

deux surfaces, il se trouvera nécessairement en aval du

point le plus élevé de la selle, en un point où la tangente
commune aura la pente — Je.

La point de contact des deux surfaces, s'il en existe

un, est le point critique réel de l'écoulement.

Pour étudier ce point, nous faisons passer par l'origine
des axes une surface parallèle à la surface cylindrique
3H'a

— Je. Elle trace sur le plan .vertical HZOx une
dx

courbe Ox' (Fig. 6), telle que l'ordonnée d'un point de

cette courbe d'abscisse x est :

(11) AHe I Je) dx.

En désignant par H* la valeur de H*a à l'origine x 0,

où A He 0, nous avons, pour un point quelconque, la

relation évidente

(12)

et :

(13)

m AHe

dm
dx

HZ, const.

0

pour n'importe quel point de la surface réglée et, en
particulier, pour le point de contact avec la surface fo 0.

Le peu que nous sa\ons des pertes de charge nous

apprend que AH, est, en général, une fonction de h (par
exemple relations de Chezy ou Strickler), et que,
dAHt

dh
=£0. Si on a, au point critique reel, — 0 on

dh

auta, par contre, : 0, en sorte qu'il n'est pas pos-

ible de caractériser les propriétés du point critique
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réel, dans le cas d'écoulements avec pertes de charge,

par une différentielle totale, comme dans le cas de

liquides parfaits en écoulement potentiel. Nous désignerons

cependant symboliquement les propriétés de ce

point par (dE)* 0, en nous rappelant que

dm

(14) (dE)* M 0 signifie :

dHa
dh

''

dh
0

dh

dm
dx

dQ
dx

0

L'examen de la figure 6 nous livre, en outre, l'une des

propriétés essentiels du point critique. Le fait que la
surface cylindrique est tangente à la surface fa ==X)

permet, en ce point, et en ce point seul, le passage d'un
des versants de la surface en forme de U à l'autre
versant, c'est-à-dire en nous plaçant au point de vue hydraulique,

le passage d'un régime torrentiel à un régime
tranquille, ou inversement. Il est essentiel de remarquer
que la réciproque de ce théorème est, elle aussi, nécessairement

vraie : si l'on reconnaît, le long d'un écoulement à

surface libre, le passage d'un régime à un autre, on est

certain qu'un point critique réel existe, quelque part,
entre les profils, où l'djEE.a pu établir avec certitude la

nature de l'écoulement.
Cette remarque est particulièrement importante pour

l'étude de certains écoulements turbulents, qui échappent

encore à une analyse mathématique, mais le long
desquels on peut reconnaître avec certitude le passage
d'un régime à un autre : par exemple, le ressaut hydraulique.

L'autre propriété, non moins importante — quoique

peut-être moins nette — du point de contact des deux

surfaces, est de marquer une séparation certaine entre

ce qui se passe à l'amont du point et ce qui se passe à

l'aval. Nous avons vu, et nous le montrerons encore

avec plus de détails ailleurs, que la hauteur critique hc est

une grandeur caractéristique de la seule section en

travers et des sections voisines. Elle ne dépend, par
exemple, pas directement des pertes de charge. Ce qui
se passe à l'aval ne peut donc influencer la valeur de hc,

du moins en première approximation. Représentons-nous

maintenant, pour fixer les idées, le cas d'un déversoir.

Supposons d'abord l'écoulement « noyé ». Cela signifie,

d'après ce que nous avons vu, que la surface cylindrique

coupe la surface fx — 0 sans lui être tangente. Il n'y a

pas de point de contact et nulle part le régime de

l'écoulement ne change. Supposons maintenant que, peu à peu,
en modifiant l'écoulement à l'aval, nous arrivions à baisser

la surface cylindrique jusqu'au moment où elle touche

la surface /j 0, créant ainsi un point critique réel. A

partir de ce moment, on peut modifier encore le régime

aval : la surface cylindrique ne peut, nous l'avons vu,
descendre plus bas que le point de contact. Elle reste
comme accrochée à ce point : l'écoulement aval est sans
influence sur l'écoulement amont. C'est la seconde

caractéristique des écoulements ayant un point critique réel.
La réciproque de ce théorème n'est peut-être pas aussi

évidente : on peut cependant raisonner comme suit :

que l'écoulement soit normal ou graduellement varié,
toute modification du régime aval ou amont se transmet
indéfiniment (en diminuant asymptotiquement) vers
l'amont ou l'aval. Cette progression vers l'amont ou
l'aval ne peut être interrompue que par la présence d'un
point critique. On ne peut pas se représenter un écoulement

qui, à partir d'un certain profil, n'est plus influencé
ni par l'écoulement aval ni par l'amont, sans qu'il y ait
en ce point, une section critique, avec h hc. On doit
cependant signaler, à titre d'exception, le cas d'un
écoulement torrentiel sur toute la longueur, influençable
d'amont en aval seulement, mais non d'aval vers l'amont.

Nous avons fait une certaine réserve en écrivant :

« en première approximation ». Il existe, en effet, des cas

où l'écoulement aval peut influencer, en une mesure
restreinte, la surface /j 0. On a alors des surfaces fx 0

qui sont « à double nappe » ou à nappes multiples ; ce qui
laisse entrevoir qu'il y a plusieurs solutions hydrauliques
possibles. L'exemple classique de ces types d'écoulement
est le ressaut hydraulique sur fond avec décrochement

(étudié par Escande x).

Les deux propriétés du profil critique que nous venons
de décrire étaient déjà connues depuis longtemps pour le

cas des écoulements avec filets rectilignes. Elles restent
donc vraies pour n'importe quel écoulement : à filets
curvilignes, potentiel ou turbulent.

C'est donc la même propriété de la surface /i 0 qui
explique le passage du régime torrentiel au régime
tranquille dans le cas d'un ressaut hydraulique, ou le passage
du régime tranquille au régime torrentiel dans le cas

d'une variation de la pente d'un canal, dans le cas d'un
déversoir à large crête (cas de Bélanger), ou encore dans

le cas d'un déversoir à crête arrondie.
Dans ce qui précède, nous avons étudié les propriétés

des écoulements possédant un point critique réel. Resterait

à montrer quelles conditions doivent être satisfaites

pour qu'un point critique réel s'établisse.

A l'heure actuelle, l'énoncé d'un théorème général qui
se prononrjfppit sur cette question nous échappe.
Contentons-nous de deux remarques : quand un point critique
réel existe, la surface réglée 02 0 ne peut descendre

Sär Das> e* h* position de la ligne d'énergie est minimum.

D'autre part, il est difficile de se représenter un
écoulement entièrement « à l'air libre » qui ne possède

point, quelque part, un point critique réel. Prenons le

cas d'É& déversoir noyé. Pour noyer l'écoulement
pardessus le déversoir, il nous faut relever artificiellement le

niveau aval, soit par un second déversoir, soit par une

1 L. Escande : Recherches théoriques et expérimentales sur l'écoulement par
vanne de fond. Revue générale de l'Hydraulique, janvier à Juin 1939.
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vanne. Dans les deux cas, il y a un point critique et
minimum d'énergie au droit du second ouvrage.

On peut cependant décrire un cas d'écoulement où il
n'y a aucun point critique : considérons deux bassins

infiniment grands, à niveau stable, réunis par un canal

profond et peu incliné, dans lequel le seul régime possible
est le régime tranquille. Nulle part il n'y a de point
critique et, cependant, la ligne d'énergie occupe bien
une position parfaitement déterminée dont dépend le

débit.

Enoncé de Bélanger-Boss généralisé.

Tout courant permanent à surface libre et à débit
constant, qu'il soit potentiel ou turbulent, avec ou sans

débit solide, peut être représenté par l'intersection de

deux surfaces : la surface fx(x, h, Ha) 0 et la surface
4>2 0. La surface fx 0 est une surface à double courbure,

en forme de vallée. La surface <t>2 0 est une
surface cylindrique dont la pente est constamment négative
dans le sens du courant.

En aucun cas, la surface d>2 0 ne peut passer au-
dessous de la surface fi 0. Elle est constamment au-
dessus de cette dernière, ou peut lui être tangente en un
ou plusieurs points. Lorsque les deux surfaces sont
tangentes, le point de contact est dit « point critique réel de

l'écoulement Ä#
Dans le cas d'un liquide parfait en écoulement potentiel,

dont l'énergie totale, mesurée par rapport à un
plan de rélSence fixe, est E* ~\H*a • Q, le point critique
coïncide avec une selle de la surface fx 0, et l'on a :

dE* 0.

Dans le cas général d'un écoulement turbulent, avec

pertes de charge par frottement, s'il existe un point de

contact des deux surfaces, il ne peut coïncider avec une
selle. On aura toujours, en un point critique réel :

m
dx

et

dm
dh

dm
dx

dHa
dh

0

conditions que nous écrivons symboliquement :

(dE)* 0.

et qui exprime, entre autres, qu en ce point la position
occupée par la ligne d'énergie est minimum pour un débit
donné et que pour Ha donné, le débit est maximum.

Le sens physique du théorème de Boussinesq serait
donc de ramener l'étude des courants à surface libre à

des considérations d'énergie.
En un point critique réel, la hauteur d'eau he prend

une valeur caractéristique he, que l'on obtient en
écrivant :

dHg
0 ou

dQ
0.

dh dh

Cette valeur ne dépend pas du frottement.

Une première propriété du point critique réel est de

permettre le passage d'un écoulement tranquille à un
écoulement torrentiel, ou inversement. Une seconde

propriété non moins essentielle du point critique est que,
tant que le point critique existe, l'écoulement aval est

sans influence sur l'écoulement amont. Il est essentiel
de remarquer que les réciproques de ces énoncés sont
vraies. Si l'on observe l'une des deux propriétés, l'autre
doit nécessairement être satisfaite, elle aussi, et il existe

un point critique réel de l'écoulement.
L'écoulement en régime uniforme ou normal (h A„)

correspond à l'intersection de la surface fx 0, dégénérée

en surface cylindrique, à courbure simple, avec le plan

dm
dx

const.

Il importe, pour calculer les lignes de remous, de

connaître exactement la position du profil critique et la
valeur de la hauteur critique hc. C'est parce qu'il permet,
dans un certain nombre de cas, le calcul des valeurs hc,

que l'énoncé de Bélanger-ïfSss a une portée pratique
immédiate.

DIVERS

Assemblées générales de l'Association suisse
des Electriciens et de l'Union des centrales

suisses d'électricité.
Les assemblées générales de ces deux importantes associations

auront lieu à Montreux, les 28 et 29 août 1943 ; des
excursions suivront le 30 août.

En plus des séances administratives, sont inscrites au
programme des conférences sur les usines à bassins
d'accumulation du Rheinwald et de la vallée d'Urseren ; sur le
passé, le présent et l'avenir de la traction électrique en Suisse.
Des excursions sont prévues aux Ateliers de constructions
mécaniques à Vevey, à la fabrique de produits chimiques de
la « Ciba » à Möntney, à la S. A. pour l'industrie de
l'Aluminium à Chippis, à l'Usine de Chandoline et au barrage de
la Dixence. Les dames sont priées de prendre part à une
course en funiculaire aux Rochers de Naye et à une visite du
château de Chillon.

Les inscriptions doivent parvenir à l'administration
commune de l'A. S. E. et de l'U. C. S., Seefeldstrasse 301, Zurich,
avant le 24 août 1943. On peut obtenir à cette adresse tous
renseignements concernant ces manifestations.

Assemblée générale de la Société suisse de
l'industrie du gaz et des eaux.

Cette assemblée générale aura lieu les 4 et 5 septembre
1943, à Berne. Elle coïncidera avec la commémoration du
centenaire de l'Usine à gaz de cette ville et de l'industrie
gazière suisse. Diverses manifestations sont prévues au
programme de ces journées. Notons en particulier des exposés sur
les sujets suivants : « 100 Jahre Gasindustrie in der Schweiz »,
« Die Technischen Leistungen der Schweizerischen Gaswerke »,
« Die Bedeutung der Schweizerischen Gasindustrie für die
Industrie unseres Landes ».

Des excursions sont prévues le lundi 6 septembre 1943.
Tous renseignements peuvent être obtenus auprès du
secrétariat de la Société suisse du gaz et des eaux, Dreikönigstrasse

18, Zurich.
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