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Contribution a I'étude

des courants liquides & surface libre.
I’énoncé de Bélanger-Boss généralisé,

par Coarres JAEGER, Dr ¢s sc. techn.,
Privat-docent a I'Ecole polytechnique fédérale,
Collaborateur du Laboratoire de recherches hydrauliques E.P.I.
a Zurich.

Note de la Rédaction. — Cet article est le second cha-
pitre d’un travail d’ensemble sur les courants & surface
libre qui nous fut remis par 'auteur. Ce dernier a bien
voulu nous autoriser & renoncer a la publication intégrale
de la premiere partie qu’il a résumée a 'introduction du
texte donné ici.

M. Jeger introduit dans Pexpression de Bernouilli
deux coeflicients par lesquels il est tenu compte de I'iné-
gale répartition des vitesses et de la courbure des filets
liquides, et parvient & étendre la représentation gra-
phique des courants précédemment donnée par Biss
pour les écoulements a filets sensiblement rectilignes et
paralléles, aux écoulements permanents d’un type quel-
conque, potentiel ou turbulent, avee ou sans débit solide.

[intérét d’une telle représentation, beaucoup plus
générale que celle utilisée habituellement, est ici claire-
ment démontré. L’auteur se réserve d’en [aire appa-
raitre les avantages pratiques par des publications ulté-

rieures.

Introduction.

Dans son Essat sur la théorie des eaux courantes Bous-
sinesq ! mentionne & plusieurs reprises un «principe de
la stabilité en hydraulique », principe auquel il attache
visiblement la plus grande importance, sans étre arrivé
cependant & le formuler. Il ressort clairement que, d’a-
prés Boussinesq, ce principe devrait comporter deux
aspects principaux : I'un donnerait une explication plau-
sible des circonstances qui engendrent un mouvement
permanent ou au contraire le détruisent ; Pautre devrait
étre une généralisation du principe de Bélanger * du
débit maximum. Boussinesq a lui-méme, dans une étude
ultérieure 3 sur les déversoirs en mince paroi, appliqué le
principe de Bélanger aux mouvements & filets curvi-
lignes. Cette extrapolation du principe qui trouvait
cependant sa justification dans la concordance des résul-
tats avec les mesures de Bazin fut 1'objet de trés vives
critiques.

C’est a I’étude de certaines questions soulevées par le
principe de stabilité de Boussinesq que nous consacrons
Iexposé qui va suivre. On pourrait itituler « probléme
de Boussinesq» I'ensemble des recherches relatives a
Iénoncé . du «principe de stabilité », principe qui reste
encore a trouver, et « énoncé de Bélanger-Bass généralisé» 4

). V. Boussinesq : Essai sur la théorie des eaux courantes. Mémoires
présentés par divers savants a I"Académie des Sciences ; Paris 1877, p. 120,
142 et 573.

*J. B. Biirancer : Notes sur le cours d hydraulique. Ecole nationale des
Ponts et Chauss Yaris 1849-50, p. 32-33.

3 J. V. Boussinesq : Théorie approchée de U'écoulement swr un déversotr en
mince parot el sans conlraction latérale; Paris 1907,

4 P. Boss: Berechnung der Wasserspiegellage beim Wechsel des Fliesszu-
standes. Berlin. Springer 1919, p. 20 et 52.
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le théoréme particulier que nous apportons ici et qui ne
constitue peut-étre qu'une partie du «probleme de
Boussinesq ».

La démonstration de I'énoncé de Bélanger-Biss géné-
ralisé exige que I'on étende au préalable le théoréme de
Bernoulli, au cas d’un écoulement & filets incurvés consi-
déré dans son ensemble.

Au cours de I'exposé qui va suivre, nous adopterons
les notations suivantes (fig. 1):

B

=k

4H,
e | T =’ ~._..ligne d'énergie

*

7 |He |He

ligne d'eau

N

7

Fig. 1.

¥ = poids spécifique de I'eau.
s = abscisse curviligne du centre de gravité des sec-
tions transversales.

s: = abscisse curviligne d’'un filet liquide.

2 = abscisse linéaire le long d’un axe horizontal.

o = surface d’une section supposée tracée normale-
ment aux filets Jiquides.

B = largeur d’une section (rectangulaire).

h = hauteur de l'eau dans la section, mesurée verti-
calement & partir du point le plus bas de la section.

h, = valeur de & en cas d’écoulement uniforme ou nor-
mal (hauteur normale).

h. = hauteur critique.

z = ordonnée d’un point, mesurée a partic du point

le plus bas de la section.
y = [(x) équation du fond du lit (lieu des points les
plus bas).

Q = débit total de la section.
q = débit linéaire par unité de largeur (B = 1).
Hs = hauteur de la ligne d’énergic moyenne mesurée

partir du point le plus bas d’une section o.
Hy = Ho+y; Il,= g, ,au point origine & =0, ot y = 0.

I1. = hauteur de la ligne d’énergie pour un filet liquide
isolé; t =1, +y.

i = dy/dx=pente du fond du lit.

j = pente de la ligne d’eau.

J, = pente de la ligne d’énergie moyenne.
i< t=} o

I

2 vitesse en un point.

Q

O, = = vitesse moyenne dans la section transversale.
p = pression en un point.
t = temps.

Nous allons, de facon trés succincte, montrer comment
le théoréeme de Bernoulli est susceptible d’étre généralisé
et comment on peut définir g, hauteur de la ligne
d’énergie moyenne relative & toute la section o, dans
le cas d’un écoulement a filets incurvés ™.

Soient s et z les coordonnées d’un point quelconque, pris
dans la masse du liquide en mouvement. Ecrivons pour
un filet liquide de section do et de courbure quelconque
I'équation de Bernoulli (fig. 2) :

s,

Jd [ p
a) — (a=F=Fz4ty|)=—J)
(2) Js: (2g+*f+ ' ‘/> ’

ou J, est larésultante, dans le sens des s positifs, des for-
ces de résistance. On peut montrer que, quoique Js,52ds,

el 2 7 2 3
. d (v c o
(b) //-— o vdo‘z—// - do
Js, \2g Js 29
LE = o v e A=
o
dans tous les cas ou I'on peut passer de la surface o a la
surface voisine en effectuant une translation et une rota-
tion de la surface g, mais que I'expression (b) n’est plus
rigoureuse, si la surface ¢ subit, en outre, une déforma-
tion complémentaire.

Définissons :
N — g = %_ //wlo‘
e
Lo 1 s
(¢) o= o, //vg(lo‘: Sel //v’"‘(lo‘
e e
L[ p
(d) = ()h‘/(/ <¥ +~> pdo
o

9
(%0 ]}
» »
(e) H=~—~+~+z+4ty, H}=H,+y
2g ¥ :
! Nous espérons pouvoir publier prochainement dans la Revue générale de
' Hydraulique cette premiére partie de notre travail en donnant i la généra-

lisation du théoréme de Bernoulli tous les développements qu'elle comporte.
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.1 ”(‘,2 P, - 02,
() 110#-@/‘/ ‘2—g—i—?—}—~>vd0—a2—g+ﬁh
o
et H:=Ho+y.

En faisant usage de ces notations, on a successivement,
en partant de I'équation (¢) dont on multiplie les termes
par le débit constant ¢ds et en Pintégrant sur toute la

section 0 :

109 (3 17 [ /[p 1 5o
oLl 5o gl (B+sru)uto=—g [[dyvdo
o G G
J 02, J : -

(]—S(\a 2—é,>+£(8hfy)——h
et enfin
) H* J H*
(2) ‘ S— . ou i W 5

{)S Jx

L’expression (g) est précisément la forme généralisée du
théoréme de Bernoulli que nous cherchions. Le coeflicient
o tient compte de I'inégale répartition des vitesses alors
que le coellicient B dépend de la courbure des filets
liquides.

Hg est bien I'expression générale de la hauteur de la
ligne d’énergie moyenne de la section o, compte tenu
de 'inégale répartition des vitesses et de la courbure.

Conception actuelle du probléme de Boussinesq.

Lorsque Boss publia ses considérations sur la ligne
d’énergie 1, il fit faire un pas décisif au probleme posé
- b
par Boussinesq. Bdss remarqua que la courbe

2
H=h+ ()—zh—g, qui donne la hauteur de la ligne d’énergie H
<o

en fonction de la hauteur d’eau h, dans un canal rectili-

gne de section rectangulaire, posséde un minimum pour

2 e o
IS ,—3['1 = h, (hauteur (critique) et que ce minimum
sépare le régime tranquille du régime torrentiel. Quoique
Biss ne le mentionne pas explicitement dans sa publica-
al
Jh

ment & filets paralléles, est aussi le point qui annule la

tion, le point pour lequel = 0, dans un écoule-

dérivée partielle i))—g énoncé de Boss, plus impor-
tant peut-étre que celui de Bélanger, n’est donc qu’un
autre aspect d’un méme principe. Boss lui-méme suggé-
rait d’envisager le principe du minimum de la ligne
d’énergie comme une conséquence du principe de la
moindre contrainte de Gauss 2.

Deux voies s’ouvrent & qui veut étudier plus avant le
probleme complexe soulevé par Boussinesq :

On peut, en précisant I'idée de Boss, rechercher en

mécanique ou en hydrodynamique — peut-&tre en
hydrodynamique statistique — quelle est Porigine du

théoreme du minimum de la ligne d’énergie.

' Bioss : Berechnung der Wasserspiegellage... Berlin 1919,
* Boss : op. cil., p. 52.

On peut aussi, restant plus proche du domaine plus
restreint que se réserve I’hydraulique, se demander si
I'énoncé de Bélanger-Boss, valable dans le cas de filets
rectilignes paralleles, peut étre étendu au cas d’écoule-
ments a forte courbure ou a turbulence accentuée. Des
trois conséquences de 'énoncé de Bélanger-Béss : mini-
mum de la ligne d’énergie, maximum du débit et limite
de séparation entre les régimes tranquille et torrentiel,
laquelle est la plus générale ? Boss estimait que c’est la
notion de minimum de la ligne d’énergie ; Boussinesq trai-
tant du déversoir en mince paroi et ignorant encore
tout le parti que I’on peut tirer de la notion de hauteur
d’énergie, n’invoquait que la seconde particularité, en
20
Jh

I’énoncé, la plupart des auteurs admettaient sans autre

écrivant : = 0. Quant a la troisieme conséquence de

— et cela, malgré la présence de forts tourbillons —
Pexistence d’une certaine hauteur critique h, sépa-
rant, dans le cas du ressaut hydraulique sur radier plan,
I’é6coulement torrentiel amont de I'écoulement tran-
quille aval. D’aprés la conception généralement admise,
la hauteur critique k. est, en pareil cas, une valeur par-
ticulitre de h qui rend infini le coeflicient angulaire
dh/ds de la tangente & la ligne d’eau, dans I’équation de
Bresse ! (I, hauteur normale) :

dh . h—h,

(—l;:l h—h,

Or, I’équation de Bresse n’est précisément plus valable
aux environs de ce point, et I'on n’observe nulle part de
tangente infinie le long de la ligne d’eau, en sorte que la
définition de h. gardait un caractére quelque peu arbi-
traire. Cette extrapolation de la notion de hauteur cri-
tique, issue de I’étude des courants a filets sensiblement
paralléles, & un écoulement turbulent, aurait di paraitre
d’autant plus hasardeuse qu’a la méme époque on hési-
tait & étendre la méme notion au cas de nappes déver-
santes & filets courbes, ou le passage d’un régime &
Pautre, sans aucune turbulence, cependant, est non moins
évident que pour le ressaut hydraulique.

Il faut aussi remarquer que la «hauteur critique »
introduite par Escande ? dans I’étude du ressaut hydrau-
lique sur radier avec décrochement est une «hauteur
limite », située quelque part en aval du ressaut et non
point une hauteur critique au sens des idées de Boussi-
nesq et de Boss. Et cependant, il existe en ce cas égale-
ment une hauteur critique, au sens général du terme.

Ce bref apercu prouve, du moins, que les idées admises
variaient considérablement d’un auteur a I'autre et selon
le probleme particulier qu’il envisageait.

Nous ne nous occuperons point de la premiére des
questions soulevées : La recherche de I'origine de I'énoncé
de Bélanger-Boss nous parait étre un probléme de méca-
nique générale ou de physique statistique trop ardu

1 J. J. Gu. Bresse : Cours de mécanique appliquée, 2¢ partie : Hydraulique.
Paris 1860, p. 221,

* L. Escanoe : Recherches théoriques et expérimentales sur Uécoulement par

panne de fond, 2¢ partic. Revue générale de 'Hydraulique, n® 25, janvier-
février 1939, p. 21,
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pour pouvoir, en ce moment, étre abordé avec quelque
utilité. Plus simplement, nous chercherons — en restant
dans le domaine de I'’hydraulique — une généralisation
de I'énoncé de Bélanger-Boss.

C’est & Boss lui-méme que nous emprunterons l'idée
directrice de notre étude. Cet auteur avait illustré son
énoncé du théoréme du minimum de la ligne d’énergie
par un diagramme trés suggestif et qui, depuis lors,
est devenu d’un emploi courant. Nous allons chercher,
tout d’abord, de deux maniéres différentes, & généraliser
la représentation plane de Béss, pour le cas de filets
liquides rectilignes, en la transposant dans des espaces
a trois dimensions.

Considérons (fig. 3) un canal cylindrique de pente
constante ¢ et de grande longueur. Négligeons ce qui peut

A
2 vy
| 2
Nk’ I ecoulement torrentie/
I i I coulern ;
=7 ’//1 St~ ecou, €\ en; tranqurlle
N 7 ‘ons ,// | /
S==< | pal | 7
o SAS £
2 TS | g
/ | == ¢
/ Ny 7 = /
/ ! 7 | 7
He / ) / /
/ / ! /
/. | z | /
/ [« i | 4
| / | /
{4
0 L _Porizonrse |,
|

"
Q

Surface  [norm /J,h,h’c./

Fig. 3.

se passer aux extrémités du canal, pour ne considérer que
la partie du canal ot U'écoulement est normal (1 = j = J,).
Considérons le Jong de I'axe s, légérement incliné, une
succession de profils en travers verticaux

Sy 8oy ik = 8y s S

En chacun de ces profils nous pouvons dessiner,
dans un plan kO;Hg, vertical, une courbe g = Is(h),
identique a celle de Boss. A elles toutes ensemble elles
forment une surface cylindrique, correspondant & un début
donné () = const. Une solution réelle est donnée par
Iintersection de cette surface, que mnous appelons
frorm(s, h, Hs) = 0, avec un plan de bout, d’inclinaison
J. = i. Cette surface, qui a la forme d’une vallée, ne
nous apprend d’ailleurs rien de plus que la courbe clas-
sique de Boss Hg = I (h).

Plusieurs auteurs * tracent, non point une courbe
Hgs = Hg(h) pour un débit donné, mais une famille de
courbes, en prenant le débit @ comme parametre. Ils
comparent cette famille de courbes [Hg = Ho(h) & la
famille de courbes Q = Q(h), obtenues en prenant Ilg
comme paramétre. (Ce sont des paraboles de degré 3/2).
Mais on pourrait tout aussi bien considérer dans I'espace
Q, h, Hs une surface F,,.. (Q, h, IHs) = 0, dont les inter-
sections avec des plans Q = const. et I = const. don-
neraient 4 nouveau les familles de courbes mentionnées.

' G. pe Mancur, tome I, 2¢ partie, p. 180, fig. 130.

H,
A
/
/
; ecoulement
5 /\ torrentie/ , g
/ et ecoulement
/ / rrangquille
ng’ /
7 /
n Pt
> surface f(s,h, Hg)= 0
A
N h

He

ligne d’eau

fond du Ii}

surface [(s, h,Hs) =0
pour un ecoulement gquelcongue

Fig. 4.

Cette surface a plus ou moins la forme d'un cornet qui
s’entr’ouvre, la pointe du cornet étant placée a I'origine
des axes (Fig. b).

Les deux surfaces fuprm =0 et Fyern = 0 ne sont qu’une
expression différente du diagramme initial de Béss, pour
le cas de I’écoulement normal. Nous allons maintenant
chercher & extrapoler les notions acquises au cas d'un
écoulement quelconque.

Considérons (Fig. 4), pour un débit constant Q,, un
/'/‘-A Z Q-@,

|
|
|
|
|
|
|

|
\

Surface F(Q,h,H,)-0

Fig. 5.
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canal de forme quelconque !, danslequel I’écoulement est
permanent mais non plus nécessairement normal. Mesu-
rons, dans des sections s;, Sy, 83 ... 8 Su, prises le
long de I’axe curviligne s, des paires de valeurs (hy, Hg;),

(hy, Hoy) . .. (hiy, Ha) ..

dans un systéme d’axes & trois dimensions (Os, h, Hg),

. (h. Hg,) et représentons-les,

I'axe des s étant curviligne, par des points de coordon-
nées s;, h;, Hg;; a chaque mesure faite correspond un
point de I’espace et, pour un méme écoulement a débit
constant, tous ces points forment une courbe qui sera,
dans le langage que nous allons adopter, la «solution »
du probleme, pour un débit donné et des conditions aux
limites données également. Faisons varier les conditions
a 'une des limites, en prenant soin de ne rien changer
d’autre. Modifions par exemple h de dh, ce qui entraine
une variation dHgs de Hg & U'infini aval, le débit restant
constant. Nous obtiendrons dans 'espace (Os, h, Ho)
une nouvelle courbe, correspondant & une nouvelle solu-
tion, voisine de la précédente. En procédant ainsi de
proche en proche, toutes les courbes solutions décrivent
une surface a double courbure f (s, h, Hs) =0 pour
Q = const., qui par sa forme en auge ou vallée rappelle
quelque peu la surface cylindrique fu, = 0, correspon-
dant a Pécoulement normal. Aux points ou le courant
tendra a devenir normal dans le canal de forme quel-
conque que nous envisageons, la surface a double cour-
bure f = 0 tendra a reprendre la forme cylindrique de la
surface [, = 0. Cette surface f= 0 est une surface
représentative des écoulements a débit constant et chaque
solution réelle est, par définition, représentée par une
courbe de cette surface. Si nous coupons cette surface par
un plan d’abscisse s;, parallele au plan (Oh, Hg), nous
obtenons comme intersection la courbe (voir Fig. 4) :
002
() = sh+?%2,
dans laquelle non seulement g et h, mais encore o et
sont des variables. Cette courbe rappelle, par son allure
- 7 "
générale, la courbe Ilzh—l—m-2 de Boss. o et B
dépendent non seulement de la section choisie s;, mais
aussi des sections voisines. De quelle maniére, nous le
montrerons ailleurs, quoique cette dépendance soit déja
bien marquée par la facon dont nous avons obtenu la
surface f (s, h, Hg) = 0 en tracant les courbes «solutions ».
Précisons, en empiétant sur ce qui sera dit plus tard,
que les coellicients o et B varient entre des limites que
’expérience nous permet d’estimer. Un liquide parfait en
écoulement normal dans un canal rectiligne donne o = 1
et B =1, Un liquide parfait s’écoulant en nappe par-
dessus un déversoir (écoulement potentiel également)
donnera, par exemple, des valeurs telles que o = 1,1 &
1,2 et g =0,5 4 0,1. Un courant légérement turbulent
en écoulement normal fournit des valeurs 1 et
a= 1,054 1,1. Un écoulement trés fortement turbulent
sur radier plan donnera g > 1 et a o 10, par exemple.

' Nous avons supposé, pour la commodité du dessin, que 'axe «s» se
trouve dans un plan vertical, mais la démonstration est générale,

Telles sont quelques valeurs expérimentales de o et B,
que nous avons glanées parmi les mesures publiées a ce
jour. Retenons simplement I'ordre de grandeur de o et B.
(’est avec raison que nous pouvons alors prétendre que

2

la courbe Hg:Bh—l—;ggz présente quelque analogie
: oss: H—hot L.

avec la courbe de Boss : [ =h -+ P

L’opération que nous venons d’effectuer, en tracant
pour Q = const. une surface [ (s, h, Ho) = 0, nous pou-
vons la répéter pour un ensemble de valeurs Q. Nous
obtiendrons soit une famille de surfaces f = 0, en prenant
Q comme parametre, ou encore une surface
®, (Q,s,h,Hg) = 0 dans un espace & quatre dimensions.
En opérant une coupe de cette surface pour une abscisse
s; = const., nous obtenons une surface 4 trois dimensions
F(Q, h, Hs) = 0 qui sera, pour notre écoulement quel-
conque, 'équivalent de la surface F,,» = 0 que nous
avons obtenue dans le cas d’un écoulement normal. Dans
la formation de I = 0 entrent implicitement les valeurs
a et B, fonctions non seulement du choix de Pabscisse,
mais aussi, nous I'avons vu, de ce qui se passe dans les
sections voisines.

Nous allons d’abord étudier les propriétés des surfaces
F(Q, h, Hs) = 0, (s= const.) puis celles des surfaces
[ (s; b, Ho) = 0, (Q = const.), en tant que surfaces géomé-
triques, sans nous préoccuper, tout d’abord, du tracé des
«courbes solutions ». Le probléeme que pose le tracé de
ces courbes sera examiné dans un paragraphe ultérieur.

Etude des surfaces
F(Q,h,Hg) = 0, s = const; (Fig. 5).
Théoréme du minimum
de I'énergie totale dans une section donnée.
Hauteur critique, 1-+

Donnons-nous un canal de forme absolunient ‘quel-
conque. La hauteur Ilg est, par définition, fonction de
h, Q, ainsi que de I'abscisse s du point considéré. Consi-
dérons maintenant une section hien déterminée d’abscisse
s = s,. Nous pouvons écrire, au lieu de I’équation (f),
donnant Hg :

(1) I (Q, by Ha) = 0.

Dans un systéme de coordonnées cartésiennes Q,Ho
et h, la fonction I = 0 représente une surface (Fig. 5).
A chaque section d’abscisse s du canal correspond une
surface [ = 0 différente des surfaces appartenant aux
sections voisines, puisque les coeflicients « et B varient
avec s. Mais, pour s = s,, il n’y a qu’une surface F = 0,
quoiqu’elle puisse avoir plusieurs nappes, ce qui importe
peu pour la démonstration. Les divers écoulements possi-

YL Bicancer @ Cours d hydraulique, p. 32-33.

¢ P. Boss: Berechnung der Wasserspiegellage..., p. 20.

¢ G Jacenr: Remarques sur quelqus écoulements le long de lits a pente
variant graduellement. « Schweizer. Bauzeitung », t. 114, n° 20, 11 novembre
1939, p. 231-234.

4 Cn. JacER et ALp. Anecassis-MANZANARES : Comptes rendus de 1’Aca-

démie des Sciences, Paris, tome 210, n° 22, du 27 ma 1940.
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bles ne peuvent étre représentés que par des points ou
des lignes se trouvant sur la surface I/ = 0.

Nous sommes en mesure de décrire 'une quelconque
de ces surfaces.

Admettons tout d’abord, pour fixer les idées, que la
surface I = 0 corresponde au cas d’un canal rectangu-
laire ou les filets liquides sont paralleles et la vitesse
uniformément répartie, donc a = 1 et B = 1. Coupons

Qs

cette surface par un plan Q = Q,. Soit =5 le
débit par unité de largeur. L’équation de la courbe
d’intersection
9
—= qi
HG—IL+2gh2

nous renseigne immédiatement sur sa forme : la courbe
posséde deux branches dont I'une est asymptotique a la
bissectrice h = Hg et I'autre & la droite h = 0. Ils étant
toujours positif, la courbe passe nécessairement par un
minimum lorsque :

Mo _, gt

= 3 =0

Jh ah?

d’ott nous tirons la valeur de la « hauteur critique »

h(Z\'/(‘]_’2
g

(Condition de Béss pour le cas de filets paralléles recti-
lignes). Coupons maintenant la surface /' = 0 par un
plan Hg = H;, La courbe d’intersection aura comme
équation :

2

H;= h+§gﬁ, ou  q=h\2g(H,—h).

Cette courbe passe par la valeur ¢ =0 pour h =0 et
I q
pour h = H;. Comme elle est continue, elle passe néces-
sairement par un maximum qui se produit lorsque :
2

h= 3 1{7

(Condition de Bélanger pour le cas de filets paralleles
rectilignes). On vérifie que, pour une valeur donnée de
I, cette nouvelle valeur de & est aussi égale & i, en
sorte qu’on a toujours simultanément :

JHs J0
— — =0.
o= & o

Cest ce que nous désignerons sous le nom d’« Enoncé de
Bélanger-Biss » 1.

Passons maintenant au cas général de filets courbes et
de vitesses réparties de facon quelconque dans un canal
de section rectangulaire. Les coeflicients o et § sont
alors quelconques, mais on peut cependant remarquer
quils ne peuvent étre infinis et que o ne peut étre nul.
Dans ces conditions, la forme générale de la surface
F = 0 ne differe pas essentiellement de celle que nous
venons de décrirve.

1 Qui le premicr a signalé la simultanéité des deux conditions ¥ Biss n'en
parle point. Par contre, bien antéricurement a Boss, Flamant — qui ignorail
cependant la notion de la ligne d'énergic telle qu’elle fut introduite par Boss
— la mentionne p. 90-91 de son Hydraulique (Paris, Béranger, édit. 1900)

dans une note au bas de la page, note remarquable parla portée des remarques
qui y sont faites,

Coupons en effet cette nouvelle surface par un plan
¢ = ¢i. La courbe obtenue aura pour équation :
2
ag;

1) Ho = Bh+ o 0.

Elle possede également deux asymptotes et, [ls étant
toujours positif, elle passe par un minimum au moins,
pour lequel :

JHs B agl ¢ Jdu

@ AR Ry Y

dont on peut tirer la hauteur critique h = h,.
Tracons, d’autre part, un plan I = Ils;. Il coupe la
surface /' = 0 selon une courbe dont I’équation est :

2

ag?
(3) Hoj=Bh-+ gk ou

Elle posséde au moins un maximum, car, toujours posi-
tive, elle s’annule pour Ah=0 et pour Bh= Hgs;. On a
alors :

) [2¢
e . B (Hoe20h)
g [2g,.. Qh[(x / )
(4) (7;\/;(11@—Bh>+ L \:0.
) \/ 8 (Ho—h)

En faisant dans les deux expressions (2) et (4) a=B=1 et
Jdo.
Jh

y 2. e
(5) hcﬁgllﬂ\/g-

On peut, sur les bases de ce que nous venons de dire

=0, on retrouve & nouveau ’expression bien connue :

ici, développer une théorie de la hauteur critique et
indiquer, de cas en cas, quelle forme prennent les expres-
sions (2) et (4) et quelle valeur il y a lieu d’attribuer a
he. Ce qu’il nous tmporte de montrer ict, c’est que les valeurs
he que Uon obtient par Uune et I'autre formules sont bien les
mémes.

Considérons a mnouveau, mais de facon tout a fait

générale, la fonction implicite :
(1) F(Q, h, o) = 0,

Nous pouvons écrire successivement :

Pour Q = Q;:

(s = const.).

JF
I JF JHgs : s oh
) —_ — =0 Y Bl P S
U8) ptaman=" deliigg oF
s

Pour Ho = Ho;:
Pl
N IF IQ - Q h
17 = e iy ¢ ol e
) gtz m=0 4 IF

20

Supposons que nous nous trouvions en un point de

JH & FidH 23
la surface ot o=0 et, par le fait, —=0. Ni

Jh dh
v ni aft t infinis. Il en résulte nécessair t
5=, Nl == Ne Son inis. Il en résulte nécessairemen
s 20

5 . Q :
qu'en ce point de la surface o 0 également.
[

La réciproque de ce théoréme est vraie.
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L’énoncé de Bélanger-Biss, valable pour le cas de filets
paralléles rectilignes, reste yrai quelles que sotent la cour-
bure des filets liquides, la répartition des yitesses et la
nature de Uécoulement, potentiel, turbulent, etc.

Nous avons esquissé & la figure 5 I'une quelconque de
ces surfaces I = 0. A regarder cette surlace, la significa-
tion géométrique du théoréme est évidente : aux points tels
que ey, €y, ... e; les courbes d’intersection e = Ig; et
Q = Q; ont la méme tangente, perpendiculaire au plan
Hs0Q et possédent toutes deux un extremum. Tant sous
sa forme analytique que sous sa forme géométrique, le
théoréme énoncé fait usage d’une propriété générale bien
connue des surfaces.

Nous appelons point critique* de I = 0 tout point de
la surface /' = 0 ou le théoréme est satisfait.

La signification physique du théoréme est non moins

évidente : Dans la section s = s,, ’énergie totale du
’ E]

courant liquide a pour expression I = y/[5Q : d’ou, aux
points critiques :
1 JE Qflllo_‘_ 1 20 0
— == — H1o—=- =VU.

¥ Jh Jh Jh
Enoncons maintenant le théoréme :
Si en une section d’abscisse s = s, d'un écoulement a

(18)

surface libre quelconque, le débit est maximum, & hauteur
I = const., la hauteur représentative de I'énergie moyenne
Hg est, en cette méme section, minimum, pour Q = const.
La réciproque du théoréme est yraie. Il est valable quelle
que soit la nature de ’écoulement : turbulent, potentiel,
rectiligne ou incurvé. La hauteur de I'eau en cette sec-
tion est h = h,. Clest la hautewr critique, dont nous étu-
dierons les propriétés aux chapitres suivants.

Etude des surfaces )
f(s,h, o) ou fi(z, h, Hg),(Q = const).
(Fig. 6.)

Nous avons considéré, au précédent paragraphe, les
surfaces a trois dimensions : I* (Q, h, Ilg) =0, sections de
la surface générale & quatre dimensions ®; =0, et étudié
leurs propriétés. Faisons maintenant, dans la fonction
®, =0, Q = const. Nous obtenons alors des surfaces

f (s, h, Hg) = 0, pour Q = Q,,
ou mieux, en prenant comme variable, au lieu de s,
Pabscisse @ mesurée le long d’un axe horizontal, et en
posant Il = Hg 4y, des surfaces :

f1 (=, h,HE) =0, pour Q=0Q,

qu’on peut représenter au moyen d’un systeme de réfé-
rence cartésien d’axes Ox,h, H. (Voir Fig. 6.) La forme
de cette surface dépend essentiellement de la forme du
canal (puisque Q = Q,). Elle est entiéerement connue, dés
que 'on sait calculer ou mesurer y =y () et calculer les
coeflicients « et B en fonction de a,h et Ilg. Cette sur-
face est la surface représentative de I'énergie contenue
dans 'écoulement. A elle seule, elle ne nous donne la

' Ce n'est évidemment pas un «poinl critique » au sens mathématique
du mot.

/
ol P
/

) / Q“Q
ecoulement s Q\o
torrentiel g 4 b //

/
L ecoulernent

ligne d'eau

fond au /it

Fig. 6.

solution d’aucun probléeme, mais nous savons, de facon
certaine, que toute solution doit nécessairement se trou-
ver sur la surface f;=0, pour peu qu’on se rappelle
comment nous I’avons obtenue.

Cherchons & nous rendre compte de la forme et des
propriétés de cette surface. Si nous la coupons par des
plans paralleles au plan HjOh, en faisant successivement
T =ay, &, ... T, NOus voyons réapparaitre, comme
courbes d’intersections, les courbes Hy=1II5(h) ou
Hg= Hgs(h), que nous avons étudiées en détail au para-
graphe précédent. Pour autant que nous puissions sup-
poser que la surface f;=0 est continue — et, & vrai
dire, il n'y a aucune raison sérieuse d’en douter — on
peut aflirmer que les courbes Hj =.Ij (h) possedent cha-
cune au moins un minimum, peut-étre plusieurs. Choi-
sissons, sur chaque courbe, celui d’entre eux qui est
situé le plus bas et désignons-le par la lettre ¢;. La sur-
face nous apparait alors comme une surface a double
courbure, formant une sorte de vallée en U, avec — éven-
tuellement — des selles ou cols. En joignant tous les
points tels que e, e, ¢;, nous obtenons une courbe
formant un talweg de la vallée. En chacun des points e,
JHs JHE ‘ . d0
L e AT et, par le fait, = = 0.
Jh h oh
Le talweg est donc un lieu de points critiques sur la sur-
face f;=0.

Si, d’une section transversale a lautre, les valeurs

nous avons

o et § varient peu, le talweg de la surface f; = 0 suivra,
en ses grandes lignes, le lit méme du courant. Mais on
peut aussi imaginer — el nous rencontrerons ce cas
dans les écoulements trés fortement turbulents — des
surfaces f; = 0 pour lesquelles les coeflicients a et f

t Ces plans sont distinets des surfaces 0 qui peuvent étre gauches.

tranguille
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varient rapidement d’une section & une autre, en sorte
que le talweg de la surface f; = 0 ne suit alors plus du
tout le fond du lit: un creux du lit pourrait coincider
avec une selle ou col de la surface f; = 0. Au point de
vue géométrique, une selle ou col est caractérisé par le
fait que la courbe e, e, posséde en ce point une
tangente horizontale avec dérivée seconde en dz? néga-
*
tive. On y a donc %:0. D’autre part, la condition
%
e J0

= (Q, implique =~ = 0.
Q = Q, implique >

Résumons nos constatations relatives a une selle ou
col :

On a d’une part, ainsi que nous ’avons vu au para-
graphe précédent (voir Fig. 5)

* -

My My oK) IE*
Jh Ih * Jh Jh

En considérant ensuite les dérivées partielles par rapport

DI (7 Y
0; dou (T}L(TQHU)# 0.

a x, nous avons trouvé d’autre part (voir Fig. 6) :

I, 0 .
vl Lol it
) .. JE*
®) 7 (10H5) = 5= =0.

Or E* est, par 'intermédiaire de Q et de /17, fonction de

h et de z seuls, en sorte que nous pouvons écrire au
sommet d’un col :

. OE*
dE =

En résumé: s la

dh -+ (7£— dx = 0.
Iz

surface a4 double courbure
f1 (x, hy, ) = 0 posseéde une selle ou col, le courant
liquide représenté par le point le plus élevé de ce col est
caractérisé par les conditions :

JHo T B
b

J0
— =
Jh !
(10)  dE* =0, ou encore
Mg
Jx

X _o

Jx

0

Nous avons étudié les surfaces f, =0 pour elles-
mémes, sans nous préoccuper de savoir comment on peut
représenter géométriquement une solution physique. Cela
n’est cependant point difficile, si 'on observe que toute
solution, pour un débit constant Q = (,, doit nécessai-
rement se trouver, d'une part sur la surface f; =0,
Iy

d’autre part satisfaire a4 I'équation (g) 5
Jx

——de.

Nous aurons deux cas & distinguer selon que le liquide
est parfait ou, au contraire, I’écoulement turbulent avec
pertes de charge. Nous ne nous occuperons pas de I'écou-
lement laminaire, de peu d’intérét pour I'étude des cou-

(A suivre.)

rants a-surface libre.

ECOLE D'INGENIEURS DE L'UNIVERSITE
DE LAUSANNE

Doctorat és sciences techniques.

Récemment eut lieu a I'Ecole d’ingénieurs de Lausanne
une séance publique au cours de laquelle M. G.-J. Vinger-
hoets, ingénieur E. 1. L., défendit avec succés, en vue de
I'obtention du titre de docteur és sciences techniques, sa
these intitulée : Sur la transmission des efforts dans un ravdis-
sement intercalé entre les ailes d’un profil double T a larges
atles paralléles. Cette séance fut présidée par M. A. Stucky,
directeur ; la commission d’examen était composée de MM. les
professeurs A. Dumas, F. Hiibner et A. Paris.

Dans la construction métallique soudée, on a tendance a
vouloir raidir les longerons ou entretoises, au droit des appuis
ou d’une charge isolée, au moyen de diaphragmes en forme
de T couché soudés aux deux ailes et a I'dme d’un acier pro-
filé double T a larges ailes paralleles (fig. 1).

Fig. 1. — Raidissement en
forme de T couché inter-
calé entre les ailes d'un
profil en double T. Poutre
d’essai sous l'une des pres-
ses du Laboratoire d’essat
des matériaux de 1'Ecole
d’ingénieurs de l'Université
de Lausanne.

Ces raidissements sont ellectués dans I'idée de renforcer la
construction. Or, dans certains cas, ils se sont montré étre un
aflaiblissement et méme une cause de rupture de I’assemblage,
faits dont les causes découlent de I’étude mathématique et
expérimentale faite par 'auteur de la theése sous la direction
de M. le professeur A. Dumas, directeur du Laboratoire d’essal
des matériauz de I'Ecole d’ingénieurs,

Ce travail a permis de trouver une méthode de calcul et
d’établir une formule générale donnant la force transmise a
s . X
I'ame par le diaphragme pour n’importe quel cas de charge,
n’importe quelle poutrelle double T & larges ailes paralléles et
n'importe quelle forme de raidissement.

Pour arriver a ce résultat, M. Vingerhoets établit successi-
vement par voie analytique :

1. la surface élastique de 'aile du profilé

2. la charge prise par une ou plusieurs barres rondes simple-
ment intercalées entre les ailes du profilé
3. la charge prise par un diaphragme rectangulaire simplement
intercalé entre les ailes du profilé

4. la charge prise par un diaphragme en forme de T couché
soudé a l'aile supéricure chargée et & I'ame du profilé, mais libre
a sa partie inlérieure

5. enfin la charge prise par un diaphragme en forme de T couché
soudé a laile supérieure chargée, & Pame et a laile inférieure
libre.
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