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Contribution à l'étude

des courants liquides à surface libre.

L énoncé de Bélanger-Boss généralisé,

par Charles JAEGER, Dr es se. techn.,
Privat-docent à l'Ecole polytechnique fédérale,

Collaborateur du Laboratoire de recherches hydrauliques E.P.F.
à Zurich.

Note de la Rédaction. — Cet article est le second
chapitre d'un travail d'ensemble sur les courants à surface
libre qui nous fut remis par l'auteur. Ce dernier a bien
voulu nous autoriser à renoncer à la publication intégrale
de la première partie qu'il a résumée à l'introduction du
texte donné ici.

M. Jseger introduit dans l'expression de Bernouilli
deux coefficients par lesquels il est tenu compte de l'inégale

répartition des vitesses et de la courbure des filets
liquides, et parvient à étendre la représentation
graphique des courants précédemment donnée par Boss

pour les écoulements à filets sensiblement rectilignes et
parallèles, aux écoulements permanents d'un type
quelconque, potentiel ou turbulent, avec ou sans débit solide.

L'intérêt d'une telle représentation, beaucoup plus
générale que celle utilisée habituellement, est ici clairement

démontré. L'auteur se réserve d'en faire
apparaître les avantages pratiques par des publications
ultérieures.

Introduction.
Dans son Essai sur la théorie des eaux courantes Bous-

sinesq 1 mentionne à plusieurs reprises un « principe de

la stabilité en hydraulique », principe auquel il attache
visiblement la plus grande importance, sans être arrivé
cependant à le formuler. Il ressort clairement que,
d'après Boüssinesq, ce principe devrait comporter deux

aspects principaux : l'un donnerait une explication plausible

des circonstances qui engendrent un mouvement
permanent ou au contraire le détruisent ; l'autre devrait
être une généralisation du principe de Bélangera du
débit maximum. Boussinesq a lui-même, dans une étude
ultérieure 3 sur les déversoirs en mince paroi, appliqué le

principe de Bélanger aux mouvements à filets
curvilignes. Cette extrapolation du principe qui trouvait
cependant sa justification dans la concordance des résultats

avec les mesures de Bazin fut l'objet de très vives
critiques.

C'est.à l'étude de certaines questions soulevées par le

principe de stabilité de Boussinesq que nous consacrons
l'exposé qui va suivre. On pourrait intituler « problème
de Boussinesq » l'ensemble des recherches relatives à

l'énoncé. du « principe de stabilité », principe qui reste
encore à trouver, et « énoncé de Bélanger-Boss généralisé » *

1 J. V. Boussinesq : Essai sur la théorie des eaux courantes. Mémoires
présentés par divers Bavants a l'Académie des Science's; Paris 1877, p. 120,
142 et 573.

1 J. B. Bélanger : Notes sur le cours d'hydraulique. Ecole nationale des
Ponts et Chaussées; Paris 1849-50, p. 32-33. •

8 J. V. Boussinesq : Théorie approchée de l écoulement sur- Un déversoir en
mince paroi et sans contraction Infertile ; Paris 1907.

4 P. Boss : Berechnung der Wasserspiegellage beim Wechsel des Fliesszu-
standes. Berlin. Springer 1919, p. 20 et 52.
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le théorème particulier que nous apportons ici et qui ne

constitue peut-être qu'un® partie du « problème de

Boussinesq ».

La démonstration de l'énoncê^de Bélanger-Boss
généralisé exige que l'on étende au préalable le théorème de

Bernoulli, au cas d'un écoulement à filets incurvés considéré

dans son ensemble.
Au cours de l'exposé qui va suivre, nous adopterons

les notations suivantes (fig. 1) :

—! l—. Jigne d énergie

là H

T.

h: " i

y y. v t
=2! Sa*

*u

AS

Imm

ligne d eau

Y

s

Sz

X

0*

B

hn ¦-

hc

y

Q

9
Ha

H*
H,

Fig. 1.

poids spécifique de l'eau.
abscisse curviligne du centre de gravité des sec¬

tions transversales.
abscisse curviligne d'un filet liquide.
abscisse linéaire le long d'un axe horizontal.
surface d'une section supposée tracée normalement

aux filets liquides.
largeur d'une section (rectangulaire).
hauteur de l'eau dans la section, mesurée

verticalement à partir du point le plus bas de la section.
valeur de h en cas d'écoulement uniforme ou nor¬
mal (hauteur normale).
hauteur critique.
ordonnée d'un point, mesurée à partir du point
le plus bas de la section.

f(x) équation du fond du lit (lieu des points les

plus bas).
débit total de la section.

débit linéaire par unité de largeur (B 1).

hauteur de la ligne d'énergie moyenne mesurée à

partir du point le plus bas d'une section o".

Hà + y, H0= Hax—o «u point origine x 0, où y 0.

hauteur de la ligne d'énergie pour un filet liquide
isolé ; t H* Ht-{-y.
dyjdx pente du fond du lit.
pente de la ligne d'eau.

Je pente de la ligne d'énergie moyenne.
v vitessl en un point.'

Q jvm — vitesse moyenne dans la section transversale.
O"

p pression en un point.
t temps.

Nous allons, de façon très succincte, montrer comment
le théorème de Bernouffljest susceptible d'être généralisé
et comment on peut définir Ho, hauteur de la ligne
d'énergie moyenne relative à toute la section o", dans
le cas d'un écoulement à filets incurvés1.

Soient s et z les coordonnées d'un point quelconque, pris
dans la masse du liquide en mouvement. Ecrivons pour
un filet liquide de sectJR&t' dö et de courbure quelconque
l'équation de Bernoulli (fig. 2) :

y

Fig.

où Jp est la résultante, dans le sens des s„ positifs, des forces

de résistance. On peut montrer que, quoique dst-^ds,

(a) -JP

(b) "JL(^\vda - 2g
do-

dans tous les cas où l'on peut passer de la surface o- à la
surface voisine en effectuant une translation et une rotation

de la surface G, mais que l'expression (b) n'est plus
rigoureuse, si la surface ff subit, en outre, une déformation

complémentaire.
Définissons :

îâsà
a a.

vda

a

(c)

(d)

^uffi^^kffa
-V%JIM?H ¦)wto

J^ffirda
a

(e) W £ + £ + z+y, HÏ H, + y

1 Nous espérons pouvoir publier prochainement dans la Revue générale de
l'Hydraulique cotte première partie de notre travail en donnant ù la généralisation

du théorème de Bernoulli tous Les développements qu'elle comporte.
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1

et

Ho
1

o

v'
2g

P + à\vda a-^ + ßÄ

Ha Ho + y.

En faisant usage de ces notations, on a successivement,

en partant de l'équation (o) dont on multiplie les termes

par le débit constant vdc et en l'intégrant sur toute la
section G :

QdsJ
a

2g Q JsJ,
o

+ z-\-y )vdG —^ Jpvda

et enfin

(g)

ds

m
ds

(4s)+js^h+^ —Je

Je
3HI
àx

-Je.

L'expression (g) est précisément la forme généralisée du

théorème de Bernoulli que nous cherchions. Le coefficient

a tient compte de l'inégale répartira» des vitesses alors

que le coefficient ß dépend de la courbure des filets

liquides.
Ha est bien l'expression générale de la hauteur de la

ligne d'énergie moyenne de la section o", compte tenu
de l'inégale répartition des vitesses et de la courbure.

Conception actuelle du problème de Boussinesq.

Lorsque Boss publia ses considérations sur la ligne

d'énergie x, il fit faire un pas décisif au problème posé

par Boussinesq. Boss remarqua que la courbe
<72 ¦H h-\- - j -, qui donne la hauteur de la ligne d'énergie H

Agit
en fonction de la hauteur d'eau h, dans un canal rectili-

gne de section rectangulaire, possède un minimum pour
2

A H hc (hauteur (critique) et que ce minimum

sépare le régime tranquille du régime torrentiel. Quoique
Boss ne le mentionne pas explicitement dans sa publication,

le point pour lequel -=j- 0, dans un écoule-

ment à filets parallèles, est aussi le point qui annule lai L'édérivée partielle Sp L'énoncé de Boss, plus impor-

tant peut-être que celui de Bélanger, n'est donc qu'un
autre aspect d'un même principe. Boss lui-même suggérait

d'envisager le principe du minimum de la ligne
d'énergie comme une conséquence du principe de la
moindre contrainte de Gauss 2.

Deux voies s'ouvrent à qui veut étudier plus avant le

problème complexe soulevé par Boussinesq :

On peut, en précisant l'idée de Boss, rechercher en

mécanique ou en hydrodynamique — peut-être en

hydrodynamique statistique — quelle est l'origine du
théorème du minimum de la ligne d'énergie.

1 Boss : Berechnung der Wasserspiegeltage... Berlin 1919.
' Boss : op. cit., p. 52.

On peut aussi, restant plus proche du domaine plus
restreint que se réserve l'hydraulique, se demander si

l'énoncé de Bélanger-Boss, valable dans le cas de filets
rectilignes parallèles, peut être étendu au cas d'écoulements

à forte courbure ou à turbulence accentuée. Des

trois conséquences de l'énoncé de Bélanger-Boss : minimum

de la ligne d'énergie, maximum du débit et limite
de séparation entre les régimes tranquille et torrentiel,
laquelle est la plus générale Boss estimait que c'est la
notion de minimum de la ligne d'énergie ; Boussinesq traitant

du déversoir en mince paroi et ignorant encore

tout le parti que l'on peut tirer de la notion de hauteur
d'énergie, n'invoquait que la seconde particularité, en

OU n r\ -L i ¦ •- iécrivant : -=j- — U. Quant à la troisième consequence de
ah

l'énoncé, la plupart des auteurs admettaient sans autre
— et cela, malgré la présence de forts tourbillons —
l'existence d'une certaine hauteur critique he séparant,

dans le cas du ressaut hydraulique sur radier plan,
l'écoulement torrentiel amont de l'écoulement
tranquille aval. D'après la conception généralement admise,
la hauteur critique hc est, en pareil cas, une valeur
particulière de h qui rend infini le coefficient angulaire
dhjds de la tangente à la ligne d'eau, dans l'équation de

Bresse -1 (Â„ hauteur normale) :

Or, l'équation de Bresse n'est précisément plus valable

aux environs de ce point, et l'on n'observe nulle part de

tangente infinie le long de la ligne d'eau, en sorte que la
définition de he gardait un caractère quelque peu
arbitraire. Cette extrapolation de la notion de hauteur
critique, issue de l'étude des courants à filets sensiblement

parallèles, à un écoulement turbulent, aurait dû paraître
d'autant plus hasardeuse qu'à la même époque on hésitait

à étendre la même notion au cas de nappes déversantes

à filets courbes, où le passage d'un régime à

l'autre, sans aucune turbulence, cependant, est non moms
évident que pour le ressaut hydraulique.

Il faut aussi remarquer que la « hauteur critique »

introduite par Escande 2 dans l'étude du ressaut hydraulique

sur radier avec décrochement est une « hauteur
limite », située quelque part en aval du ressaut et non
point une hauteur critique au sens des idées de Boussinesq

et de Boss. Et cependant, il existe en ce cas également

une hauteur critique, au sens général du terme.
Ce bref aperçu prouve, du moins, que les idées admises

variaient considérablement d'un auteur à l'autre et selon

le problème particulier qu'il envisageait.
Nous ne nous occuperons point de la première des

questions soulevées : La recherche de l'origine de l'énoncé
de Bélanger-Boss nous paraît être un problème de mécanique

générale ou de physique statistique trop ardu

1 .1. J. Ch. Bresse : Cours de mécanique appliquée, 2e partie : Hydraulique.
Paris 1860, p. 221.

2 L. Kscande : Recherches théoriques et expérimentales sur l'écoulement par
vanne de fond, 2e partie. Revue générale de l'Hydraulique, n° 25, janvier-
lévrier 1939, p. 21.



188 BULLETIN TECHNIQUÊÊDE LA'SUISSE RQfJANDE

pour pouvoir, en ce moment, être abordé avec quelque
utilité. Plus simplement, nous chercherons — en restant
dans le domaine de l'hydraulique — une généralisation
de l'énoncé de Bélanger-Boss.

C'est à Boss lui-même que nous emprunterons l'idée
directrice de notre étude. Cet auteur avait illustré son
énoncé du théorème du minimum de la ligne d'énergie

par un diagramme très suggestif et qui, depuis lors,
est devenu d'un emploi courant. Nous allons chercher,
tout d'abord, de deux manières différentes, à généraliser
la représentation plane de Boss, pour le cas de filets
liquides rectilignes, en la transposant dans des espaces
à trois dimensions.

Considérons (fig. 3) un canal cylindrique de pente
constante i et de grande longueur. Négligeons ce qui peut

écoulement torrentie/
écoulement tranquille

/
/

//

Hrk

ooA

(T-

[IÇr/zontale '

Surface fnorm (s, h,Hc)~ O

Fig. 3.

se passer aux extrémités du canal, pour ne considérer que
la partie du canal où l'écoulement est normal (i / Je).

Considérons le long de l'axe s, légèrement incliné, une
succession de profils en travers verticaux

*a> s2> • • • si • • • *«•

En chacun de ces profils nous pouvons dessiner,
dans un plan hOiHo, vertical, une courbe Kj /fa(A),
identique à celle de Boss. A elles toutes ensemble elles

forment une surface cylindrique, correspondant à un débit
donné Q const. Une solution réelle est donnée par
l'intersection de cette surface, que nous appelons
fnorm(s, h, Ha) 0, avec un plan de bout, d'inclinaison
Je i. Cette surface, qui a la forme d'une vallée, ne

nous apprend d'ailleurs rien de plus que la courbe
classique de Boss Ha Ha (h).

Plusieurs auteurs1 tracent, non point une courbe

Ha Ho(h) pour un débit donné, mais une famille de

courbes, en prenant le débit Q comme paramètre. Ils

comparent cette famille de courbes Ha Ha (h) à la
famille de courbes Q Q(h), obtenues en prenant Ha
comme paramètre. (Ce sont des paraboles de degré 3/2).
Mais on pourrait tout aussi bien considérer dans l'espace
Q, h, Ha une surface Fum (Q, h, Ha) 0, dont les
intersections avec des plans Q const, et Ha const,
donneraient à nouveau les familles de courbes mentionnées.

1 G. de Marchi, tome I, 2e partie, p. 180, flg. 130.

Ho

écoulement
torrentiel

M

ligne d eau

tond du lit
C'?o?fa/.

écoulement
tranquille

surface fis,h,Hff)-0

surface f(s, h, Hc-) - O

pour un écoulement quelconque

Fie. 4.

Cette surface a plus ou moins la forme d'un cornet qui
s'entr'ouvre, la pointe du cornet étant placée à l'origine
des axes (Fig. 5).

Les deux surfaces fnorm 0 et Fnorm 0 ne sont qu'une
expression différente du diagramme initial de Boss, pour
le cas de l'écoulement normal. Nous allons maintenant
chercher à extrapoler les notions acquises au cas d'un
écoulement quelconque.

Considérons (Fig. 4), pour un débit constant Q0, un

Hrl\ Q-Q

riffo
// Q=Q

"g.

H<?1 «;
k m

Surface FfO.n.fiJ

F«. 5.
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canal de forme quelconque x, dans lequel l'écoulement est

permanent mais non plus nécessairement normal. Mesurons,

dans des sections slf s2, ss s* sn, prises le

long de l'axe curviligne s, des paires de valeurs (hlt Haï),
(lit,, Ha2) ¦ • ¦ (hi, Hai) • fM (hn Han) et représentons-les,
dans un système d'axes à trois dimensions (Os, h, Ha),
l'axe des s étant curviligne, par des points de coordonnées

St, hi, Hai ; à chaque mesure faite correspond un
point de l'espace et, pour un même écoulement à débit
constant, tous ces points forment une courbe qui sera,
dans le langage que nous allons adopter, la « solution »

du problème, pour un débit donné et des conditions aux
limites données également. Faisons varier les conditions
à l'une des limites, en prenant soin de ne rien changer
d'autre. Modifions par exemple h de dh, ce qui entraîne
une variation dHa de Ha à l'infini aval, le débit restant
constant. Nous obtiendrons dans l'espace (Os, h, Ha)
une nouvelle courbe, correspondant à une nouvelle
solution, voisine de la précédente. En procédant ainsi de

proche en proche, toutes les courbes soljqÉions décrivent
une surface à double courbure / (s, h, Ha) 0 pour
Q const., qui par sa forme en auge ou vallée rappelle
quelque peu la surface cyUfflrique fnorm 0, correspondant

à l'écoulement normal. Aux points où le courant
tendra à devenir normal dans le canal de forme quel1

conque que nous envisageons, la surface à double courbure

/ 0 tendra à reprendre la forme cylindrique de la
surface fnorm 0. Cette surface / 0 est une surface
représentative des écoulements à débit constant et chaque
solution réelle est, par définition, représentée par une
c ourbe de cette surface. Si nous coupons cette surface par
un plan d'abscisse *,-, parallèle au plan (Oh, Ha), nous
obtenons comme intersection la courbe (voir Fig. 4) :

aQ2
(f) #o- ßÄ + 2g o2'

dans laquelle non seulement Ha et h, mais encore a et ß

sont des variables. Cette courbe rappelle, par son allure
/»2

generale, courbe H h¦
2gA2

de ¦ Boss, a et

dépendent non seulement de la section choisie s<, mais
aussi des sections voisines. De quelle manière, nous le
montrerons ailleurs, quoique cette dépendance '$oit déjà
bien marquée par la façon dont nous avons obtenu la
surface / (s, h, Ha) 0 en traçant les courbes «solutions »,

Précisons, en empiétant sur ce qui sera dit plus tard,
que les coefficients et et ß varient entre des limites que
l'expérience nous permet d'estimer. Un liquide parfait en
écoulement normal dans un canal rectiligne donne a 1

et ß 1, Un liquide parfait s'écoulant en nappe
pardessus un déversoir (écoulement potentiel également)
donnera, par exemple, des valeurs telles que a 1,1 à

1,2 et ß 0,5 à 0,1. Un courant légèrement turbulent
en écoulement normal fournit des valeurs >ß ^ 1 et
a 1,05 à 1,1. Un écoulement très fortement turbulent
sur radier plan donnera ß ^ 1 et a ~ 10, par exemple.

1 Nous avons supposé, pour la commodité du dessin, que l'axe « s n se
trouve dans un plan vertical, mais la démonstration est générale.

Telles sont quelques valeurs expérimentales de a et ß,

que nous avons glanées parmi les mesures publiées à ce

jour. Retenons simplement Tordre de grandeur de a et ß.

C'est avec raison que nous pouvons alors prétendre que
aQ2

la courbe Hc ßA
2gö2 présente quelque analogie

avec la courbe de Boss : H A -

2gA2

L'opération que nous venons d'effectuer, en traçant
pour Q const, une surface / (s, h, Ha) 0, nous
pouvons la répéter pour un ensemble de valeurs Q. Nous
obtiendrons soit une famille de surfaces / 0, en prenant
Q comme paramètre, ou encore une surface
0X (Q, s, h, Ha) 0 dans un espace à quatre dimensions.
En opérant une coupe de cette surface pour une abscisse

Si const., nous obtenons une surface à trois dimensions
F (Q, h, Ha) 0 qui sera, pour notre écoulement
quelconque, l'équivalent de la surface Fnorm 0 que nous
avons obtenue dans le cas d'un écoulement normal. Dans
la formation de F 0 entrent implicitement les valeurs.
a et ß, fonctions non seulement du choix de l'abscisse,
mais aussi, nous l'avons vu, de ce qui se passe dans les
sections vSines.

Nous allons d'abord étudier les propriétés des surfaces
F (Q, h, Ha) 0, (s const.) puis celles des surfaces

/ (s, h, Ha) 0, (Q const.), en tant que surfaces
géométriques, sans nous préoccuper, tout d'abord, du tracé des
« courbes solutions ». Le problème que pose le tracé de
ces courbes sera examiné dans un paragraphe ultérieur.

Etude des surfaces
F (Q, h, Ha) 0, « const ; (Fig. 5).

Théorème du minimum
de l'énergie totale dans une seetion donnée.

Hauteur critique.1_4

Donnons-nous un canhl de forme absolunient
quelconque. La hauteur Ha est, par définition, fonction de
h, Q, ainsi que de l'abscisse s du point considéré.
Considérons maintenant une section bien déterminée d'abscisse
s v Nous pouvons écrire, au lieu de l'équation (f),
donnant Ha :

(1) F(Q,h,Ho) 0.

Dans un système de coordonnées cartésiennes Q, Ha
et h, la fonction F 0 représente une surface (Fig. 5).
A chaque section d'abscisse s du canal correspond une
surface F 0 différente des surfaces appartenant aux
sections voisines, puisque les coefficients a et ß varient
avec s. Mais, pour s s0, il n'y a qu'une surface F 0,
quoiqu'elle puisse avéfr plusieurs nappes, ce qui importe
peu pour la démonstration. Les divers écoulements possi-

1 J. Bélanger : Cours d'hydraulique, p. 32-33.
' P. Boss : Berechnung der Wasserspiegellage..., p. 20.
• Ch. Jjeger : Remarques sur quelque écoulements le long de lits à pentevariant graduellement. «Schweizer. Bauzeitung>, t. 114, n" SO. 11 novembre

1939, p. 231-234.
4 Ch. Jjuger «t Alb. Abbcassis-Manianares : Comptes rendus de l'Académie

des Sciences, Paris, tome' 210, n° 22. du 27 mai 1940.
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blés ne peuvent être représentés que par des points ou
des lignes se trouvant sur la surface F 0.

Nous sommes en mesure de décrire l'une quelconque
de ces surfaces.

Admettons tout d'abord, pour fixer les idées, que la
surface F 0 corresponde au cas d'un canal rectangulaire

où les filets liquides sont parallèles et la vitesse
uniformément répartie, donc a 1 et ß 1. Coupons

cette ^surface par un plan Q Q{. Soit qt ^~ le

débit par unité de largeur. L'équation de la courbe

d'intersection

Hc h +
2gA2

nous renseigne immédiatement sur sa forme : la courbe

possède deux branches dont l'une est asymptotique à la
bissectrice A Ha et l'autre à la droite A 0. Ha étant
toujours positif, la courbe passe nécessairement par un
minimum lorsque :

3Ha_, qg
0

dh ghsc

d'où nous tiroçPla valeur de la « hauteur critique »

mÀ
(Condition de Boss pour le cas de filets parallèles recti-
lignes). Coupons maintenant la surface F 0 par un
plan Ha Hj, La courbe d'intersection aura comme

équation :

#;=A
2gA2' q hs/2g(H,—h).

Cette courbe passe par la valeur q 0 pour A 0 et

pour A Hj. Comme elle est continue, elle passe
nécessairement par un maximum qui se produit lorsque :

ill
(Condition de Bélanger pour le cas de filets parallèles

rectilignes). On vérifie &ie, pour une valeur donnée de

Hj, cette nouvelle valeur de A est aussi égale à h„ en

sorte qu'on a toujours simultanément :

dHa
dh

0 et $-*.
C'est ce que nous désignerons sous le nom d'à Enoncé de

Bélanger-Boss » 1.

Passons maintenant au cas général de filets courbes et
de vitesses réparties de façon quelconque dans un canal

de section rectangulaire. Les coefficients a et ß sont
alors quelconques, mais on peut cependant remarquer
qu'ils ne peuvent être infinis et que a ne peut être nul.
Dans ces conditions, la forme générale de la surface

F 0 ne diffère pas essentiellement de celle que nous

venons de décrire.

1 Qui le premier a signalé la simultanéité des deux conditions Boss n'en
parle point. Par contre, bien antérieurement à Boss, Flamant — qui ignorait
cependant la notion de la ligne d'énergie telle qu'elle fut introduite par Boss

— la mentionne p. 90-91 de son Hydraulique (Paris, Béranger, édit. 1900)
dans une note nu bas de la page, note remarquable parla portée des remarques
qui y sont faites.

Coupons en effet cette nouvelle surface par un plan
q ç,-. La courbe obtenue aura pour équation :

(*) #<j ßA + aqt
2«A2'

Elle possède également deux asymptotes et, Ha étant
toujours positif, elle passe par un minimum au moins,

pour lequel :

dHts_ ,3$ aqf qf Do._
(2) ^A"-ß + ftPÄ_gÄ3+2gA"2^-°

dont on peut tirer la hauteur critique A Ac.

Traçons, d'autre part, un plan Ha Hoj. B coupe la
surface F 0 selon une courbe dont l'équation est :

(3) Hof=[,h + OUjT

2ëÂ2'
h

le
2(H<% —ßA.

Elle possède au moins un maximum, car, toujours positive,

elle s'annule pour A 0 et pour ßA Hay On a

alors :

«> ï h
d 2g

(#07—ßA)2g.„ dh a.
-£(#07—ßÄH
a Ils2^ -*(Hai—[.h)

0.

En faisant dans les deux expressions (2) et (4) ot= ß 1 et

dh

(5)

0, on retrouve à nouveau l'expression bien connue :

mH=
On peut, sur les bases de ce que nous venons de dire
ici, développer une théorie de la hauteur critique et

indiquer, de cas en cas, quelle forme prennent les expres-
.^pfife (2) et (4) et quelle valeur il y a lieu d'attribuer à

hc. Ce qu'il nous importe de montrer ici, c'est que les valeurs
hc que l'on obtient par l'une et l'autre formules sont bien les

mêmes.

Considérons à nouveau, mais de façon tout à fait
générale, la fonction implicite :

(1) F (Q, A, Ha) 0, (s const.).

Nous pouvons écrire successivement :

Pour <?,:

dF dF dHa I
<16> dh + dHa-^h^0

Pour Ha Ha/ ¦

dF dF dQ

d'où :
dHa
dh

~~

(17) dh ' dQ dh
0 d'où

dQ
dh

dF
dh

"d~F~

dHa

dF

dF
dQ

Supposons que nous nous trouvions en un point de

fait, 2- 0. NidHa »la surface où -—— U et, pardh an
dF .dF _ T1m i=r-r ne sont munis. 11 en résulte nécessairement
dHa dQ

dhqu'en ce point de la surface - =0 également.

La réciproque de ce théorème est vraie.
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L'énoncé de Bélanger-Boss, valable pour le cas de filets
parallèles rectilignes, reste vrai quelles que soient la courbure

des filets liquides, la répartition des vitesses et la
nature de l'écoulement, potentiel, turbulent, etc.

Nous avons esquissé à la figure 5 Tune quelconque de

ces surfaces F 0. A regarder cette surface, la signification

géométrique du théorème est évidente : aux points tels

que t\, e2, ¦.. ty les courbes d'intersection Ha Haj et
Q Qi ont la même tangente, perpendiculaire au plan
HaOQ et possèdent toutes deux un extremum. Tant sous

sa forme analytique que sous sa forme géométrique, le

théorème énoncé fait usage d'une propriété générale bien

connue des surfaces.
Nous appelons point critique x de F 0 tout point de

la surface F 0 où le théftfème est satisfait.
La signification physique du théorème est non moins

évidente : Dans la section s s0, l'énergie totale du
courant liquide a pour expression E yHoQ ; d'où, aux
points critiques :

(18) ^=«f+»»f-
Enonçons maintenant le théorème :

oi en une section d'abscisse s — s0 d'un écoulement à

surface libre quelconque, le débit est maximum, à hauteur
Ha — const., la hauteur représentative de l'énergie moyenne
Ha est, en cette même section, minimum, pour Q const.

La réciproque du théorème est vraie. Il est valable quelle

que soit la nature de l'écoulement : turbulent, potentiel,
rectiligne ou incurvé. La hauteur de l'eau en cette
section est A hc. C'est la hauteur critique, dont nous
étudierons les propriétés aux chapitres suivants.

Etude des surfaces
f(s,h,Ho) ou fx{x,h,H%), «/¦ const). I

(Fig. 6.)

Nous avons considéré, au précédent paragraphe, les

surfaces à trois dimensions : F (Q, A, Ha) 0, sections de

la surface générale à quatre dimensions $x 0, et étudié
leurs propriétés. Faisons maintenant, dans la fonction
4>j 0, Q const. Nous obtenons alors des surfaces

/ E A, Ha) 0, pour Q Q0,

ou mieux, en prenant comme variable, au lieu de s,

l'abscisse x mesurée le long d'un axe horizontal, et en

posant Jfî Ha + y, des surfaces :

f1(x,h,H*a) 0, pour Q Q0,

qu'on peut représenter au moyen d'un système de

référence cartésien d'axes 0.r,h,fla. (Voir Fig. 6.) La forme
de cette surface dépend essentiellement de la forme du
canal (puisque Q Q0). Elle est entièrement connue, dès

que l'on sait calculer ou mesurer y — y(x) et calculer les

coefficients a et ß en fonction de x, h et Ha- Cette
surface est la surface représentative de l'énergie contenue
dans l'écoulement. A elle seule, elle ne nous donne la

1 Ce n'est évidei
du mot.

quei Jtique

Hç'k

I O
• I /écoulement i •$¦ t
torrentiel ' $ '

/ / /écoulement
/,- / ,* tranquillePC

^'C vsr_
D" -«fi

ligne d eau

fond du lit

Fig. 6.

solution d'aucun problème, mais nous savons, de façon
certaine, que toute solution doit nécessairement se trouver

sur la surface ft 0, pour peu qu'on se rappelle
comment nous l'avons obtenue.

Cherchons à nous rendre compte de la forme et des

propriétés de cette surface. Si nous la coupons par des

plans parallèles * au plan HaOh, en faisant successivement

x xlr Xr,, x^ nous voyons réapparaître, comme
courbes d'intersections, les courbes Ha Jïî (A) ou
Ha Ho(h), que nous avons étudiées en détail au
paragraphe précédent. Pour autant que nous puissions
supposer que la surface /i 0 est continue — et, à vrai
dire, il n'y a aucune raison sérieuse d'en douter — on
peut affirmer que les courbes Ha=-H„(h) possèdent
chacune au moins un minimum, peut-être plusieurs.
Choisissons, sur chaque courbe, celui d'entre eux qui est
situé le plus bas et désignons-le par la lettre e«. La
surface nous apparaît alors comme une surface à double
courbure, formant une sorte de vallée en U, avec —
éventuellement — des selles ou cols. En joignant tous les

points tels que e^ e-,, et, nous obtenons une courbe
formant un talweg de la vallée. En chacun des points e,

diio mi n dQ „nous avons -==- |Sb- =0, et, par le fait, ¦*£ O.
dh dh dh

Le talweg est donc un lieu de points critiques sur la
surface fi 0.

Si, d'une section transversale à l'autre, les valeurs

a et ß varient peu, le talweg de la surface fx 0 suivra,
en ses grandes lignes, le lit même du courant. Mais on

peut aussi imaginer — et nous rencontrerons ce cas

dans les écoulements très fortement turbulents — des

surfaces /, 0 pour lesquelles les coefficients a et ß

* Ces plans sont distinots des surfaces 0° qui peuvent être gauches.
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varient rapidement d'une section à une autre, en sorte

que le talweg de la surface fy 0 ne suit alors plus du
tout le fond du lit : un creux du lit pourrait coïncider

avec une selle ou col de la surface fx 0. Au point de

vue géométrique, une selle ou col est caractérisé par le

fait que la courbe ex, ea possède en ce point une

tangente horizontale avec dérivée seconde en dx2 néga-

dH*
tive. On y a donc 0. D'autre part, la condition

dx

Q Qo inÄique ^ 0.
dx

Résumons nos constatations relatives à une selle ou
col :

On a d'une part, ainsi que nous l'avons vu au
paragraphe précédent (voir Fig. 5)

dHa 3H*0 M !=°; d,°ù â(^)-ï=°-
En considérant ensuite les dérivées partielles par rapport
à x, nous avons trouvé d'autre part (voir Fig. 6) :

dHl
dx

0: dQ_

dx
0 d'où :

(9) iew) dE*
~dx~

0.

Or E* est, par l'intermédiaire de Q et de Ha, fonction de

Ä et de x seuls, en sorte que nous pouvons écrire au
sommet d'un col :

dE* dE*
dE* -^- dh H—=— dx

dh dx
0.

En résumé : si la surface à double courbure
fx (x, h, Ha) 0 possède une selle ou col, le courant
liquide représenté par le point le plus élevé de ce col est
caractérisé par les conditions :

dHo JHl

(10) dE* 0, ou encore

dh

dQ
dh

dHa

dh
0

m
dx

0.

Nous avons étudié les surfaces /x 0 pour elles

mêmes, sans nous préoccuper dé savoir comment on peut
représenter géométriquement une solution physique. Cela

n'est cependant point difficile, si l'on observe que toute
solution, pour un débit constant Q — Q0, doit nécessairement

se trouver, d'une part sur la surface ft 0,

d'autre part satisfaire ^5
l'équation (g) -=- —J,.

Nous aurons deux cas à distinguer selon que le liquide
est parfait ou, au contraire, l'écoulement turbulent avec

pertes de charge. Nous ne nous Couperons pas de
l'écoulement laminaire, de peu d'intérêt pour l'étude des

courants à surface libre. (A suivre.)

ÉCOLE D'INGÉNIEURS DE L'UNIVERSITÉ
DE LAUSANNE

Doctorat es sciences techniques.
Récemment eut lieu à l'Ecole d'ingénieurs de Lausanne

une séance publique au cours de laquelle M. G.-J. Vinger-
hoets, ingénieur E. I. L., défendit avec succès, en vue de
l'obtention du titre de docteur es sciences techniques, sa
thèse intitulée : Sur la transmission des efforts dans un
raidissement intercalé entre les ailes d"un profil double T à larges
ailes parallèles. Cette séance fut présidée par M. A. Stucky,
directeur ; la commission d'examen était composée de MM. les

professeurs A. Dumas, F. Hübner et A. Paris.

Dans la construction métallique soudée, on a tendance à
vouloir raidir les longerons ou entretoises, au droit des appuis
ou d'une charge isolée, au moyen de diaphragmes en forme
de T couché soudés aux deux ailes et à l'âme d'un acier profilé

double T à larges ailes parallèles (fig. 1).

Fig. 1. — Raidissement en
forme de T couché intercalé

entre les ailes d'un
profil en double T. Poutre
d'essai sous l'une des presses

du Laboratoire d'essai
des matériaux de l'Ecole
d'ingénieurs de l'Université

de Lausanne.

Ces raidissements sont effectués dans l'idée de renforcer la
construction. Or, dans certains cas, ils se sont montré être un
affaiblissement et même une cause de rupture de l'assemblage,
faits dont les causes découlent de l'étude mathématique et
expérimentale faite par l'auteur de la thèse sous la direction
de M. le professeur A. Dumas, directeur du Laboratoire d'essai
des matériaux de l'Ecole d'ingénieurs.

Ce travail a permis de trouver une méthode de calcul et
d'établir une formule générale donnant la force transmise à
l'âme par le diaphragme pour n'importe quel cas de charge,
n'importe quelle poutrelle double T à larges ailes parallèles et
n'importe quelle forme de raidissement.

Pour arriver à ce résultat, M. Vingerhoets établit successivement

par voie analytique :

1. la surface élastique de l'aile du profilé
2. la charge prise par une ou plusieurs barres rondos simplement

intercalées entre les ailes du profilé
3. la charge prise par un diaphragme rectangulaire simplement

intercalé entre les ailes du profilé ¦

4. la charge prise par un diaphragme en forme de T couché
soù'dé à l'aile supérieure chargée et à l'âme du profilé, mais libre
à sa partie inférieure

5. enfin la charge prise par un diaphragme en forme de T couché
soudé à l'aile supérieure chargée, à l'âme et à l'aile inférieure
libre.
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