Zeitschrift: Bulletin technique de la Suisse romande

Band: 69 (1943)

Heft: 1

Artikel: Les méthodes du calcul symbolique
Autor: Blanc, Ch.

DOl: https://doi.org/10.5169/seals-52502

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 26.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-52502
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

69° année

9 janvier 1943 N* 1

BULLETIN TECHNIQUE

y DE LA SUISSE ROMANDE .

ABONNEMENTS :

Suisse : | an, 13.50 francs
Etranger : 16 francs
Pour sociétaires :

Suisse: | an, 11 francs
Etranger: 13.50 francs

Prix du numéro :
75 centimes.

Paraissant tous les 15 iours

Organe de la Société suisse des ingénieurs et des architectes, des Sociétés
vaudoise et genevoise des ingénieurs et des architectes, de |'Association des
anciens éleves de I'Ecole d'ingénieurs de I'Université de Lausanne et des
Groupes romands des anciens éléves de I'Ecole polytechnique fédérale.

COMITE DE PATRONAGE. — Président : R. NEESER, ingénieur, & Genéve ;

—_ Vice-président : M. IMER, a Genéve ; secrétaire : ]. CALAME, ingénieur, &4 Genéve.
Membres : Fribourg : MM. L. HERTLING, architecte; P. JoYE, professeur ;

Vaud : MM. F. CHENAUX, ingénieur ; E. ELsKES, ingénieur ; EpITAUX, archi-

tecte ; E. JosT, architecte; A. Paris, ingénieur ; CH. THEVENAZ, architecte;

— Genéve : MM. L. ARCHINARD, ingénieur ; E. MARTIN, architecte; E. ObIEr,

Pour les abonnements architecte ; Neuchdtel : MM. ]. BEguin, architecte; R. Guyk, ingénieur ; ANNONCES-SUISSES s. .
s'adresser 4 la libraitie A. MEAN, ingénieur ; Valais : M. ]. Dusuts, ingénieur ; A. DE KALBERMATTEN, 5, Rue Centrale,
F. Rouge & C'®, 3 Lausanne. architecte. 8{_‘ASUSAN1\IIE
= » REpaction: D. BoNNaRD, ingénieur, Case postale Chauderon 475, LAUSANNE. = — ¥

Publicité :
TARIF DES ANNONCES
Le millimétre
(larg. 47 mm.) 20 cts.
Tarif spécial pour fractions
de pages.
En plus 20 °/, de majoration de guerre.
Rabais pour annonces
répétées.

CONSEIL D’ADMINISTRATION DE LA SOCIETE ANONYME DU BULLETIN TECHNIQUE
A. Stucky, ingénieur, président: M. BripeL ; G. Epitaux, architecte ; M. IMER.

SOMMAIRE : Les méthodes du calcul symbolique, par Cu. BLanc, professeur a 'Université de Lausanne. — Restriction de combustible
et chaufjage des habitations. Températures réalisables et moyens propres a assurer le confort, par le DT W. Dfriaz, ing. Chef
du Laboratoire des sciences d’exploitation de I'Ecole polylechnique fédérale. — Société suisse des ingénieurs et des architectes :
Proceés-verbal de la 57me assemblée générale du 22 aotl 1942. — BIBLIOGRAPHIE. — CARNET DES CONCOURS. — SERVICE DE PLACEMENT,

Les méthodes du calcul symbolique

par Cu. BLANC, professeur a I’Ecole d’ingénieurs de 1I'Université
de Lausanne .

Le calcul symbolique ! Je connais des gens qui ne
prononcent jamais ces mols sans y mettre une intonation
pleine de mystére, et qui attribuent & cette méthode un
pouvoir véritablement magique : elle permettrait, selon
eux, de résoudre des problémes ot toute autre méthode
aurait échoué. Je voudrais vous montrer combien sont
simples les idées qui en constituent la base, combien
naturels en sont les développements ; la méthode n’a été
rendue obscure que par ceux qui n’y voyaient pas tout
a fait clair.

Avant de donner un exposé de ce « calcul symbolique »
(continuons, quelques instants encore, & 'appeler ainsi),
qu’on nous permette de reprendre les termes mémes de
calcul symbolique : on peut aflirmer que presque tous les
calculs sont symboliques. Sur les bancs de 1’école déja,
le collégien fait du caleul symbolique, comme M. Jour-
dain faisait de la prose sans le savoir.

Mais une premiére distinction s’impose : qu’on ne con-
fonde pas notation symbolique et calcul symbolique. Ainsi,
en algebre élémentaire, on a I’habitude de représenter
des nombres, connus ou non, par des lettres. Plus tard,
on note aussi par des lettres des &tres mathématiques
autres que des nombres réels : nombres complexes, vee-

teurs, fonctions, opérations, etc. Jusque la, 1l n’y a que

! Legon inaugurale prononcée le 27 novembre 1942, (Réd.).

notation symbolique : on emploie, pour représenter des
objets trés divers, des lettres de divers alphabets. Mais
on passe de la notation symbolique au calcul symbo-
lique lorsqu’on assimile, pour les régles du caleul, les
lettres représentant certains objets & des lettres repré-
sentant d’autres objets. Lorsque, comme nous allons le
voir, on appelle par exemple 7 et T, deux transforma-
tions de figures planes, la somme 7, -+ 75 peut étre
définie en toute rigueur: il s’agit alors d’une somme
symbolique puisqu’il n’est plus question d’additionner
deux nombres entre eux : en effectuant une telle somme,
on fait déja du caleul symbolique. Cela n’a rien de mys-
térieux, si 'on veut bien ne donner aux mots que le sens
qu’ils ont.

Les seuls calculs que nous sachions faire sont les trois
opérations les plus simples de Parithmétique, portant
sur des nombres entiers : ’addition, la soustraction, la
multiplication. La division déja se fait au moyen des
opérations précédentes, sauf dans les cas les plus simples.
Et, si étrange que cela puisse paraitre, les calculs les
plus compliqués de celui qui applique les mathématiques
supérieures finissent toujours par aboutir & ces mémes
opérations. On s’y est méme tellement habitué, elles
obéissent & des régles si simples, qu'on aime & retrouver,
lorsqu’il s’agit d’objets autres que de nombres entiers,
les mémes opérations. Et c’est 1a que réside en somme
toute la question du calcul symbolique, & tous les degrés.

Il n’est pas possible, dans le cadre de cette legon, de
passer en revue les multiples opérations symboliques
qu’on introduit ainsi, peu & peu, dans I'enseignement
moyen. Donnons-en simplement un exemple, tiré de la
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géométrie analytique, qu’on continue, je mne sais pour-
quoi, & considérer comme le chapitre essentiel des matheé-
matiques des gymnases.
L’équation d’une droite d, en coordonnées cartésiennes
est, on le sait,
ax + by 4+ ¢ = 0.
Pour condenser I’écriture, on écrit alors simplement

d=0

d étant mis a la place du premier membre : d représente
tout ce premier membre

=ax + by + c.
On a ici une notation symbolique. On en vient ensuite

a ne plus écrire que d, et a calculer avec cette lettre
seule. Ainsi, pour le faisceau des droites

di=ax+by+c=0

dy=ayx + byy 4 ¢, =0
on écrira

dy—N\dy =10
au lieu de
(ayz+ ...) —A(agz + ...)=0.

Les lettres d; et d, qui représentent toute une expres-
sion sont traitées comme des nombres qu’on additionne
et multiplie. Cette facon de procéder peut surprendre au
début : on apercoit ensuite rapidement quels avantages
elle présente: tant il est profitable de réduire toute
forme au nombre, non pas dans son essence, mais dans
son comportement.

11 s’agit la, probablement, d’un simple besoin de notre
entendement. Je me contenterai de vous renvoyer a ce
sujet aux remarquables études faites sur Pimportance de
la notion de groupe dans le raisonnement.

Prenons maintenant un exemple tiré de la géométrie
pure. On sait que toute propriété géométrique est liée
a4 une transformation qui conserve ladite propriété.
Ainsi, I'aire d’un triangle est liée aux translations, rota-
tions, d’une facon générale aux déplacements du plan.
Les notions de bissectrices, de hauteurs sont invariantes
par les déplacements, mais aussi par les homothéties (dila-
tations) ; les médianes se conservent dans des trans-
formations encore plus générales. Ce qui caractérise les
transformations conservant une propriété géométrique,
c’est qu’elles forment un groupe, c¢’est-a-dire, en parti-
culier, que la succession de deux telles transformations
est encore une transformation du méme type, toute
transformation possédant une transformation inverse.
Il est tout naturel, alors, d’appeler somme de deux trans-
formations d’un groupe la succession de ces deux trans-
formations ; le mot somme a pris maintenant un sens
nouveau, s’appliquant & des notions autres que des nom-
bres ; le seul lien qui le relie & la notion primitive de
somme est le fait que, partant de deux éléments d’un
ensemble, cette somme symbolique fournit un troisi¢me
élément de cet ensemble. Le caleul symbolique ainsi

défini n’a rien de mystérieux.

Mais que I’on prenne garde. Pour I'instant, nous savons
juste écrire que la succession de deux transformations
en donne une troisitme ; nous écrivons, par exemple,

T, 4+ Ty = Ts.

Mais nous devons encore établir les diverses régles du
calcul. Nous verrons ainsi que, contrairement a4 ce qui
se passe pour les nombres, I'addition n’est pas commu-
tative, en général du moins :

Ti+ To2Ty+ T;.

On le verrait facilement en prenant, par exemple,
pour T4, une rotation d’un quart de tour autour d’un
point 0 fixe, et pour 7', une translation dans une direction
fixe.

Mais si nous ne considérons que des translations (en
d’autres termes si nous faisons un choix parmi les trans-
formations), nous obtenons un groupe plus restreint,
pour lequel il y a commutativité.

Etudions ce groupe d’un peu plus prés. Il est constitué
par I’ensemble des translations du plan. Il contient en
particulier la translation identique (I’absence de trans-
lation), qui joue le rdle du «zéro » du groupe. Les trans-
lations ont ceci de particulier qu’elles peuvent étre carac-
térisées au moyen de deux nombres (au sens ordinaire
du mot). En effet, rapportons le plan considéré a deux
axes de coordonnées cartésiennes ; prenons le segment
défini par les deux positions d’un point quelconque,
avant et aprés la translation ; en projetant ce segment
sur les deux axes, on obtient deux nombres qui définis-
sent parfaitement la translation envisagée. On pourra
représenter toute translation par deux nombres ; ce qui
nous conduit & la remarque suivante : la succession de
deux translations constitue encore une translation ;
solent donc les translations 7'y de composantes (aq, by),
T,, de composantes (ay, by) ; et T la translation résultante,
qu’on pourra écrire

e S

Les composantes de T dotvent pouvoir se calculer a partir
de celles de Ty et de Ty : & une opération sur les transla-
tions correspond alors une opération sur leurs compo-
santes ; 1l est done possible de définir @ priori la somme
T, + T,, sans passer par 'interprétation géométrique.

Nous avons ainsi été conduits, par la considération
des translations, & des objets qui sont entiérement carac-
térisés par un certain nombre de composantes : les opé-
rations sur ces objets s’établissent au moyen des opéra-
tions sur les composantes ; mais, les régles du calcul
ayant été démontrées, on peut procéder ensuite direc-
tement sur les objets eux-mémes. On a alors affaire & ce
que I"on peut nommer des nombres complexes.

Nous avons tous entendu parler des nombres imagi-

naires. L’apparition de la lettre i, de y/—1, pose parfois, &
certaines personnes, de véritables cas de conscience qui
ne résistent pas & un examen fait avec sang-froid.

Que devons-nous appeler nombre imaginaire ? Il s’agit
I encore d’un nombre symbolique, dépourvu de tout
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mysteére si 'on veut bien le définir correctement. Voici
comment s’y prennent les traités courants de mathéma-
tiques.

Appelons nombre complexe un objet ¢, défini par deux
composantes a et b. On écrira, provisoirement, ¢ (a,b).
Ces deux composantes doivent étre prises dans un ordre
bien déterminé ; la premiére s’appellera, si I'on veut,
partie réelle, la seconde, partie imaginaire. 11 ne faut
attribuer & ces termes réel et imaginaire aucun sens
autre que celui qui vient d’étre dit, et oublier en particu-
lier qu’ils ont également un sens dans le langage courant.
Nous allons apprendre & calculer avec ces nombres : il
faudra définir I’égalité de deux nombres complexes, la
somme, la différence, le produit, le quotient ; on fera en
outre une hypothése par laquelle les nombres ordinaires
pourront étre considérés comme faisant partie de I’en-
semble des nombres complexes. Voicl ces régles de caleul,
les régles du jeu si ’on veut :

1. c(a, b) =c' (a’, V)

’

sl @ =@, b ="

Deux nombres complexes sont égaux si leurs compo-
santes sont respectivement égales.

2. On fait la somme de deux nombres complexes en
additionnant leurs composantes :

(a, b) + (¢, ') =(a + d', b+ 1.

Remarquons en passant qu’il résulte de la que l'ad-
dition des nombres complexes est commutative.

3. Si b=0, (a,o)=a.

Si la partie imaginaire est nulle, le nombre complexe
est le nombre ordinaire égal & la partie réelle.

Il en résulte qu'un nombre complexe est nul si ses
deux parties sont nulles. On devra remarquer également
que cela ne contredit aucune des régles de Parithmétique
ordinaire.

4. Définition de la soustraction
(a, b) —(a, b') = (a —a', b—b).
5. Définition de la multiplication
(a, b).(a’, b') = (aa’ — bb', ab’ + a'b).

On en déduit en particulier que la multiplication est
b=0, =0

(a, 0).(a, 0) = (ad’, 0)

associative. Si

par quoi nous vérifions qu’il n’y a pas contradiction avec
la régle 3.
Congention : On pose, pour simplifier I’écriture,

(0,1) = i.
St b est réel, on a
b= (b 0)
ib = (b, 0) (0, 1) = (0, D)
a + ib = (a, 0) + (0, b) = (a, b).

Par suite, il sera possible et commode d’écrire, au lieu

de (a, b), a + ib, pourvu qu’on n’oublie pas la significa-
tion du symbole 1.

Calculons 2. On a = (0, 1)
2= (0, 1).(0, 1) = (—1, 0).

Ainsi, ¢ est un nombre complexe dont le carré est réel,
et égal & — 1. On pourra remplacer 2, chaque fois qu’il
se présentera, par — 1.

Comme vous le voyez, ce fameux nombre ¢ dont le
carré est — 1 n’est pas un élément malsain introduit
frauduleusement dans le corps des mathématiques ; il est
défini en toute rigueur ; il appartient & un ensemble de
nombres plus généraux que les nombres ordinaires, dits
nombres réels. Le calcul avec les nombres complexes
est un calcul symbolique : I'addition représente en fait
deux additions, I’égalité deux égalités au sens ordinaire
du mot, etec.

Le mystére s’évanouit, mais non la poésie. A la place
du nombre imaginaire, que 'on n’utilisait qu’a contre-
ceeur, que lon considérait avec crainte parce qu’on ne
savait pas exactement ce qu’il représentait, nous avons
maintenant un concept précis, qui accroit notre pouvoir
de compréhension sans introduire la moindre parcelle
d’incertain, d’a peu pres. .

Le calcul vectoriel nous donne un autre exemple, remar-
quablement simple, de calcul symbolique. L'importance
qu’ont prise les vecteurs dans les applications techniques
est considérable, 11 vaut la peine d’indiquer ici les articu-
lations essentielles de cette théorie. On ne peut passer
sous silence 'ouvrage admirable de notre regretté Gus-
tave Juvet: pendant de longues années encore, les
futurs ingénieurs apprendront dans ses livres & manier
les méthodes vectorielles.

Un vecteur, dans notre espace & trois dimensions, est
défini par deux points, soient A et B, I'un étant I’origine,
Pautre Pextrémité. On le note

——
AB
’ 2 ’ ’ . b
ou, d’une simple lettre surmontée d’une fleche : ¢.

L’égalité de deux vecteurs s’appelle équipollence : deux
vecteurs sont équipollents

re ,_->I
AB=A'B

s'ils sont paralléles, de méme sens et de méme longueur.

Cette définition de I’égalité remplit bien les trois condi-

tions que la logique impose: réflexivité, symétrie et

transitivité.

v ' SER

On définit ensuite la somme de deux vecteurs a et b,

de la fagon suivante: on porte, & partir d'un point 0

" . = 3
quelconque, un vecteur équipollent & a@; & partir de
= .

Iextrémité de ce vecteur, on porte le vecteur b; si P

= .

est Pextrémité de ce dernier vecteur, 0P est par défini-

. — -
tion la somme de a et b
- — —
0P = a + b.
La géométrie élémentaire nous apprend alors que

= SIS S
a4+ b=10b-+ a.
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Il n’est pas difficile de définir ensuite la somme de
plusieurs vecteurs, la différence de deux vecteurs. On
démontre que les régles de calcul sont les mémes que
pour les opérations sur des nombres.

La question se complique lorsqu’il s’agit d’introduire
le produit de deux vecteurs. On peut en donner diverses
définitions: A vrai dire, deux seulement sont usuelles :
on a le produit scalaire et le produit pectoriel.

Le produit scalaire de @ et b est un nombre (un sca-
laire) : il est égal, par définition, au produit des lon-
gueurs de @ et de b par le cosinus de I'angle que forment
ces deux vecteurs. On montre que ce produit se com-
porte comme un produit ordinaire.

Le produit vectoriel de deux vecteurs est un nouveau
vecteur qu’on note

- —
c=a

=axb

Sa direction est perpendiculaire au plan défini par
a et 1_;, son sens étant tel que le triédre (a, b, ¢) soit
orienté positivement. Son intensité est égale a l'aire du
parallélogramme construit sur @ et b.

Ce produit ne jouit plus des propriétés les plus com-

munes de la multiplication des nombres. En particulier
- — = —
aXb=—bxXa.
Mais il y a plus. Lorsque nous écrivons
2.3:7

nous n’avons pas besoin de préciser dans quel ordre
doivent se faire les opérations : on peut multiplier d’abord
2 par 3, puis le résultat par 7, ou encore 3 par 7, puis
le résultat par 2, ete.: le résultat final est toujours le
méme. Il n’en est plus ainsi avec le double produit
vectoriel :

- =
axXbXc
n’a pas de sens, car le résultat est différent selon I'ordre
adopté pour les opérations

— = — - =% —_
(@ X b) X cz2a X (b X c).

Ainsi, aprés avoir défini des objets nouveaux, nombres
complexes, vecteurs, notre premier souci est d’établir
les régles du caleul. Ces régles, nous les définissons en
toute rigueur, et, par une analogie plus ou moins stricte,
nous donnons aux diverses opérations les noms mémes
que I’on emploie pour les opérations sur les nombres, on
les représente par les mémes signes. On se gardera simple-
ment de devancer I’établissement des régles du jeu ; on
ne croira pas que, parce que cela va tout seul pour les
opérations les plus simples, on n’a aucun souci a se faire
pour les autres. Non ; ainsi, nous Iavons dit, la multi-
plication scalaire des vecteurs se comporte comme la

multiplication ordinaire. Par exemple

- = - o, ==
a(b+ ¢)=ab-+ ac.
. . TR
Mais, si a.bi="0

. = s . LY
on ne peut en déduire que a, ou b = 0 la division n’est

pas possible.

Les opérations symboliques que nous avons vues jus-
qu’ici se raménent toujours, d’une facon simple, & des
opérations sur des nombres réels. On peut cependant
aller plus loin. Parmi les opérations de I’analyse, la
dérivation et I'intégration tiennent une place essentielle.
Pour ceux & qui ces notions ne sont pas familiéres, je
dirai cect : lorsqu’un mobile parcourt une droite, sa posi-
tion est une fonction du temps, sa vitesse est également
une fonction du temps. Ces deux fonctions ne sauraient
¢tre indépendantes, elles sont en fait liées, et on dit
que la seconde (la vitesse), est la dérivée de la premiere
(qui exprime la position) ; inversement, la premiére est
une primitive, ou intégrale, de la seconde. (Il va sans
dire qu’il s’agit ici d’'un exemple, et que les notions de
dérivée et d’intégrale s’appliquent a d’autres fonctions.)
La résolution d’un grand nombre de problémes con-
duit précisément a des recherches d’intégrales; on a
méme souvent affaire & des équations différentielles, rela-
tions entre une fonction et ses dérivées successives.
[ intégration consiste alors & déterminer la fonction &
partir de I’équation. C’est un probléeme en général difficile.

Or, une notation nous suggére ici une méthode. Si la
variable s’appelle ¢, et la fonction y, on écrit parfois,
pour la dérivée d’y, Dy. Cette notation suggére une multi-
plication : on considére la dérivation comme la multipli-
cation symbolique de y par D, D jouant le réle d’un
nombre symbolique. La dérivée seconde sera alors D2y,
et, par exemple, I’équation différentielle

y'" -+ k% = A sinwt

deviendra D%y + K2y = A sinwt

ou y — ———— sinwt.
Y=g

Pour continuer, il faut savoir ce que signifie le produit
qui figure au second membre, en un mot, établir quelles
sont les opérations qui correspondent aux expressions
formées avec . Un tel calcul peut s’établir en toute
rigueur ; mais il est préférable alors de reprendre la
question d’un autre coté. En effet, si Pon se laisse tout
simplement entrainer par les analogies comme nous
venons de le faire, on s’expose & obtenir souvent des
résultats manifestement erronés, sans trop savoir pour-
quoi. Un fait, déja, devrait éveiller en nous quelque
méfiance a I'égard de la méthode que nous venons d’es-
quisser : nous avons trouvé que I'intégrale de I'équation

différentielle donnée en exemple était

LTt ke smwt.

Mais nous savons qu'une telle équation possede une
infinité d’intégrales, Uintégrale générale dépendant de
deux quantités arbitraires, dites constantes d’intégration.
On ne voit pas, dans le symbolisme ci-dessus, ot peuvent
apparaitre les constantes d’intégration. Or ¢’est pour-
tant Pessentiel.

Souvent, lorsqu'on intégre une équation différentielle,

on voit dans la recherche de I'intégrale générale le pro-
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bleme principal, la détermination des constantes d’inté-
gration étant un travail facile, fastidieux, indigne, en
somme, d’un calculateur sérieux. Nous ne sommes pas
de cet avis : pour nous, 'opération essentielle est préci-
sément la détermination de ces constantes ; c’est méme,
d’une fagon générale, la partie la plus diflicile du calcul.
Et la méthode & choisir pour venir & bout de I'intégration
dépend dans une plus large mesure de la nature des con-
ditions qui fixent les arbitraires, que de la forme de
I’équation elle-méme.

Les méthodes symboliques d’intégration sont précisé-
ment adaptées a certains cas seulement, et seule une
étude rigoureuse de la question permet d’énoncer quels
sont ces cas. Je m’en voudrais d’insister ici sur la tech-
nique adoptée pour fonder en toute rigueur les méthodes
symboliques d’intégration. Qu’il me suflise de dire
qu'Euler, puis Laplace, vers la fin du XVIII® siecle,
avaient introduit une transformation fonctionnelle qui
permet de résoudre entierement la question. Au lieu
de considérer la dérivation comme une multiplication
symbolique, on remplace, au moyen d’une transforma-
tion appelée transformation de Laplace, la fonction envi-
sagée F (1) par une fonction image @ (s), telle qua la
dérivation de F (t) corresponde, pour la fonction image,
une multiplication (bien réelle, et non plus symbolique)
par s, avec adjonction d’un terme qui permet d’intro-
duire ensuite les constantes d’intégration.

Nous voyons surgir ici une circonstance qui apparait
chaque fois que Pon fait du caleul symbolique : les opé-
rations symboliques ne sont que le reflet d’opérations
bien réelles effectuées sur des objets mis en correspon-
dance parfaite avec les objets donnés.

Ainsi, Paddition (symbolique) de deux nombres com-
plexes z, et z, signifie 'addition de leurs parties réelles
et imaginaires, le produit scalaire de deux vecteurs
représente une opération bien définie effectuée sur leurs
composantes ; la dérivation, représentée symbolique-
ment par une multiplication correspond & une multiplica-
tion bien réelle de la fonction transformée par la trans-
formation de Laplace. En un mot, une opération symbo-
lique est toujours U'tmage d’opérations bien réelles, portant
sur d’autres objels.

On pourra, se laissant guider par des considérations
de commodité, adopter un langage ou I'autre. Dans notre
dernier exemple, nous ne pensons pas qu’il y ait quelque
avantage 4 conserver le langage symbolique. On conser-
vera plutot la méthode d’Euler et de Laplace. On fera
bien d’abandonner I'expression de calcul symbolique de
Heaviside, non pas que I'ingénieur anglais n’ait aucun
mérite, bien au contraire ; mais il n’y a aucune raison
de donner 4 une méthode ancienne le nom de celui qui
I'a simplement appliquée, sans y mettre le moindre
souci de rigueur. Que dire, & ce point de vue, de ses dis-
ciples ?

Il sera temps de conclure. On peut tirer des exemples
qui précedent Penseignement suivant : il y a un avan-

tage certain & donner, a des opérations nouvelles, la

forme et le nom d’opérations déja connues. En particu-
lier, il y a un avantage a parler de la somme de deux forces
concourantes, du produit scalaire de deux vecteurs, etc.
Il n’y a la qu'une manifestation de cette réduction a
Parithmétique, qui fut, et est encore, I'idéal de beaucoup
de mathématiciens : elle reflete peut-&tre, nous 'avons
dit en passant, une exigence de notre esprit. Mais cette
réduction a D'arithmétique ne doit pas reposer simple-
ment sur quelques analogies formelles ; méme une réus-
site fortuite ne pourrait alors nous la faire accepter.

On se gardera également de voir dans ces termes de
calcul symbolique ’annonce de je ne sais quelle puis-
sance occulte, un peu en marge des saines régles de ana-
lyse. Les méthodes de calcul doivent étre rigoureusement
justifiées, quel que soit le but qu’on se propose en recou-
rant aux mathématiques. Je ne dis pas qu’on devra s’ar-
réter & chaque instant & des points de rigueur, et aban-
donner tel probléme parce qu’on sait qu’on n’en trouvera
qu’une solution approchée. En fin de compte, pour le phy-
sicien et I'ingénieur, c’est le résultat qui importe, et le
mathématicien ne I'oubliera pas. Mais précisément pour
cela, il faut recourir & des méthodes stires, susceptibles
d’une complete justification. Qu’on ne voie donc pas
dans les mathématiques qu’on applique une dégradation
de celles qu'on appelle les mathématiques pures, comme
on parle d’'une dégradation de I’énergie. Il y a effective-
ment dégradation lorsqu’on veut introduire dans les
mathématiques des méthodes dont le symbolisme masque
le manque de rigueur : le temps se charge alors de régler
la question. -

Au fait, il 0’y a pas deux mathématiques, la mathéma-
tique pure et la mathématique appliquée. Chacun sera, je
pense, de cet avis. Il y a deux faces d’'une méme science.
Et cela montre la richesse de notre discipline, d’une part
construction rigoureuse de Desprit, d’autre part, seul
moyen pour 'entendement de saisir le réel.
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Introduction.

On ne se fait, en général, pas une idée exacte de la
réduction de confort a laquelle on doit s’astreindre lors-
qu’on ne dispose que d’une faible fraction du combus-
tible utilisé en temps de paix. Chacun prend quelques
mesures restrictives et s’étonne de leur peu d’eflicacité.
De la & penser qu'il n’est pas possible de se restreindre
davantage et que les autorités doivent chercher les éco-
nomies ailleurs, il n’y a qu’un pas que beaucoup fran-

chissent facilement.
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