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Contribution

à l'étude des plaques obliques

par Henry FAVRE,
professeur à l'Ecole polytechnique fédérale, Zurich.1

Les plaques sollicitées à la flexion et limitées par un
cercle, une ellipse ou un rectangle ont été l'objet de

nombreuses études théoriqual. On rencontre cependant aussi,

dans la pratique, des plaques dont le contour est un
parallélogramme. Elles sont appelées « obliques » pour les

distinguer de la forme rectangulaire.
Le problème de la flexion des plaques obliques n'a tenté,

jusqu'ici, que de rares théoriciens 2. Cela est certainement

dû au fait que, si l'on utilise des coordonnées rectangulaires,

les conditions aux limites sont moins simples à

exprimer pour un parallélogramme que pour un rectangle.
Le but de ce mémoire est double.

Il est tout d'abord destiné à établir les principales
équations régissant l'équilibre de la plaque limitée par
un parallélogramme, en utilisant un système de coordonnées

cartésiennes oblique», dont deux des axes sont paral-

1 Nous sommes heureux de pouvoir aujourd'hui offrir à nos
lecteurs cette remarquable étude. Cette dernière a paru en juillet et
août derniers dans la Schweizerische Bauzeitung, qui a bien voulu
nous autoriser à la reproduire et a mis aimablement à notre disposition

les clichés des figures. (Red.).
a Brigalti, C. V. ; Applicazione del metodo di H. Marcus al

calcolo délia piastra paraiIclogrammica. Rie. Ingegn. 6, 1938.
Anzelius, A. : Ueber die elastische Deformation parallelogramm-

förmiger Platten. Bauingenieur 20, 1939.
Vogt, H. : Die Berechnung schiefwinkliger Platten und plattenartiger

Brückensysteme..Dissertation der Technischen Hochschule
Hannover, 1940.

lèles aux côtés du parallélogramme et le troisième
perpendiculaire à son plan. C'est le système le mieux adapté
à la forme de plaque considérée. Il permet d'exprimer
les conditions au contour avec la même commodité que
les coordonnées rectangulaires le permettent dans le cas

du rectangle, ce qui est un grand avantage pour les

recherches théoriques.
En outre ce mémoire présente, comme application, une

méthode approchée pour le calcul de la plaque oblique
encastrée, à charge uniformément répartie.

1. Rappel des principales équations de la théorie des

plaques, en coordonnées cartésiennes rectangulaires.

Considérons une plaque d'épaisseur h, sollicitée par des

forces extérieures perpendiculaires aux faces et posée ou

encastrée le long du pourtour1 (fig. 1). Choisissons un
système cartésien rectangulaire fixe Oxyz, les axes x, y
étant situés dans le plan equidistant des faces, avant la
déformation. Soit Z0 PP' le déplacement, parallèle
à z, d'un point P (x, y) de ce plan. Le lieu des points
P' (x, y, t0) est la « surface élastique ».

On démontre, dans la théorie des plaques, que les

tensions Gx,... ixy... en un point (xyz) sont liées aux
déformations par les relations suivantes a :

1 Une plaque est le solide découpé, dans un prisme ou un cylindre,

par deux plans perpendiculaires aux arêtes et dont la distance,
mesurant l'épaisseur de la plaque, est relativement petite par
rapport aux autres dimensions. Les bases de ce solide constituent les
« faces » de la plaque. Comme l'épaisseur est petite, on assimile
souvent les faces latérales à une ligne qui est le «pourtour» ou n

contour» de la plaque.
2 Voir par exemple : A. et L. Föppl, Drang und Zwang. Oldenbourg,

Munich et Berlin UK I, p. 126 et suiv.
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le coefficientoù E désigne le module d'élasticité et v

de Foisson.
Les formules (1) permettent de calculer les tensions dès

que l'on connaît l0 (x,y). Cette fonction doit 1° satisfaire

à l'équation aux dérivées partielles du quatrième ordre :

.d2 d2

"[w + dy->

d*l0 d2l0\ _12(l-v2)
dx2 9y* Eh3 P- (2)

p (x, y) étant la charge par unité de surface ; 2° remplir
les conditions au contour.

Le travail intérieur de déformation est donné par
l'intégrale double suivante, étendue à la surface F de la

plaque :

A
Eh3 m <?%

24(1— v2)JJ l\dx2) ^ \dy2
m

d2^
£*'. +2»3'9'+2<1-v)(£5)"K <3)

Le principe des travaux virtuels s'écrit, pour une
déformation définie par une variation bip de l0 qui satisfait

aux conditions imposées au contour :

Cfpbl0dF — bA 0

m

(4)

2. Principales équations de la théorie des plaques, en

coordonnées cartésiennes obliques.

Pour établir ces équations, nous utiliserons les

relations (1) à (4) et ferons un changement de coordonnées.

Soit x, y, z le système précédemment défini. Nous
introduisons un second système u, v, z tel que les axes u, z

coïncident respectivement avec x, z, l'axe v étant situé
dans le plan x, y et faisant l'angle a avec u (fig. 2).

Les formules de transformation sont (fig. 3) :

x u -f- v cos a, y — v sin a, z z ; (5)

d'où :

y v

du
dx

du
' 3y

tga
1 ch

tg a' dx

(6)

' dy sm a

Remarquons que l0 peut être considéré comme fonction
composée des variables indépendantes x, y :

l0 l0 [u (x, y), v {x, y)],

d'où les formules de transformation suivantes :

dl0 dlQ du dl0 do dlp^ d l0 q
dx du dx dv dx du dv

dip __ dip
dx du (7)

dip dip du dip dv dip
dy du dy dp dy du tga + dln 1

dv \ sin a

dln i dtp i dtp
dy tg a du sin a dv

d*lp d (dlp\ d fdl0\
dx2 dx \dx J du \du

dx2 du2

d2i0
dy2'

_d_(dlp\
dy\dyj

i d+ m\ tga du ;

(8)

dKp
du2'

(9)

5%
dy2

1 Plp

1 d
sin a dv

2

di0+ i dip
tg a du sin a dv

tg2 a du2 +
1 d*l0

sin a tg a du dv sin2 a dv2
(10)

d2i0
_

d (dip
dxdy dx \dy

d*l0
_dxdy

d_

du
1 dip 1 dip+tg a du sin a di

1 d*lp J d*l0
.2 ~r _¦tg a du2 sin a du dv

(11)

0 eh'2 <ify2 sin2 a \ du2̂ 2~£+£V(«>

Compte tenu de (9), (10) et (11), les équations (1) s'éci

vent, après quelques transformations :

pdf
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gx
v Ez

(1 — v2) sin2 a
2

1
2 \ d*l0

cosz a H— sin' a ¦

v

o2la d*lp

v Ez
(1—v2)sin2a \\v

2 COS a -j—y- + rdu dv dv*

1
- cos2 a -f- sin^ a.,.1*%

du2

2 d2lp^ld2l0
¦ — COS a *= np -\ =-s-
v dudv v dv*

IxV
(1 -f- v) sin a

GZ T„2 T«* 0

cos a
du2 dudv J

(!')

y« — l«x ¦

L'équation (2) devient, en appliquant deux fois (12) ;

sin* a \du2^—s — 1 cos a
d2

m
d2

du dv dv2

*** 2cosa^+^^-12(1-V>
du2 du dv dv2 Ehs

*Zo,*to_. dil0 d*l°
du* ^ dv*

C0S a [du3 dv + du dv3 +

|2(l|2co:2a) ^ ^ 12 (1 - v2) sin*a p+ ^1+ ° a) du*dv* Eh3

(2'

Telle est l'équation différentielle de la surface élastique,

en coordonnées obliquellïl!
L'expression (3) du travail de déformation s'écrit, en

remarquant que dF sin a d u d v :

A--
24(1-

Eh3 ff j (dHp\2 (dHpy
- v2) sin8 aJJ \\du2 ^{dv2) "t"

m

f 2 (cos* a + v sin2 a)§^°Hdu* dv*

-{- 2 [2 cos2 a -j- (1 —v) sin2 a] dudv

(d^ip^^ipX d^ipi.

(3'

et le principe des travaux virtuels (4) :

sin a/ / pblpdudv — b .A 0

m
(4')

Revenons au système (1'). Dans les seconds membres
des trois premières équations ne figurent que les variables

u, v, z. Par contre, dans tous les premiers membres, les
indices des tensions sont encore x, y, z. Pour introduire
les indices u, v, z définissons les composantes des tensions

en coordonnées obliques.
A cet effet, soient deux éléments de surface respectivement

parallèles aux axes u, z et v, z (fig. 4). En décomposant

la tension totale, relative au premier élément,
suivant les direction u et v, on obtient deux composantes
que nous désignerons par t«, et OV De même, en décomposant

la tension totale relative au second élément, on
définit o"„ et ruv.

Remarquons que Gu et Gv ne sont pas en général
normales aux éléments de surface. Dans le cas particulier où

a -s-, les nouvelles composantes des tensions coïncident
À

avec les anciennes. On peut alors remplacer les indices

u, v par x, y.
En appliquant le théorème des moments, par rapport

à un axe 0' parallèle à z, on voit que (fig. 5) :

Tull t«» \*-d)

quel que soit a.

Quant aux tensions o%, iyz, t!x, elles sont remplacées

par (St, tw, T24,, dont la définition est évidente. Les indices
de chacune des tensions ivz, t^u peuvent également être
permutés.

Cherchons les relations entre les nouvelles et les
anciennes tensions. La comparaison des deux parties de

la fig. 6 montre que :

Gv sin a. Tw T«» + Gv cos a.

D'autre part, la somme des projections, sur l'axe u,
des forces agissant sur l'élément de volume indiqué à la
fig. 7 doit être nulle :

6«, + tuv cos a + try cos a — Ox sin a 0.

Résolvant par rapport à o"u, Gv, tuv le système constitué

par les trois dernières équations, on obtient :

OV
cos" a

sin a o-! H : ffj,

sin a
Gy, T<">-T*» tga^-

Remplaçons finalement Gx, Gv, txy par les valeurs (1'),
nous obtenons les expressions des tensions obliques en
fonction des déformations :

ria.6

77?»?//?////?//%

Fig.6

1 es, cos a

.r... cos a
cwà ay

oxsina
1 #— 1

ZXy sm<Xy/
Fifl.7

b/F
zb\*

Fig. 8
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<T«
Ez

(1- ¦v" sin'o

Ez

d2lp 0 d*lp
-^-g—2 cos a -r^r +du* du dv

+ (cos2 a -f- v sin2 a)
d*lp
dv2

(1 — v2) sin8 a

t«« —
Ez

(1 — v2) sin8 a

(cos2 a + v sin2 a) -~-£ —
du*

ZPl d*lp
— 2cosa^—p + -^-2du dv dv*

du2 ^ dv2

d*lt

+

+ i(l + v)sin2a —2 ' du dv

t^ 0.

(1")

Les ^seconds membres de (1") sont beaucoup plus
symétriques que ceux de (1').

On retrouve (1) (2) (3) (4) en faisant a -~-, u x,

v y dans les formules (1") (2') (3') (4').

3. Application aux plaques obliques.

Soit laine plaque dont le contour est un parallélogramme

de côtés la et 1b faisant un angle a. Choisissons,
dans le plan equidistant des faces, le système u, v, z indiqué

à la fig. 8. Les conditions au contour s'écriront sans

difficulté, grâce au choix des coordonnées. Par exemple,
dans les deux cas suivants, nous aurons :

(1°) plaque posée :

pour u ± a : l0 0 et —-| — 2 cos a " "1° O,
mir r)u r)v

(14)

pour v

: a : lp 0 et

: b : l0 0 et

du2

dv2
¦ A cos a

d*lp,
dudv

d*lp
dudv

0.

(les conditions relatives aux dérivées secondes expriment

que Gu 0 pour u zh a et Gv 0 pour v riz b,

comme le montrent les deux premières formules (1") en
tenant compte de la condition l0 0 le long du pourtour.
On sait, depuis les travaux de Kirchhoff, qu'il n'est pas
nécessaire d'annuler les tensions tangentielles le long du
contour).

(2°) plaque encastrée :

pour u zh a : l0

pour v zh b : l0

Oet^S
du

n dl°
0 et -r- 0.

dv

^
(15)

Si la charge p (u, v) est donnée, la solution rigoureuse du

problème consistera à trouver l'unique intégrale de

(2') satisfaisant aux conditions (14) ou (15) K

Une méthode approchée résidera dans l'application du

principe des travaux virtuels (4'). On choisira pour Z0

une fonction de u, v satisfaisant aux conditions au
contour et contenant un certain nombre de coefficients
inconnus. En donnant à ces coefficients des variations
arbitraires on obtiendra, par application de (4'), autant

1 On sait en effet que dans chaque cas déterminé le problème
n'a qu'une soluLion (voir par exemple Föppl, loc. cit., p. 33. et suiv.).

d'équations qu'il y a de coefficients. Le principe de cette
méthode a été donné par Ritz s L'exactitude sera d'autant

plus grande que la fonction choisie sera plus
adéquate à représenter la surface élastique.

En général, cette méthode donnera des solutions dont
l'approximation suffira à l'ingénieur 2.

Supposons que les conditions au contour soient
symétriques par rapport à l'axe z (c'est le cas de (14) ou (15)) et

que l'on ait en outre

P — u, — v)=p(u, v), (16)

c'est-à-dire que les charges soient également symétriques
par rapport à cet axe : la surface élastique elle-même sera
symétrique par rapport à z.

En effet, supposons qu'il existe une solution l0 (u, v)

asymétrique par rapport à cet axe. Changeons le sens des

axes u, v, ce qui revient à les faire tourner de 180° dans
leur plan. Cette solution sera alors représentée par la
fonction l0 (— u, — v) qui vérifiera la même équation (2'),
puisque a n'a pas changé et que p( — u, — v) p (u, v).
Cette fonction satisfera à des conditions au pourtour qui
sont aussi les mêmes que précédemment, par raison de

symét|l|l|l
Or nous avons précisé que, pour des conditions au pourtour

et des charges données, la solution de (2') est unique.
Il faut donc nécessairement que

*

lo (— ". — «0 Eo (u> f) C1?)

ce qui justifie la proposition énoncée.

Voyons maintenant quelle est l'expression du travail
de déformation d'une plaque oblique. Nous avons trouvé

pour A l'expression générale (3'), valable pour un contour
et des conditions d'appui quelconques.

Si la plaque a la forme d'un parallélogramme et si l0 est

nul le long du contour, cette expression se simplifie, car :

dHpdKp
du2 dv*

dudi

m
En effet :

rr(d*io
"JJ [dudv dudt (18)

II 'dKpd*lp
du2 dv2

dudv
+ à

m 'd*ip d (dtp
dv2 du \ du

du

-fdv d%dip
dv2 du

rdip d*i0 du' du du dv2

1 W. Ritz : Theorie der Transversalschwingungen einer
quadratischen platte mit freien Rändern, Drude, Ann. d. Physik 28,
p. 737, 1909.

9 Une autre méthode approchée consistera à utiliser des équations

aux différences. A cet effet, on choisira un réseau constitué
par des parallèles aux axes u et v. L'équation (2') sera remplacée
par les deux suivantes :

A[/=a12(l-:»)P| Aro=ï/>Eh*
1

sin" o\3 u
— 2 cos a

du àv d r
et U désigne une fonction de u, v.

Chacune de ces deux relations sera elle-même remplacée par un
système d'équations linéaires.
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+ a + b

-!*!%&*~
+ a + b

dmidipd (d2i0
dv \dudv

dV

-fdu dip Pip
du du dv
3S

+ b

Plp\2
Oudv

dvt

m
— b —b

2d*lp
dudv

dudv.

L'expression (3') s'écrit, compte tenu de (18)

A
Eh3

24 (1

+ 2(1+ 2 cos2 a)

dHpV
du2)

d*i0
dudv

+ dn,
dv2 +

a Jdnp.PipXd^ip \4 cos a I -—~- m. —-s- -r-^r dudv.
\ du* dvà J dudv

(3")

Telle est la valeur du travail intérieur de déformation

de la plaque oblique dont le contour (posé ou encastré)

satisfait à la condition :

lp 0 pour u ± o et v zt fe.

4. La plaque oblique encastrée, à charge uniformément

répartie. Calcul de la flèche.

Soit pp la charge constante. Choisissons tout d'abord,

pour lp (u, v), la fonction très simple

Zo=4 cos — + 1 COS -j- + 1 (19)

On vérifie facilement qu'elle satisfait aux conditions

au contour de la plaque encastrée (15) ainsi qu'à celle

de symétrie par rapport à l'axe z (17). / désigne une
constante qui est à déterminer à l'aide de (4') en utilisant pour
A l'expression (3"). Cette constante est la flèche au

centre de la plaque, car (l0) /.
•1 0

: 0

Des calculs élémentaires donnent :

ff(F)

dKp
du2

d*l0
dudv

dudv
16

d*lp
dv"

dud
(•f)

(f)

2 1
dudv -r^ao16

\du2+ dv2 dudvauav

16

f)>.
d*l0

f,

(F)

1 Cette dernière intégrale est nulle lorsqu'on prend pour l0 une

expression de la forme Pj. (u) Pt (v), Pj étant une fonction de u
•'annulant pour ± a, Pt une fonction de v ayant pour racines ± b.

A

bA

Eh3 tri f
24 (1 — v2) sin8 a ab

Eh3!? ßf

3 a4 +
16 aïb2 -k(1+2cos2a)

12 (1- -V* sm° a al
+ 6* 1

16 a2b2 f^(l+2cos2a)

bf I nublp=^ COS- + 1
¦KV

COS-T- + 1

ppblpdudv p0abbf.

Introduisons ces valeurs dans (4') :

Eh3!? fkbf
sin ap0abbi— 12 (i-

_3_ a* + &* 1

16 a2b2 + g(l + 2cos2a)]

d'où, en résolvant par rapport à / :

/ 0,6570
1—v2 Po b2i

Eh3

Si l'on remarque que

F 4a b sin a,

la valeur de la flèche peut aussi s'écrire

2 4
+ k- cos2 a)

/=(l-v«

cD V «J 2

3

F2n
I

P°(
Eh3

0,04106

a
T'a

+

0;

(20)

(21)

(22)

(23)
cos* a

est un facteur numérique qui ne dépend que du rapport

~ et de l'angle a, c'est-à-dire de la forme des faces de la

plaque. La fig. 9 donne une représentation graphique de

la fonction *, pour 0,5 < ^- < 2 et 30° < a < 150°

(trait interrompu). Elle montre clairement l'influence delà
forme sur la valeur de la flèche, dans le domaine
particulièrement intéressant pour l'ingénieur.

La surface (19) a ceci de particulier que les profils
axiaux u 0 et v 0 sont des lignes dont la courbure a
la même valeur absolue au centre et aux extrémités 8.

Cette égalité n'existe certainement pas pour la surface

élastique réelle. En d'autres termes la fonction choisie

ne tient aucunement compte de la courbure des profils
axiaux.

On obtiendra donc une meilleure approximation en

prenant pour l0 une expression qui satisfait à certaines
conditions de courbure. Nous allons le faire sans que cela

entraîne de grandes complications dans les calculs.
Choisissons pour lp une fonction telle que, dans le cas parti-

1 On obtient le même résultat en égalant le travail intérieur de
sin a

déformation A donné par (3") à la valeur—„— / jPo^o^'i d\> du

travail des forces extérieures. W
8 Tout profil u const, et i> const de la surface (19) jouit

d'ailleurs de cette propriété.
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culier de la plaque carrée, les profils axiaux aient une
courbure convenable au centre et aux extrémités.

M. Nadai a précisément indiqué, dans son remarquable

ouvrage « Elastische Platten », une méthode de
très bonne approximation pour le calcul des plaques
rectangulaires encastrées à charges uniformément réparties

1. Des chiffres précis indiqués, il est facile de déduire
que, pour la plaque carrée, le rapport de la courbure aux
extrémités d'un profil axial à la courbure au centre est
de — 2,900.

Prenons alors pour l0 la fonction suivante, qui satisfait

à la condition de symétrie (17) :

lQ e (u6 + aa2u4 + Ça^u2 + fa6) •

¦(v6 + ab2vi + $biv2 + ïb6). (24)

Déterminons les constantes a, ß, f en tenant compte
que le profil v 0 (ou u 0) doit satisfaire aux conditions

suivantes :

(lo)
du

d%>
du2

0,

Pi,
2,900, (25)

u 0

ce qui donne, après simplifications, les trois équations

1 + a +ß+T 0,
3 + 2a + ß =0,

15 + 6a + 3,900 0 ;

dont la solution est :

a + 1,834, ß= —6,668, T +3,834.

Si, en outre, nous remplaçons e par

nous obtenons pour l0 :

f f
f2a6b6 14,699a6 fc6'

l0
f

(u6 + 1,834a2 u4 —6,668a4u2 + 3,834a6).
14,699a666

(t,* + 1,834èV — 6,668b*v2 + 3,834 b6), (26)

où / désigne une constante qui est à déterminer à l'aide
de (4') ; ce n'est autre que la flèche au centre de la plaque.

On obtient par des calculs élémentaires :

7ß7 \2 h
V?) dudv 24,083 4/2,du2 I aà

O

d*lp
dudv

(F)

dudv 6,018

dv'
dudv 24,083-^/2,

en

A

If
ab

d*ip
du2 dv2 I duds

5"Zo\ d*l0

IF)

dudv 0.

Eh»
24 (1 —v2) sin'aafc

24,083
a4 + 64

a2 b2 + 12,036 (1 + 2 cos2 a)

1 Springer, Berlin, 1925, p. 180 et suiv.

bA
Eh3 fbf

12 (1 —v2) sin3a~äl

24,083 + è4

i2b2 + 12,036 (1 + 2 cos2 a)

/ Ippb Ipd u dv 1,2240 p0 ab bf.
(F)

L'équation des travaux virtuels (4') s'écrit :

Eh3 fbf1,2240 sin a p0abbf-

24,083
'

12 (1 — v2) sin8 a ab

+ &4

+ 12,036 (1 + 2 cos2 a) 0;

d'où, en résolvant par rapport à / :

/ nß-inni1 —v2)Po a2 è2 sin4 a
/ — %?y Eh3 1 (a\2 /6\2

2+UJ+UJ+cosa
Cette '/aleur de la flèche peut s'écrire :

(l-v2)F2Pp (a \
' Eh3 \b' }'

ou

•( a \ 0,03813 sin2 a
b' J 1 /«N2 (b\22+u) m +cos2a

(27)

(22)

(28)

La fig. 9 donne une représentation graphique de la
fonction 4> (trait continu).

*{fr«-)

- 0,7m

9.01500

0,01000

0,00500

30° ItO SO SO 10 SO 30° WO ftO 110 130 HO 150°

Fig. 9. — Représentation graphique de la fonction <t> I__ o

d'après la formule (23),
d'après la formule proposée (28).
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Si nous comparons les courbes <t> données par la
formule (23), à celles données par (28), on voit qu'elles diffèrent

peu dans le domaine considéré. La flèche ne dépend
donc pas beaucoup du choix de l0(u, v), pourvu que les

conditions (15) et (17) soient satisfaites. Ceci est très
compréhensible. En effet, / dépend de la déformation de

toute la surface de la plaque et ne peut être que relativement

peu influencé par la répartition de la courbure.
Il est toutefois évident que les formules (27) et (28) sont

plus exactes que (20) et (23) — surtout pour des formes
voisines de la plaque carrée — puisque nous avons choisi
lp de façon à ce que les profils axiaux aient, pour a b

et a -jr-,une courbure correspondant autant que

possible à la réalité.
C'est pourquoi nous proposons, pour le calcul de la

flèche, les formules (27) et (28). Il faut s'attendre, dans le

domaine 0,5 < j<2, 30° < a ¦< 150°, à ce qu'elles

donnent / à quelques pour-cent près.
La fig. 9 montre que, pour des valeurs F, h, E, v, p0

données, c'est la plaque carrée (a b, a 90°) qui accuse

la plus grande flèche. Si -=- est aussi donné, la flèche est

maximum pour la plaque rectangulaire (a 90°). Enfin,
si F, h, E, v, po, a sont donnés, / est maximum pour la
plaque dont le contour est un losange (a b). Ces résultats

s'obtiennent également facilement par voie
analytique.

5. Valeurs des tensions dans la plaque oblique encastrée,
à charge uniformément répartie.

Les tensions en un point d'une plaque dépendent des

Pl0 Pl0 Plp
i ", -=—+ comme le montrent les formules

du* d v* dudv
dérivée

(1"), c'est-à-dire de la courbure de la surface élastique au
point considéré. Il est donc essentiel, pour calculer ces

tensions, d'utiliser une surface l0 dont la courbure soit
aussi conforme que possible à la réalité. C'est pourquoi
il faut se garder d'utiliser dans ce but la fonction (19).
Par contre la solution représentée par les équations (26)
et (27) est beaucoup plus adéquate au calcul des tensions,
surtout dans un domaine voisin de la plaque carrée.

La discussion générale des tensions calculées à l'aide
de (1"), (26) et (27) sortirait du cadre de cette étude.
Nous voulons nous contenter de les calculer en deux
points caractéristiques : au centre de la plaque et au
milieu d'un des côtés.

1° Tensions au centre de la plaque (u v 0).

De l'équation (26) on tire :

(Plp
Hü

u= 0
» 0

¦3,4784

PU

dv2 -3,478^,
u 0
» 0

dudv
0.

u —0
» — 0

Substituant dans (1"), il vient :

Ef &a -f-(cos2 a -)- v sin2 a) «2
Gu 3,478

<T„ 3,478

1—v2 sm°a a2b2

Ef a2+(cos2a + vsiu2-«1n3|
1 —v2 sin°a '(29)

3,478
Ef (a2 + b2) cos a

(1 — v2)sin8a a2b2

d'où, en remplaçant / par sa valeur (27) :

o AnnPo s*n « &2 + (Cos2 a + v sin2 a) a2
G„ AAAA m -. -,—r~s k « ¦ Z,h3 Ht + cos2 a

o * on Po s^a- a a2 + (cos2 a + v sin2 a) b2
Gv A,1AA rs ; -, ^ .— — Z,h3 1 am

2 / b\2+ 1 — 1 + cos2 a

tm„=-2,122 p0sm a (a2 + b2) cos a
h3 1

» + I.T
6\2

(29')

2 Tensions au milieu d'un des côtés (u 0, v b)

On tire également de (26) :

Plp m + 10,087 /

«= 0
v b

d'où

Gu=—10,087

<t„=—10,087

t„„ + 10,087

« o

r b

Pl0
dudv 0;

« o

v= b

Ef cos2 a + v sin2 a

(1 — v2) sin3 a

Ef 1

[1 — v2) sin3 a b2* '

Ef cos a

V

(30)

(1 — v2) sin3 a b2 '

Et en remplaçant / par sa valeur (27) :

fi._„p0sina a2 (cos2 a + v sin2 a)
<r„—t>,i5d -p-1 ,/by, T'

o- - 6 1^p°sina - •' h3 1 fa\2 /6\2— 1 + cos* a
a

tu»=+ 6,153 Pos

^MiiÉsHSB2 ' \b ' Va

(30')

On peut ensuite, si l'on veut, calculer les tensions
normales et tangentielles ordinaires, en projetant les
tensions (29') et (30') sur des axes respectivement
perpendiculaires et parallèles aux éléments de surface.

Il sera également facile de déterminer les tensions
normales et tangentielles relatives à un élément quel-
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conque parallèle à z, en utilisant par exemple le procédé

graphique de Mohr.
Il faut s'attendre à ce que les tensions calculées par

(29') et (30') soient exactes à quelques pour-cent près
2 a 3

dans le domaine -k- < -=- < -_-, 60° < a < 120° h Par
o b A

contre, si l'on sort de ce domaine, tout en restant dans
1 a

celui considéré plus haut -=- <" -7- <T 2, 30° < a <T 150°,Ab
ces tensions seront affectées d'erreurs plus grandes.

6. Conclusions.

Ce mémoire montre qu'il est commode d'utiliser des

coordonnées obliques pour les plaques dont le contour est

un parallélogramme. L'exemple traité est même éloquent
à ce sujet, car nous avons pu établir une méthode approchée

pour le calcul de la plaque oblique encastrée, à

charge uniformément répartie, avec autant de facilité que

que si elle était rectangulaire Il n'en sera peut-être pas

toujours ainsi pour d'autres problèmes concernant les

plaques obliques. Nous croyons cependant que les

formules données perjpettront en général d'arriver au but
avec plus d'élégance qu'en utilisant des coordonnées

cartésiennes rectangullajres.
L'application des coordonnées obliques à certains

problèmes d'élasticité bidimensionnelle ou même de torsion
conduirait à des conclusions analogues à celles que nous

venons de formuler pour les plaques.

Zurich, le 24 mars 1942.

1 Les formules (29') et (30') donnent, pour la plaque carrée, des
1

tensions différant de -,-% de celles trouvées par M. Nadai pour la

même forme (loc. cit.). Il en est de même pour la formule (27) de

la flèche.

L'extension de l'usine hydro-électrique

de l'Oelberg
par Beda HEFTI, ingénieur-conseil, Fribourg.2

L'extension de l'usine hydro-électrique de l'Oelberg,
appartenant aux Entreprises Electriques Fribourgeoises, a été

décrétée, en automne 1941, par le Grand Conseil du canton
de Fribourg. Située sur le territoire de la Commune de

Fribourg, cette usine a été construite en 1909 et utilise la chute
de la Sarine qui s'étend depuis le barrage de l'ancienne usine

de la Maigrauge, construite en 1872 par l'ingénieur Guillaume

Ritter, à Oelberg. Au moyen d'une galerie creusée dans la

molasse, le fort courant de la Sarine est coupé de sorte qu'en

ajoutant la hauteur du barrage de l'ancienne usine surélevée

de 4 m à la pente de la Sarine, on obtient la chute de 20 m.
L'usine est équipée avec trois turbines Francis de 2500 CV

absorbant 35 m" d'eau par seconde, accouplées aux alternateurs

de 1850 kVA.

1 La direction des Entreprises électriques fribourgeoises a bien voulu nous

autoriser à reproduire ce texte paru récemment dans la revue Cours d'eau

et énergie, périodique qui a mis aimablement ses clichés & notre disposition.

(Réd.)

Pour la description détaillée nous nous référons à la
brochure publiée à cette occasion sous les auspices de la direction
des Travaux publics du canton de Fribourg. Nous donnons

ci-après un bref aperçu des travaux prévus et des circonstances

qui ont amené la direction des E. E. F. à proposer
l'extension de l'usine en question.

Le projet.
La première étape des travaux comporte l'installation d'un

nouveau groupe absorbant 32 m3 d'eau par seconde, comprenant

: une turbine Kaplan de 7500 CV à axe vertical accouplée
à une génératrice de 7500 kVA, installation qui nécessite des

travaux de constructions importants pour l'agrandissement
du bâtiment actuel. Doivent en outre être comprises dans cet

ouvrage : lafïbonstruction d'une nouvelle prise d'eau, d'une
nouvelle galerie, d'une nouvelle chambre d'équUibre, et d'une
nouvelle conduite forcée ; ce qui équivaut en somme à la
constraption d'une nouvelle usine complète.

L'installation d'un deuxième groupe identique servant de

réserve est prévu en deuxième étape et les parties construc-
tives sont déjà dimensionnées en prévision de ce complément.
Nous nous réservons de revenir dans un article ultérieur sur
quelques détails de la construction, nous bornant aujourd'hui

de donner à nos lecteurs les dispositions essentielles du
projet.

Prise a"eau.

La nouvelle prise d'eau est placée à angle droit avec celle,

qui existe actuellement. Son aménagement nécessite la démolition

d'une partie de l'ancienne usine de la Maigrauge et des

vannes existantes. Une nouvelle vanne de fond est aménagée
à l'intersection des deux prises, permettant le curage devant
les grilles et l'évacuation des glaces.

En outre, chaque prise d'eau aura sa vanne pour le curage
en aval des grilles. Ces trois vannes douées d'une mise en
action automatique à commande par flotteurs ont une capacité

d'évacuation de 300 m8 d'eau par seconde, c'est-à-dire à

peu près la moitié des hautes eaux. Pour l'évacuation des

fortes crues on se servira des vannes à segments existants
débitant 400 m3 d'eau par seconde.

De cette disposition il résultera une simplification notable
du service, surtout aussi par le fait qu'il ne sera plus nécessaire

de laisser déborder le lac par-dessus le barrage en cas de

crue, opération assez délicate parce qu'elle nécessitait la
manipulation d'un système de planches pivotantes en béton,
aménagées au haut du barrage. La nouvelle prise comporte aussi

un écran flottant en béton armé pour le renvoi des corps
flottants et de la glace et une grille de 30 mm avec dégrilleuse.
Pour être parfaite, cette prise d'eau devrait être complétée à

l'avenir par l'aménagement d'une vanne de fond dans le

barrage permettant le curage en profondeur du lac de Pérolles,
en vue du rétablissement de sa capacité d'accumulation.

Galerie (tamenée.

Les calculs comparatifs de rendement ainsi que des considérations

d'ordre technique ont démontré que la construction d'une
seconde galerie s'imposait. Le gain en énergie ainsi récupérée
ensuite de la diminution de la perte de charge se traduit par
une plus-value de 1,6 et. par kWh, en admettant un taux de
5 % pour l'investissement du capital pour la construction
de la galerie. Cette galerie de 18,2 m2 de section (voir fig. 3)
est taillée dans le vif de la molasse sur 200 m, tandis que la
première partie de 70 m de longueur traversant un mauvais
terrain (sable et éboulis) sera construite en béton armé. En
amont de la mise en charge la galerie nouvelle est raccordée
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