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Contribution
a I'étude des plaques obliques

par Hexry FAVRE,

professeur & I'Ecole polytechnique fédérale, Zurich. !

Les plaques sollicitées & la flexion et limitées par un
cercle, une ellipse ou un rectangle ont été 'objet de nom-
breuses études théoriques. On rencontre cependant aussi,
dans la pratique, des plaques dont le contour est un paral-
lélogramme. Elles sont appelées « obliques » pour les dis-
tinguer de la forme rectangulaire.

Le probleme de la flexion des plaques obliques n’a tenté,
jusqu’ici, que de rares théoriciens 2. Cela est certaivement
dit au fait que, si on utilise des coordonnées rectangu-
laires, les conditions aux limites sont moins simples &
exprimer pour un parallélogramme que pour un rectangle.

Le but de ce mémoire est double.

Il est tout d’abord destiné a établir les principales
équations régissant 1’équilibre de la plaque limitée par
un parallélogramme, en utilisant un systeme de coordon-
nées cartésiennes obligues, dont deux des axes sont paral-

1 Nous sommes heureux de pouvoir aujourdhui offrir & nos lee-
teurs cette remarquable é¢tude. Cette derniére a paru en juillet et
aotit derniers dans la Schweizerische Bauzeilung, qui a bien voulu
nous autoriser a la reproduire et a mis aimablement a notre dispo-
sition les clichés des figures. (Réd.).

2 Brigatti, C. V.: Applicazione del metodo di H. Marcus al
calcolo della piastra parallelogrammica. Ric. Ingegn. 6, 1938.

Anzelius, A. : Ueber die elastische Deformation parallelogramm-
formiger Platten. Bauingenieur 20, 1939.

Vogt, H.: Die Berechnung schiefwinkliger Platten und platten-
artiger Briickensysteme. Dissertation der Technischen Hochschule
Hannover, 1940.

leles aux cotés du parallélogramme et le troisieme per-
pendiculaire & son plan. C’est le systeme le mieux adapté
a la forme de plaque considérée. 1l permet d’exprimer
les conditions au contour avec la méme commodité que
les coordonnées rectangulaires le permettent dans le cas
du rectangle, ce qui est un grand avantage pour les
recherches théoriques.

En outre ce mémoire présente, comme application, une
méthode approchée pour le calcul de la plaque oblique
encastrée, & charge uniformément répartie.

I. Rappel des principales équations de la théorie des
plaques, en coordonnées cartésiennes rectangulaires.

Considérons une plaque d’épaisseur h, sollicitée par des
forces extérieures perpendiculaires aux faces et posée ou
encastrée le long du pourtour?! (fig. 1). Choisissons un
systéme cartésien rectangulaire fixe Owysz, les axes 2, y
étant situés dans le plan équidistant des faces, avant la
déformation. Soit Z, = PP’ le déplacement, parallele
a z, d’un point P (x, y) de ce plan. Le lieu des points
P’ (2, y, Ty) est la «surface élastique ».

On démontre, dans la théorie des plaques, que les ten-
SI0NS Ogy. .. Tyy. .. en un point (xyz) sont liées aux défor-

mations par les relations suivantes 2 :

L Une plaque est le solide découpé, dans un prisme ouun eylin-
dre, par deux plans perpendiculaires aux arétes et dont la distance,
mesurant I'épaisseur de la plaque, est relativement petite par rap-
port aux autres dimensions. Les bases de ce solide constituent les
«faces» de la plaque. Comme I'épaisseur est petite, on assimile sou-
vent les faces latérales & une ligne qui est le « pourtour» ou «con-

tour» de la plaque.

2 Voir par exemple: A. et L. Féppl, Drang und Zwang. Olden-
bourg, Munich et Berlin 1941, p. 126 ¢t suiv.



230 BULLETIN TECHNIQUE

DE LA SUISSE ROMANDE

o E _ {72ZO (72?:0 \
R = <T e W)
- E (P, P,
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0, = Ty = Tor — O;

ou E désigne le module d’élasticité et ¢ = L le coellicient
de Poisson. "

Les formules (1) permettent de calculer les tensions deés
que P'on connait Z, (x,y). Cette fonction doit 1° satisfaire
a léquation aux dérivées partielles du quatrieme ordre :

s Pl | Pl 12(1—vF) 9
AAZ°ﬁ<m+dy>((lx2+9y>_ ER D (2)

p (x, y) étant la charge par unité de surface ; 20 remplir

les conditions au contour.

Le travail intérieur de déformation est donné par
Iintégrale double suivante, étendue a la surface F de la
plaque :

- EhR® el PPl P,
- 24<1—v2>f./><ﬁ> - <‘)J )
()

PLPL, | PNy
+ & Jx? W + - (1 -v) <():c ()y ng (3)

Le principe des travaux virtuels s’écrit, pour une défor-
mation définie par une variation dZ, de Z, qui satisfait
aux conditions imposées au contour :

Ve

/ / oLy dF

e

)

54 =0 (4)

2. Principales équations de la théorie des plaques, en
coordonnées cartésiennes obliques.

Pour établir ces équations, nous utiliserons les rela-
tions (1) & (4) et ferons un changement de coordonnées.

Soit 2, y, z le systeme précédemment défini. Nous intro-
duisons un second systeme u, ¢, z tel que les axes u, z
coincident respectivement avec x, z, 'axe ¢ étant situé
dans le plan @, y et faisant Pangle a avee w (fig. 2).

Les formules de transformation sont (fig. 3) :
r=u-+t+vcosa, y=¢sind, z=3; (5)

d’ou :

e YN
TP e Y T sing ©)
Ju ﬁt‘_ 1 do 1
dv T dy tga Jz ' dy sna

Remarquons que Z, peut étre considéré comme fonction
composée des variables indépendantes x, y :

z0 = ZO [lt (‘T; y)7 {4 (1"’ y)]y

d’ou les formules de transformation suivantes :

(7Z0 ALy Ju | Iy I ¢7Z01 2T,

dx du dv | dv dv du T a
qty - %, i
P (7)

&,ﬁﬂ_l_oﬂ_l_ﬁzo(?v _Q_Z_O v i +BZO 4
Jdy  Ju Jy H dy  Ju tg a> v \sina)’

Ity 1 2% 1 9%, 3
dy ~  tgadu ' sinady (®)
Prly I [(IT)\ 2 (Il _ Pl
dxr Jdx\dx ) du\du) o’
Ply Pl
o ®)

Pry 2 (o) _ 1 9
)\ igods |
19z, | 1 %>

1. @
+sina%> <_@JT sin o dy
P, 1 2L, 2 2L, 1 2

Jdy*  1ga Ju?  sinotgadude | sin?o P )
Pl d (I, I [ 1 9L, 1 2%,
dxdy  dx \dy) du tg o Ju + sin o do

)2 1 02 )2
FL, 1 (473 i iy "l (11)

Jdrdy tgadu? " sinadude

2 2
A -Phy Pl 1 <’m° T ‘77“’) (12)

oS 0 -
et " Jyr sinal\ Jdu? dude  Io?

Compte tenu de (9), (10) et (11), les équations (1) s’écri-
vent, aprés quelques transformations :

= /z{)

Fig.t4t 57
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i vEz i S 1 Py
“z“—m_<c°5 o1 o~ sin® “> >
2L, . P,
—2cosadu()v—{—(,)7 ’
- vEz b - ﬁ
= T =V sin’a < SR T °‘> 2 |y
PT, 1P
_COS Jude v (702_,
S Ez a&2lo_(7210
T M Fvysina "2 duow)’
02— Tys— Tox — 0}

L’équation (2) devient, en appliquant deux fois (12);

L (& PP
sin® o <z7u2 2008&3 L Iy +W> ’
2L, 92 L,  PL\ 12 (1—v?)p
'(W—“ Jude TI2) - ER
(7410 ) 1L, A0
ot T ot 4c0?a <(7u3 v + W) + @)
o — 2 sind
+2(14 20080y 220 — 12 (1 —V)sina p

duZ EhR3

Telle est I'équation différentielle de la surface élasti-
que, en coordonnées obliques.

L’expression (3) du travail de déformation s’écrit, en
remarquant que d /' =sin odudy:

E R (PP )2 d4Lp\ 2
o= 24 (1—v?) sin® /.,/ 3<W> +<—()57> T
()
PL, PL,
it -

+ 2 (cos?a+vsin? a)

27 \ 2
+ 2[2cos?a + (1 —v)sin? o] <(/ Z°> —

Ju v

2T L\ R

4 oty e S0 0
Leosa <du2 + d92> Jdu dy

dudy

et le principe des travaux virtuels (4) :

sina//prozlutlv;bzl:O. (4"
o

ﬁé r"
|
777777777,

Fig.6

Revenons au systéme (1°). Dans les seconds membres
des trois premiéres équations ne figurent que les variables
u, ¢, z. Par contre, dans tous les premiers membres, les
indices des tensions sont encore @, y, z. Pour introduire
les indices u, v, z définissons les composantes des tensions
en coordonnées obliques.

A cet effet, soient deux éléments de surface respecti-
et ¢, z (fig. 4). En décom-
posant la tension totale, relative au premier élément,

vement paralleles aux axes u, z

suivant les direction w et ¢, on obtient deux composantes
que nous désignerons par T,, et 0,. De méme, en décom-
posant la tension totale relative au second élément, on
définit 0, et Ty,.

Remarquons que o, et 0, ne sont pas en général nor-
males aux éléments de surface. Dans le cas particulier ot

™ . L &
@ = —-, les nouvelles composantes des tensions coincident
2

avec les anciennes. On peut alors remplacer les indices
u, ¢ par x, y.

En appliquant le théoréme des moments, par rapport
a un axe 0" parallele a z, on voit que (fig. 5) :

Ty = T (13)
quel que soit a.

Quant aux tensions O, Ty, Tz, elles sont remplacées
par Oz, Ty, Tz, dont la définition est évidente. Les indices
de chacune des tensions T, T, peuvent également é&tre
permutés.

Cherchons les relations entre les nouvelles et les
anciennes tensions. La comparaison des deux parties de

la fig. 6 montre que :
Oy = 0pSINQ®, Ty = Tyy + OpCOS Q.

D’autre part, la somme des projections, sur 'axe u,
des forces agissant sur I’élément de volume indiqué a la
fig. 7 doit étre nulle :

Oy + Tuw COS 0 + T,y cOS 00 — Oz sina = 0.

Résolvant par rapport & 0y, 0y, Ty le systéme constitué
par les trois derniéeres équations, on obtient :

cos? a 5
Oy = SN 00, + ——— 0, — 2 COS U T,y,
sin o
- (o) A [
= — T ), — T e .
sino "’ e ga Y

Remplacons finalement o,, 0,, 1, par les valeurs (1'),
nous obtenons les expressions des tensions obliques en
fonction des déformations :

G,

cos a

T’U’ cos

Fig.8 S:v4
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. Ez &*7, 9 sa%
G TV sinda o dude
. Py
+ (cos? o + vsin? 0) (7—‘)29# :
Ez 5 . g il
(ot vy |:(cos 0 v sin a)w
2L, | Py |17
—20050{() dv+ 2 |
Pl (7Z0
Koy (1—v2\<1n3 [ < T )'I"
2L
2491 0
(1—{—v)sm o 2‘()1”7‘, 5
0 = The = Tap—10.

Les seconds membres de (1”) sont beaucoup plus
symeétriques que ceux de (17).

On retrouve (1) (2) (3) (4) en faisant a = Tr—),u::v,
¢ = y dans les formules (1”) (2') (3") (4').

4

3. Application aux plaques obliques.

Soit une plaque dont le contour est un parallélo-
gramme de cOtés 2a et 2b faisant un angle a. Choisissons,
dans le plan équidistant des faces, le systéeme u, ¢, z indi-
qué a la fig. 8. Les conditions au contour s’écriront sans
difficulté, grace au choix des coordonnées. Par exemple,
dans les deux cas suivants, nous aurons :

(19) plague posée :

2
pour u==ta: ;=0 et Py cosa,{) Lo _ ;
Ju® Ju dy
P L (1)
— . — 0 y 0 —
pour ¢ ==b: 7, =0 etW—2cosa9u8‘)—

(les conditions relatives aux dérivées secondes expri-
ment que 0, = 0 pour u = = aet 0, = 0 poury = == b,
comme le montrent les deux premiéres formules (1) en
tenant compte de la condition Z; = 0 le long du pourtour.
On sait, depuis les travaux de Kirchhoff, qu’il n’est pas
nécessaire d’annuler les tensions tangentielles le long du
contour).

(29) plagque encastrée :

pouru==a: {; =0 et (7(/?0 0, )

7 (15)

pour ¢ === b Z0=0et£—z——0 S
dy

Sila charge p (u, ¢) est donnée, la solution rigoureuse du
probleme consistera & trouver l'unique intégrale de
(2') satisfaisant aux conditions (14) ou (15)1!

Une méthode approchée résidera dans 'application du
principe des travaux virtuels (4'). On choisira pour Z;
une fonction de u, ¢ satisfaisant aux conditions au con-
tour et contenant un certain nombre de coellicients
inconnus. En donnant a ces coeflicients des variations
arbitraires on obtiendra, par application de (4'), autant

1 On sait en effet que dans chaque cas déterminé le probleme
n’a qu’une solution (voir par exemple Féppl, loc. cit., p. 33. et suiv.).

d’équations qu’il y a de coellicients. Le principe de cette
méthode a été donné par Ritz 1. L’exactitude sera d’au-
tant plus grande que la fonction choisie sera plus adé-
quate a représenter la surface élastique.

En général, cette méthode donnera des solutions dont
I’approximation suffira & I'ingénieur 2.

Supposons que les conditions au contour soient symé-
triques par rapport a I'axe z (c’estle cas de (14) ou (15)) et
que I'on ait en outre

P (—u,—v)Ep(u, V), (16>
c’est-a-dire que les charges soient également symétriques
par rapport a cet axe : la surface élastique elle-méme sera
symétrique par rapport a z

En effet, supposons qu’il existe une solution Z; (u, ¢) asy-
métrique par rapport a cet axe. Changeons le sens des
axes u, ¢, ce qui revient a les faire tourner de 180° dans
leur plan. Cette solution sera alors représentée par la
fonction 7y (— u, — ¢) qui vérifiera la méme équation (2”),
puisque o n’a pas changé et que p( — u, —¢) = p (u, v).
Cette fonction satisfera & des conditions au pourtour qui
sont aussi les mémes que précédemment, par raison de
symeétrie.

Or nous avons précisé que, pour des conditions au pour-
tour et des charges données, la solution de (2') est unique.
Il faut donc nécessairement que

Lo (—u,—9o) =1 (u, ) 17)
ce qui justifie la proposition énoncée.

Voyons maintenant quelle est I'expression du travail
de déformation d’une plaque oblique. Nous avons trouvé
pour A I'expression générale (3'), valable pour un contour
et des conditions d’appui quelconques.

St la plaque a la forme d’un parallélogramme et st T est
nul le long dw contour, cette expression se stmplifie, car :

? &2 ZO (72 ZO [ (72 ZO 2
t/\/‘ 2 I dudy = f 500 dudey. (18)
(F) (F)
En effet :

PPRLy PL ! 3—2% ) [T

0% % 1 dy [k 2 (2& _
/‘/ Jut I i L/&t M Jdu <()u.> du =
( —b —a

() ZO (7 Z L. ()ZO (/ Zo d
_/ c)c' Ju u Ju H? 2

—= —a —

L W. Ritz: Theorie der Transversalschwingungen einer qua-
dratischen platte mit freien Rdndern, Drude, Ann. d. Physik 28,
p- 737, 1909.

2 Une autre méthode approchée consistera a utiliser des équa-
tions aux différences. A cet effet, on choisira un réseau constitué
par des paralléles aux axes u et ¢. L'équation (2’) sera remplacée
par les deux suivantes :

12 (1 —v?3) p
E h? !

1 P? P »*
e | e —RCOB IR e A
sin? a\J u? du v IV
et U désigne une fonction de u, ¢

Chacune de ces deux relations sera elle-méme remplacée par un
systéeme d’équations linéaires.

AU =

Ay

ou A =
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f a f o P e
—_7,1 0ty 0 (PLN
__a _7)/ Ju Iy (du (7;)> -
oo 2 [P\
:ﬁj i 3 [uff {/uf)(:;] —f<<7u70v> dv% B
Uy —b

0
ﬁff<(7u¢)v> dehides

L’expression (3') s’écrit, compte tenu de (18):

A— Eh3 (/2Z0 &Zo 2+
2% (1—+?) sin®a (1—v sin® Ju? A2

A 2
2 0 o 3//
4 2(1 + 2cos )(() Jv> (3"
Ply , 2L\ PG )
_4cosa( - (')02>()u(705d ude.

Telle est la valeur du travail intérieur de déformation
de la plaque oblique dont le contour (posé ou encastré)
satisfait a la condition :

Zo=0pour u==aetyv=2b
4. La plaque oblique encastrée, a charge uniformément
répartie. Calcul de la fleche.

Soit p, la charge constante. Choisissons tout d’abord,
pour Z, (u, ¢), la fonction trés simple

e2s

Ly= 2(005 — 4+ 1> (cos ‘Ebﬁ - 1> (19)

On vérifie facilement qu’elle satisfait aux conditions
au contour de la plaque encastrée (15) ainsi qu’a celle
de symétrie par rapport & 'axe z (17). f désigne une cons-
tante qui est & déterminer a Iaide de (4') en utilisant pour
A Dexpression (3”). Cette constante est la fleche au
centre de la plaque, car (Zo) = f.

u

Des calculs élémentaires donnent :

L, 3 LR
ff( > du{lv—mab<7> Tl
2L, 3 A 2
l[f(—(/‘?) dudc—l—(ab<l>f,
()
PRI, \2 g m\2 [ m\?,
L[/(dudw) du{lv_TGab(([) <_’7> r
(F)
Pl Pl Pl .
//([)” (}(}2~> (/T(); dudy = 0

1 Cette derniére intégrale est nulle lorsqu'on prend pour Z, une
uxpr(‘mon de la forme P, (1) Py (v), Py é¢tant une fonction de u
s’annulant pour + a, P, une fonction de ¢ ayant pour rocines =+ b.

_ E B3 f2 3 at+ bt 1 ;
A= 24 (1 —v?) Sin?’aﬁ[ﬁ e +§(1—}-2 cos a)],

_ ERm fof[3at4 b 1 1
dbA = ﬁ(—im ab [16 a2 b2 +8(1—|-2cos u):l,

oY) (o +1)

fpobzodudv = poabdf.
@)

Introduisons ces valeurs dans (4') :

. EWnt  fbf
“““Po“bbf"Iijiiiza‘;;?azig'
3 a —{-b“
.[16 5 ( + 2 cos? )] 0;

d’oi1, en résolvant par rapport a f:

a? b?sint a 1

(1—v2) po
f= 0857057 2 AV (2 1L oot (20)
3 <T = g cos a)
Si 'on remarque que
F = 4ab sin a, (21)
la valeur de la fleche peut aussi s’écrire :
F?p a
— (1 —y2 0 =
= a—w ik ($.q) (22
ou
a 0,04106 sin? o
¢<$’“>:2 A\, 7B, & o
3 -+ T + =) + 3 cos“ o

a

est un facteur numérique qui ne dépend que du rapport

a ’ 5 s .
— et de I'angle a, c’est-a-dire de la forme des faces de la

b

plaque. La fig. 9 donne une représentation graphique de
la fonction @, pour 0,5 <C % < 2et 300 << o << 150°

(trait interrompu). Elle montre clairement I'influence de la
forme sur la valeur de la fleche, dans le domaine particu-
lierement intéressant pour l'ingénieur.

La surface (19) a ceci de particulier que les profils
axiaux u = 0 et ¢ = 0 sont des lignes dont la courbure a
la méme valeur absolue au centre et aux extrémités 2.
Cette égalité n’existe certainement pas pour la surface
élastique réelle. En d’autres termes la fonction choisie
ne tient aucunement compte de la courbure des profils
axiaux.

On obtiendra donc une meilleure approximation en
prenant pour Z, une expression qui satisfait a certaines
conditions de courbure. Nous allons le faire sans que cela
entraine de grandes complications dans les calculs. Choi-
sissons pour Z, une fonction telle que, dans le cas parti-

1 On obtient le méme résultat en égalant le travail intérieur de

Y //pozodudv du

Je
travail des forces extérieures. (F)

; . ; s sin
déformation A donné par (3”) a la valeur 3

2 Tout profil u=const. et ¢=const de la surface (19) jouit
d’ailleurs de cette propriété.
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culier de la plaque carrée, les profils axiaux aient une
courbure convenable au centre et aux extrémités.

M. Nadai a précisément indiqué, dans son remar-
quable ouvrage « Elastische Platten », une méthode de
trés bonne approximation pour le calcul des plaques
rectangulaires encastrées a charges uniformément répar-
ties L. Des chiflres précis indiqués, il est facile de déduire
que, pour la plaque carrée, le rapport de la courbure aux
extrémités d’un profil axial a la courbure au centre est
de — 2,900.

Prenons alors pour Z; la fonction suivante, qui satis-
fait a la condition de symétrie (17) :

Ly =€ (ub + aa’u + Batu? 4 yab).
(98 4 ab?ot + Bbte? L Y DS). (24)

Déterminons les constantes o, B, ¥ en tenant compte

que le profil ¢ =0 (ou u = 0) doit satisfaire aux condi-
tions suivantes :

. 9L, =
(Z°>u=if0’<m> =0,
2L, . P, - &
(()u2> : <W> = —2,900, (20)

ce qui donne, aprés simplifications, les trois équations

I+a +8+y=0,
3+ 20+ B = 0,
15 4+ 6a + 3,900 = 0 ;
dont la solution est :
a =+ 1,834, B=—6,668, y = 3,834.

R |
Y2a8b® 14,6994508’

Si, en outre, nous remplacons € par

nous obtenons pour Z;:
ﬁga—eb—e (ub 41,834 a2ut — 6,668 a u2 + 3,834a6),
(o8 4 1,83405200 — 6,668b40% + 38341%),  (26)

ou f désigne une constante qui est & déterminer a Iaide

ZO:

de (4') ; ce n’est autre que la fleche au centre de la plaque.

On obtient par des calculs élémentaires :

2
ff(‘;;;) dude = 26,083 2 2,
(") 27
ff( °> dudv=24,083%f2,

)

P, o e
ff((}‘”d) [lltdi ——6,018ab1

(¢D) ()2 ZO {/2 ZO ()2 Zo
f/((}u 7};5) Tde dudy =0.
E h3
A= m ((b
[24 083 at ;}‘bi’ + 12,036 (1 + 2 cos? (X)—l’

1 Springer, Berlin, 1925, p. 180 et suiv.

204 =

Eh? fof

12 (1—v¥) sin®a ab

[24 083t P 1 19 036 (1+2cosza)],

a2 b2

Podlydude = 1,2240 pgabdf.
(F)

L’équation des travaux virtuels (4') s’écrit :

1,2240 sina poabbf——

ER? fof
2 (1—v?) sinda ab

[2/ 033 £ 19,036 (1 + 20020 )J

d’on, en résolvant par rapport a f:

f=o06100 1=

v3) po a®b?sint o

T e
b a )

Cette valeur de la fleche peut s’écrire :

ou

A —=vi) F2p
f= 2050} ’

& <%’ a> . 0,03813 sin%a.

) ) e

=0;

(27)

(22)

(28)

La fig. 9 donne une représentation graphique de la

fonction @ (trait continu).

3 .
(1)(3,04}
001500 e
= 4.y
/ VZ N / b
7 N\ g=12er £=083
N N fa
//\\ £=14 et F=07m
/ EEEAY /§= 16 e+ &= 062
T . & 3
p =18 et £=055
01900 7 N b5 o p 008
7t F a.
A TR N 8 2 et 5=05
Vi ,’/ A N\~ 3 \\\
A AT N \
7 / SN
/ d \
) / 7/, \ \ |
V Ny \
/ \ |
\\
400500 / /| \'\\\
// % \ \
(3
0 30° 40 50 60 70 80 90° 100 110 120 130 #0 150°
Fig. 9. — Représentation graphique de la fonction ¢ ( > a)

— — — d'aprés la formule (23),
—— d’aprés la formule proposée (28).
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Si nous comparons les courbes ® données par la for-
mule (23), & celles données par (28), on voit qu’elles diffe-
rent peu dans le domaine considéré. La fleche ne dépend
donc pas beaucoup du choix de Zy(u, ¢), pourvu que les
conditions (15) et (17) soient satisfaites. Ceci est tres
compréhensible. En effet, / dépend de la déformation de
toute la surface de la plaque et ne peut étre que relative-
ment peu influencé par la répartition de la courbure.

I1 est toutefois évident que les formules (27) et (28) sont
plus exactes que (20) et (23) — surtout pour des formes
voisines de la plaque carrée — puisque nous avons choisi

o de fagon a ce que les profils axiaux aient, pour a = b
™
et a = 7,une courbure correspondant autant que pos-

sible & la réalité.
C’est pourquol nous proposons, pour le calcul de la
fleche, les formules (27) et (28). Il faut s’attendre, dans le

domaine 0,5 < % <2, 300 < a < 1500, & ce qu’elles

donnent f & quelques pour-cent prés.
La fig. 9 montre que, pour des valeurs F, h, E, v, p,
données, c’est la plaque carrée (a = b, o. = 90°) qui accuse

la plus grande fleche. Si % est aussi donné, la fleche est

maximum pour la plague rectangulaire (o = 90°). Enfin,
si I, h, E, v, po, & sont donnés, f est maximum pour la
plaque dont le contour est un losange (¢ = b). Ces résul-
tats s’obtiennent également facilement par voie ana-
lytique.

5. Valeurs des tensions dans la plague oblique encastrée,
a charge uniformément répartie.

Les tensions en un point d’une plaque dépendent des
Pl PRI, Pl
du?’ 92’ Judy
(1), ¢’est-a-dire de la courbure de la surface élastique au

comme le montrent les formules

dérivées

point considéré. Il est donc essentiel, pour calculer ces
tensions, d’utiliser une surface Z, dont la courbure soit
aussi conforme que possible & la réalité. C’est pourquoi
il faut se garder d’utiliser dans ce but la fonction (19).
Par contre la solution représentée par les équations (26)
et (27) est beaucoup plus adéquate au calcul des tensions,
surtout dans un domaine voisin de la plaque carrée.
La discussion générale des tensions calculées & aide
de (1), (26) et (27) sortirait du cadre de cette étude.
Nous voulons nous contenter de les calculer en deux
points caractéristiques : au centre de la plaque et au

milieu d’un des cotés.
10 Tensions aw centre de la plaque (u = ¢ = 0).

De I’équation (26) on tire :
H*?

( &L
Ju?
u=10 %='0

Ly — 0
Ju dy

9 /7 / ”zzo ‘ /
=g aggd (1750 = L
3,;/8“2 3,478 )2

I
I

Substituant dans (1”), il vient :
Ef b2+ (cos? a—+vsinZa) a? |
2

Gu == 374/8 (1_\’2) Sin3a a_2b2 s
e Ef a®+4(cos? a+vsin?a) b2
0, = 3,478 =) sn%a J2pE z, 5 (29)
- - Ef (a® 4 b?) cosa
Tuv = 3,4/8 (1‘-‘\/2) st e :
d’oti, en remplacant f par sa valeur (27) :
_ 2posina b2 + (cos® a + vsin?a) a?
=214 o1 a2 b\ 2 5 %5
st\lg) T (E) +cos?a
_ 9 Po sin o a® -+ (cosa -+ vsin2a) b2
0y 2,12 h3 1 = 5 Z) 3 \ zZ, (291)
5T FobhoF <—a— + cos?a
9199 Posin o (a® 4 b?) cos a
Tup="—2,122 13 1 a2 ( B\ 2 5 z.
§+ 7 = \; —+ cos?a

20 Tensions au miliew d'un des cétés (u = 0, ¢ = D).

On tire également de (26) :

2 - 2, B f
u="0 u=10
v=1b v=1b
2L,
((71[ (7V> Sy
=i
d’ou
- o Ef cos?a 4 vsinZa
O =100 e b2 &
: Ef 1
Oy =— 10,087 m ‘ljz‘Z , (30)
- Ef cos
T =+ 10,087 e
Et en remplacant f par sa valeur (27) :
___pagqPosing a®(cos?a + vsin?a)
0,=—06,153 g —172‘7772—1_*?“
§—+— i + — cos®a
- PosSina a?
60:—6,1.03 0/],3 1 l(‘L 2+ b ) ) zZ, (30,)
’Q—l— <T ? + cos®
\ o PoSING a®cos a
Tuw=--6,153 Oh3 T Ay TNz 2—2.
§+ <T> +<;> +COS o

On peut ensuite, si I'on veut, calculer les tensions
normales et tangentielles ordinaires, en projetant les
tensions (29') et (30") sur des axes respectivement per-
pendiculaires et paralléles aux éléments de surface.

Il sera également facile de déterminer les tensions
normales et tangentielles relatives & un élément quel-




236 BULLETIN TECHNIQUE DE LA SUISSE ROMANDE

conque paralléle a z, en utilisant par exemple le procédé
graphique de Mohr.

Il faut s’attendre a ce que les tensions calculées par
(29") et (30") soient exactes & quelques pour-cent pres

dans le domaine % < —Z— < —3—, 600 << o << 12001, Par
contre, si 'on sort de ce domaine, tout en restant dans
celui considéré plus haut % < % < 2,300 << a < 1500,

ces tensions seront affectées d’erreurs plus grandes.

6. Conclusions.

Ce mémoire montre qu’il est commode d’utiliser des
coordonnées obliques pour les plaques dont le contour est
un parallélogramme. L’exemple traité est méme éloquent
a ce sujet, car nous avons pu établir une méthode appro-
chée pour le calcul de la plaque oblique encastrée, a
charge uniformément répartie, avec autant de facilité que
que si elle était rectangulaire ! Il n’en sera peut-étre pas
toujours ainsi pour d’autres problemes concernant les
plaques obliques. Nous croyons cependant que les for-
mules données permettront en général d’arriver au but
avec plus d’élégance qu’en utilisant des coordonnées
cartésiennes rectangulaires.

L’application des coordonnées obliques & certains pro-
blemes d’élasticité bidimensionnelle ou méme de torsion
conduirait & des conclusions analogues a celles que nous
venons de formuler pour les plaques.

Zurich, le 24 mars 1942.

1 Les formules (29’) et (30'\) donnent, pour la plaque carrée, des
1 . .
tensions différant de ?% de celles trouvées par M. Nadai pour la

méme forme (loc. cit.). Il en est de méme pour Ja formule (27) de
la fleche.

L’extension de I'usine hydro-électrique

de I'Oelberg

par Bepa HEFTI, ingénieur-conseil, Fribourg. 2

I’extension de I'usine hydro-électrique de I’Oelberg, appar-
tenant aux Entreprises Electriques Fribourgeoises, a été
décrétée, en automne 1941, par le Grand Conseil du canton
de Fribourg. Située sur le territoire de la Commune de Fri-
bourg, cette usine a été construite en 1909 et utilise la chute
de la Sarine qui s’étend depuis le barrage de I'ancienne usine
de la Maigrauge, construite en 1872 par I'ingénieur Guillaume
Ritter, & Oelberg. Au moyen d’une galerie creusée dans la
molasse, le fort courant de la Sarine est coupé de sorte qu’en
ajoutant la hauteur du barrage de I'ancienne usine surélevée
de 4 m a la pente de la Sarine, on obtient la chute de 20 m.
L’usine est équipée avec trois turbines Francis de 2500 CV
absorbant 35 m3 d’eau par seconde, accouplées aux alterna-
teurs de 1850 kVA.

* La direction des Entreprises électriques [ribourgeoises a bien voulu nous
autoriser 4 reproduire ce texte paru récemment dans la revue Cours d'eau
el énergie, périodique qui a mis aimablement ses clichés & notre disposi-

tion. (Réd.)

Pour la description détaillée nous nous référons a la bro-
chure publiée a cette occasion sous les auspices de la direction
des Travaux publics du canton de Fribourg. Nous donnons
ci-aprées un bref apercu des travaux prévus et des circons-
tances qui ont amené la direction des E. E. F. a proposer
I'extension de I'usine en question.

Le projet.

La premiére étape des travaux comporte I'installation d’un
nouveau groupe absorbant 32 m? d’eau par seconde, compre-
nant : une turbine Kaplan de 7500 CV a axe vertical accouplée
a une génératrice de 7500 kVA, installation qui nécessite des
travaux de constructions importants pour I’agrandissement
du batiment actuel. Doivent en outre étre comprises dans cet
ouvrage : la construction d’une nouvelle prise d’eau, d’une
nouvelle galerie, d’une nouvelle chambre d’équilibre, et d’une
nouvelle conduite forcée; ce qui équivaut en somme a la
construction d’une nouvelle usine compléte.

L’installation d’un deuxiéme groupe identique servant de
réserve est prévu en deuxiéme étape et les parties construc-
tives sont déja dimensionnées en prévision de ce complément.
Nous nous réservons de revenir dans un article ultérieur sur
quelques détails de la construction, nous bornant aujour-
d’hui de donner a nos lecteurs les dispositions essentielles du
projet.

Prise d’eau.

La nouvelle prise d’eau est placée a angle droit avec celle
qui existe actuellement. Son aménagement nécessite la démo-
lition d’une partie de I’ancienne usine de la Maigrauge et des
vannes existantes. Une nouvelle vanne de fond est aménagée
a Pintersection des deux prises, permettant le curage devant
les grilles et 'évacuation des glaces.

En outre, chaque prise d’eau aura sa vanne pour le curage
en aval des grilles. Ces trois vannes douées d’une mise en
action automatique & commande par flotteurs ont une capa-
cité d’évacuation de 300 m3 d’eau par seconde, c’est-a-dire a
peu prés la moitié des hautes eaux. Pour I'évacuation des
fortes crues on se servira des vannes a segments existants
débitant 400 m® d’eau par seconde.

De cette disposition il résultera une simplification notable
du service, surtout aussi par le fait qu’il ne sera plus néces-
saire de laisser déborder le lac par-dessus le barrage en cas de
crue, opération assez délicate parce qu’elle nécessitait la mani-
pulation d’un systéme de planches pivotantes en béton, amé-
nagées au haut du barrage. La nouvelle prise comporte aussi
un écran flottant en béton armé pour le renvoi des corps flot-
tants et de la glace et une grille de 30 mm avec dégrilleuse.
Pour étre parfaite, cette prise d’eau devrait étre complétée a
l'avenir par I'aménagement d’une vanne de fond dans le
barrage permettant le curage en profondeur du lac de Pérolles,
en vue du rétablissement de sa capacité d’accumulation.

Galerte d’amenée.

Les calculs comparatifs de rendement ainsi que des considéra-
tions d’ordre technique ont démontré que la construction d’une
seconde galerie s'imposait. Le gain en énergie ainsi récupérée
ensuite de la diminution de la perte de charge se traduit par
une plus-value de 1,6 ct. par kKWh, en admettant un taux de
59, pour I'investissement du capital pour la construction
de la galerie. Cette galerie de 18,2 m® de section (voir fig. 3)
est taillée dans le vif de la molasse sur 200 m, tandis que la
premiére partie de 70 m de longueur traversant un mauvais
terrain (sable et éboulis) sera construite en béton armé. En
amont de la mise en charge la galerie nouvelle est raccordée
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