Zeitschrift: Bulletin technique de la Suisse romande

Band: 67 (1941)

Heft: 19

Artikel: Théorie de I'équilibre des corps élasto-plastiques
Autor: Colonnetti, Gustave

DOl: https://doi.org/10.5169/seals-51345

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 08.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-51345
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

67° année

20 septeml)re 1941 Ne 19

BULLETIN TECHNIQUE

ABONNEMENTS :

Suisse : | an, 13.50 francs
Etranger : 16 francs

Pour sociétaires :

Suisse: | an, 11 francs
Etranger: 13.50 francs

Prix du numéro : Vaud »

= Genéve: MM. L
Pour lss abonnements architecte ; Neuchétel : MM.

s'adresser a la librairie
F. Rouge & C'e, & Lausanne.

architecte.

CONSEIL D’ADMINISTRATION DE LA SOCIETE ANONYME DU BULLETIN TECHNIQUE

DE LA SUISSE ROMANDE

Paraissant tous les 15 jours

Organe de la Société suisse des ingénieurs et des architectes, des Sociétés
vaudoise et genevoise des ingénieurs et des architectes, de 1'Association des
anciens éléves de I'Ecole d'ingénieurs de 1'Université de Lausanne et des
Groupes romands des anciens éléves de 1'Ecole polytechnique fédérale. —

COMITE DE PATRONAGE. — Président: R. NEESER, ingénieur, & Genéve ;
S Vice-président: M. IMER, 3 Genéve; secrétaire: J. CALAME, ingénieur, & Genéve.
Membres : Fribourg : MM. L. HERTLING, architecte ; A. RoOSSIER, ingénieur ;
M. F. CHENAUX, ingénieur; E. ELSKES, ingénieur ; EPITAUX, archi-
75 centimes. tecte; E. Jost, architecte; A. PaRis, ingénieur; CH. THEVENAZ, architecte;
. ARCHINARD, ingénieur; E. ODIER, architecte ; Ca. WEIBEL,

MEAN, ingénieur ; Valais : M. ] DUBUIS

répétées.
BEguin, arcl’utecte R. Guye, ingénieur; A. ANNONCES-SUISSESss.a.
ingénieur; A. pE KALBERMATTEN, 5, Rue Centrale,
LAUSANNE

Répaction : D. BoNNARD, ingénieur, Case postale Chauderon 475, LAUSANNE.

~

Publicité :
TARIF DES ANNONCES

Le millimetre

(larg. 47 mm.) 20 cts.

Tarif spécial pour fractions
de pages.

Rabais pour annonces

& Succursales.

A. STUCKY, ingénieur, président ; M. BRIDEL ; G. EPITAUX, architecte ; M. IMER.

SOMMAIRE : Théorie de Uéquilibre des corps élasto-plastiques, (suite), par M. Gustave CoLonNNETTI, membre de I'Académie Pontifi-
cale des Sciences, professeur a ’Ecole Polytechnique de Turin. — Divers: Le lartre, sa destructlion et les moyens de prévenir sa
JSformation dans les chaudiéres industrielles et les installations de chaufjage central. — NicrorLoGie : Alfred Michaud, ingénieur

SERVICE DE PLACEMENT.

Théorie de I'équilibre des corps
élasto-plastiques

par M. Gustave COLONNETTI,

Membre de I’Académie Pontificale des Sciences,
Professeur a I'Ecole Polytechnique de Turin.

(Suite.)

111. Le probléme de Barré de Saint-Venant.

Considérons un corps cylindrique — ou prismatique —
engendré par une aire plane A de forme quelconque, qui se
déplace dans I’espace ; chacun des points de A décrit une
droite normale & son plan.

La longueur du cylindre est, en tout cas, supposée grande
par rapport a ses dimensions transversales.

On suppose en outre que toutes les forces de volume sont
nulles, et que la surface latérale du cylindre, libre de toute
liaison, n'est soumise a aucune force.

Le cylindre ne sera donc soumis qu’a des liaisons et des
forces agissant sur ses deux bases.

On doit & Barré de Saint-Venant la solution rigoureuse du
probleme de I'équilibre élastique d’un tel cylindre dans un
certain nombre de cas particuliers, choisis de maniére 2
permettre d’en déduire les solutions rigoureuses ou appro-
chées de tous les autres cas, méme les plus compliqués.

Les cas particuliers, pour lvs([ule la solution de de Saint-
Venant est nguuu'lltx(, sonl l)]((l.\( ment ceux ou tout élé-

! Scconde des conférences données a4 Lausanne par M. le professeur
Colonnetti, les 9 et 10 mai 1941, et organisées par ' Ecole d'ingénieurs de
I"Université, avee le concours de lx\\ﬂl(‘l wtion des anciens éléves de 'E, 1. L.
de la Soc vaudoise des ingénicurs et des architectes et du groupe xl(s
Ponts et Charpentes de la Smlcl( suisse des ingénieurs et des architectes.
La premiére conférence a é1é publiée au Bulletin technique du 28 juin 1941,
p. 145, (Réd.).

ment de surface tracé a I'intérieur du corps, parallelement a
I’axe du cylindre, n’est soumis qu’a une tension tangentielle
dans la direction de cet axe.

Nous supposerons le systéme rapporté a un triédre trirec-
tangle ayant son origine au centre de gravité de 'une des
bases. Les axes des 2 et des y seront les axes principaux
d’inertie de cette base, et 'axe des z coincidera avec 'axe
géométrique du cylindre. Sur ce dernier axe, on prendra
comme direction positive celle qui se dirige vers I'intérieur
du corps.

Dans ces hypothéses, on devra avoir en tout point du corps

g,=0

l‘l:0 ]t
B Tay (1)

Or, si le corps est isotrope, I'énergie potentielle élastique
élémentaire peut s’éerire sous la forme

: : |
= (08 40t 0 — —5(0y 0:+ 0: 0, + 0z oy) +

(p:?l IE(

+ (Tys? + Tea® + Tay?)

2G
ou I est le module d’élasticité normale du matériau, et m son
coefficient de contraction latérale ; G, qui est lé
a m et a Iv par la relation

tandis que

Il mkFE

2m + 1

G =
prend, comme on sait, le nom de module d’élasticité tangen-
tielle.

Par dérivation, on en déduit les expressions des compo-
santes de déformation en fonction de celles des composantes
spéciales de tension qui ne sont pas nulles
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€ = I’IZE z T_uz — —671/2

€ = — - o ! ( 9

v B z TEI-ETZI (..)
1

ez:E‘GJ Yoy = 0

Réciproquement on exprimera celles des composantes spé-
ciales de tension qui ne sont pas nulles, en fonction des com-
posantes de déformation, sous la {orme

Ty = G Yz

o= FEe, (3)

T = G Yz

Or, nous venons de dire que les solutions des problemes de
I’équilibre élasto-plastique peuvent étre déduites des solu-
tions des problémes analogues de la théorie classique de
I’élasticité, en y remplacant tout simplement les six compo-
santes de la déformation élastique par les six composantes
de la déformation totale.

Nous aborderons donc le probléme d’une facon indirecte,
en nous servant des expressions que de Saint-Venant a
obtenues pour les composantes

€ Yyz Yoz

de la déformation élastique et en les attribuant aux compo-
santes correspondantes de la déformation totale

€ + E_z Yyz + "Fyz Yez -+ ?zz

La sollicitation, qui devrait logiquement étre une des don-
nées du probléme, se trouvera ainsi implicitement déterminée.
A 1" aide des formules (3) nous pourrons en effet calculer les
six caractéristiques de la sollicitation relative a4 une section
quelconque de cote z

@l:_,/'o‘zydfl LDYC':‘/'O'za:dA
At A

Q= (2 —Tzy) dA

4

© :_/.Tyz dA ©’ :J‘Tzz dA
A A

Les sollicitations sur les bases du cylindre, ¢’est-a-dire sur
les sections de cote z = 0 et z = [ s’obtiendront comme des
cas particuliers.

A ce propos, il faut bien remarquer que, en absence de
orces de volume et d’actions s’exercant sur la surface laté-
rale du cylindre, les caractéristiques 9T, Q, &, G’ doivent
étre indépendantes de z, tandis que 9T, N devront étre des
fonctions lindaires de z, telles que

Ao : AN
=G =0 (
dz dz

ot

Et 4 présent voila les quatre cas particuliers, dont la com-
binaison linéaire permet de remonter a la solution directe et
générale du probléme, c’est-a-dire a I'identification de I'état
de déformation déterminé par une sollicitation extérieure
tout a fait arbitraire.

Premier cas particulier.

Désignons par \ une constante trés petite, et posons

€ + g,: =\
Yy = :f_yz: 0 (6)
Tzz:;zx: 0

Des six caractéristiques de la sollicitation relative a une
section quelconque de cote z, les trois derniéres sont identique-
ment nulles. La deuxiéme et la troisiéme s’annulent égale-
ment si les déformations plastiques sont telles que

SexdA = fe,ydAd =0
A A

Il ne reste donc que la sollicitation & extension simple,
définie par un effort normal 9T en fonction duquel on peut
exprimer la constante

N+ Efe,dA
s A 7
A == (7)

En substituant cette valeur de la constante dans la pre-
miére des (6) on a

N+ Efe.dA
A

& T &=—Fx

et donc

O+ Efe.dA

e a AT “Fe (8)

o= Ee, = A

Deuziéme cas particulier.
Désignons par u une constante trés petite, et posons

€ + € = wy
Yy = :Fyz:o (9)
Yoz = '\Fzz:O

Cette fois encore, des six caractéristiques de la sollicitation,
les trois derniéres sont identiquement nulles. La premiére et
la troisitme s’annulent également si les déformations plas-
tiques sont telles que

JedA = [eadAd =0
4

4

Il ne reste alors qu’une sollicitation a flexion simple, due au
moment de flexion 9T et en fonction duquel on peut exprimer

la constante
oM + EfeydA
A

R e L 10)
R= EJ (

in substituant cette valeur de la constante dans la pre-
miere des (9) on a
M + E fe,ydA
A
€ | & = ]
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et donc
M + Efe,ydA
A

— Fe 11
7 Ee, (11)

0. = Ee, =

Trotsiéme cas particulier.

Soit w une constante trés petite, et y une fonction harmo-
nique (finie, continue, bien déterminée en tous les points de
laire A et telle que sur le contour de cette aire sa dérivée,
prise normalement & ce méme contour, prenne des valeurs
données). Posons

e, +e=0 )
- Jy :
Yoo + Ve = — W (()—y—x> . (12)

— o)
Yoz Yoz — ((7.’13 Y
Admettons encore que, sur le contour, on ait

Yaz COS (nz) 4+ *?,jz cos (ny) = 0

Cette fois, des six caractéristiques de la sollicitation, les
trois premiéres sont identiquement nulles. Les deux derniéres
s’annulent également si les déformations plastiques sont
telles que

f—fysz = ./'?zz dA =0
A A

Reste alors seulement la sollicitation a simple torsion, pour
laquelle, en désignant comme d’habitude par Jo le moment
d’inertie polaire par rapport au centre de gravité de la section,
et en posant

Jo
X

qg = B
Jy Jy
] [ 2O )
! /(dy d@‘y> !
A

0+ G[(ﬂzm—izy)dA
Gl

w =4q

(13)

En substituant, la seconde et la troisieme des (12) devien-
nent respectivement

Q+ Gf(Yp2—Yuy)dA
4

= ()lp ‘
Tyz+ Tyz=—"—4 GJO <E/~—'l>
Q+ Gtz —Tazy)dd
+ = A (7LP +
Yoz Vez === q G Jo ()7 Yy
Done on a
Ty = G Yy: =
Q_I'G/'(?le'v—:f‘z:cU) dA )
= 4 Wz —Gy
4 o @y ) -
(14)
Tew = G Yez =

0+GD/.(?yz-T_?uy):dA )
A iiIJ__ _()_‘
- (5e—v)—cv.

=—9q

Quatriéme cas particulier.

Soient u et y, deux constantes trés petites, et y une fonc-
tion harmonique (finie, continue, bien déterminée en tous les
points de I'aire A4, et telle que, sur le contour de cette aire,
sa dérivée, prise normalement a ce méme contour, prenne
des valeurs données). Posons

- dg 2m—1 , i
Tyz‘[‘Tyz—T((Ty'— 2 m 1'_—ﬂy> (15)
| - Jy  2m—+1
fzz"’Tzz—T(%_Txy)

Admettons encore que, sur le contour, on ait

Y c0s (na) + ¥, cos (ny) = 0.
Si 'on suppose que la section soit symétrique par rapport
a celui des deux axes principaux d’inertie qui est dirigé sui-

vant y, et si on admet que les déformations plastiques
soient telles que

f?zr dA = ‘r (;_uz T — EL y) dA =0
A 4

les quatre composantes 9T, 9, Q, " de la sollicitation s’an-
nulent ; il ne reste qu’une sollicitation a flexion composée
définie par les deux caractéristiques

M =Eu+v:)d —EfeydA
A
G=EyJ—Gfy,.dA
A
qui sont notoirement liées par la relation (5)

AT
d s

=5

dz

Cette relation exige que les déformations plastiques satis-
fassent encore a la condition

G [T dA = - [E[ Gy dA]
A A

dz

Cependant, de expression de 9IT, on tire

M + E feydA
Pt Yz = ol

done

M+ E (e ydA
Gta=—— g

et on retrouve la (11)

M+ E [e.ydA
4

0, = I':G; = 7JH

y— Ee
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D’une maniére analogue, de I'expression de @ on tire

B+ G [T, dA }
A

g |

et en substituant

T+ G [y,.dA
A4

- vy 2m—1 " 1 2\
Yor T Toe = EJ <(7_y_ 2m %_ﬂy)
Lo SO oy amis
Yez Yoz = 4EJ (7.T T.’L‘y
done
Ty: = GTyz =S
G+ G, dA
::;J_ nl@_m__ia;z_iyz _GF
2(m—+1)J y 2 2 v
(17)
Tez = GTzz =
G+ Gy, dA
A

J =
:—W [7;17‘2—(2)11 -+ 1)1y:|— G ¥z ,i

Comme conséquence immédiate de ces calculs, on peut con-
sidérer comme acquis un double résultat de portée absolu-
ment générale ; résultat qui concerne la maniére suivant
laquelle le phénomeéne de la plasticité influence d’une part
I’état de déformation du corps, d’autre part son état de ten-
sion (c’est-a-dire la loi de distribution des tensions intérieures).

En fait, si Pon considére les déformations — et je parle,
bien entendu, des déformations totales, somme des déforma-
tions élastiques et des déformations plastiques — on constate
que le dépassement de la limite d’élasticité, et I'intervention
correspondante des déformations plastiques, n’altérent pas
le phénomeéne du point de vue qualitatif, mais seulement du
point de vue quantitatif.

Plus précisement, on constate cue les choses se passent
comme Si :
a Peffort normal effectivement appliqué 9T venait se substi-
tuer un effort normal fictif

N+ EfedA
4
au moment de flexion effectivement appliqué 9T venait se
substituer un moment de flexion fictif

M+ E (e ydA
A

au moment de torsion effectivement appliqué Q venait se
substituer un moment de torsion fictif

Q@+ G f(Yp®—Yuy)dA
A

a Ieffort tranchant effectivement appliqué & venait se subs-
tituer un effort tranchant fictif

T4+ G Y.dA
4

Ceci explique deux faits nouveaux qui caractérisent la
maniére de se déformer d’un corps en équilibre élasto-plas-
tique. A savoir que :

1. les déformations ne sont plus des fonctions linéaires des
forces extérieures appliquées, mais croissent plus rapidement
qu’elles ;

2. une fraction de ces déformations a un caractére perma-
nent, c’est-a-dire subsiste méme quand les forces extérieures
ont cessé d’agir.

Pour ce qui est par contre de I’état de tension, il s’y mani-
feste un changement qualitatif qui est de la plus haute impor-
tance. On constate en effet qu'en chaque point du corps la
distribution des tensions dépend, non seulement de la solli-
citation extérieure et de son accroissement apparent di a
I'ensemble des déformations plastiques, mais encore, d’une
maniére explicite, de la grandeur des déformations plastiques
qui se sont produites en ce point.

On devine sans difficulté que cette dépendance entre I’état
de tension et la distribution des déformations plastiques peut
avoir, en pratique, une grande importance et de tiés remar-
quables conséquences.

En effet, non seulement les valeurs des tensions peuvent
se trouver changées, mais aussi les positions o ces valeurs
deviennent maxima.

On peut méme prévoir, d’'une maniére absolument géné-
rale, qu’il y aura une limitation des valeurs des tensions inté-
rieures 1la ot le matériau, suivant les lois de la théorie clas-
sique, aurait été soumis & des fatigues dépassant la limite
d’élasticité.

De la un soulagement au point ot la situation menacait de
devenir dangereuse.

A cette limitation devra naturellement correspondre une
augmentation des valeurs des tensions intérieures dans des
autres régions du corps, et plus précisément dans les régions
qui auraient été soumises a des fatigues inférieures, c’est-a-
dire qui n’atteignent pas encore la limite d’élasticité du
matériau.

Dans ces régions, le matériau se trouvera ainsi automatique-

ment appelé & mieux contribuer a la résistance de 'ensemble.

IV. Une nouvelle théorie des poutres fléchies.

Ces faits sont susceptibles d’étre précisés théoriquement
d’une maniére fort simple, et d’étre contrdlés expérimentale-
ment avec la plus grande exactitude, dans le cas particulié-
rement intéressant des poutres fléchies.

On peut en effet démontrer que, dans ce cas, lorsqu’on
dépasse la valeur du moment de flexion pour laquelle les
tensions, calculées d’apreés la théorie de I'élasticité, atteignent
sur les bords de la section la limite d’élasticité du matériau,
ces tensions cessent de s’accroitre, tandis qu’un accroissement
plus rapide se vérifie dans les régions situées a I'intérieur de
la section, ol les tensions sont moindres et la limite d’élasti-
cité est encore loin d’étre atteinte.

Considérons en effet une section droite d’une poutre flé-
chie (fig. 5).

Pour nous en tenir au cas le plus général, nous imaginerons

ﬂ“um"“ml
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que la section soit dissymétrique, excepté par rapport a
I’axe de sollicitation — tracé sur le plan de la section du plan
qui contient la résultante des forces — plan de sollicitation
que nous supposerons coincider avec 'un des axes principaux
centraux d’inertie de la section, et que nous choisirons comme
axe des y.

Nous admettrons en plus que les limites d’élasticité du
matériau en traction et en compression puissent étre diffé-
rentes ; et nous désignerons les valeurs correspondantes des
tensions unitaires par e et par e’.

Nous représenterons par M, la valeur du moment de flexion
pour laquelle une de ces deux limites est atteinte pour la
premiére fois sur I'un des bords de la section.

C’est la évidemment la valeur qui marque la fin du régime
élastique et 'apparition des premiéres déformations plastiques.

La distribution des tensions intérieures est, dans ces con-
ditions, celle qui est représentée par le diagramme placé, dans
notre figure, immédiatement a droite de la section.

Le dernier diagramme, & I'extréme droite de la figure, se
rapporte par contre au cas limite ol la section tout entiére
serait passée a I’état plastique.

En ce cas, on doit avoir en effet une distribution uniforme
de tensions d’intensité égale a e en tous les points de la partie
tendue de la section, et une distribution de tensions également
uniformes, d’intensité égale a e’, en tous les points de la
partie comprimée.

Ce cas limite a, depuis longtemps, attiré lattention des
savants. A son égard les opinions sont toutefois discordantes.

Il'y a des auteurs — tels que Bleich et Zhudin — qui
considérent cet état comme le terme de la phase élasto-
plastique de la résistance ; d’autres — comme Prager —
estiment qu’il pourrait succéder immédiatement a la phase
de la parfaite élasticité.

Personnellement, je crois qu’il faut regarder la valeur du
moment de flexion qui correspond a cet état, comme une
valeur limite vers laquelle le moment tend bien. mais d’une
maniére asymptotique, et pour des déformations plastiques
croissant indéfiniment.

Cela revient a dire qu’en réalité cette valeur ne pourra
jamais étre atteinte, puisque aucun matériau — quelque
grande que soit sa ductilité — ne peut subir des déformations
croissant indéfiniment sans se rompre.

Quoi qu’il en soit, nous désignerons par M, la valeur limite
du moment de flexion ainsi définie.

Il est évident que, pour des valeurs de M comprises entre
Me et M, deux cas peuvent se présenter.

En effet les déformations plastiques pourront étre toutes
de méme signe, c’est-a-dire étre toutes localisées dans une
région unique située d’un eoté bien déterminé de axe neutre
et, plus précisement, au voisinage immédiat du bord de la
section sur lequel la limite élastique aura d’abord été atteinte,

Ou bien il pourra se faire qu’il y ait des déformations
plastiques des deux signes, localisées dans deux régions
situées de part et d’autre de Paxe neutre, a la proximité des
deux bords opposés de la section.

D’une maniére générale, le premier cas se produira pour des
valeurs de M comprises entre M, et une valeur intermédiaire
M; et le second sera réalisé pour des valeurs de M comprises
entre M; et M.

Le probléme fondamental qu’il s’agit de résoudre est évi-

demment celui de la détermination de la droite — ou des
droites — de séparation de la région en régime élastique, de
la région — ou des régions — ou ont pris naissance les défor-

mations plastiques, et cela pour chaque valeur de M comprise
entre les limites dont nous venons de parler. -

Or nous savons que, dans la région en régime élastique,
les tensions doivent toujours étre des fonctions linéaires de y.

Nous avons admis, d’autre part, que dans les régions ou
ont pris naissance des déformations plastiques, les tensions
se maintiennent constantes, et égales aux limites d’élasticité
respectives.

Grace a cela, le probléme se trouve parfaitement déterminé
dans les deux cas, et on arrive a le résoudre avec des procédés
graphiques trés simples.

Dans le premier cas nous aurons recours a un petit artifice.
Nous imaginerons de superposer, & ’état de tension inconnu
que nous voulons étudier, une distribution auxiliaire de ten-
sions, uniforme sur toute la section et d’intensité précisément
égale a la limite élastique changée de signe (fig. 6).

La tension résultante devra alors étre identiquement nulle
dans toute la région ol se sont produites des déformations
plastiques.

Dans la région en régime élastique, au contraire, on obtien-
dra une distribution linéaire de tensions dont I'intensité, sur
chaque élément d’aire, sera proportionnelle a la distance de
I’élément méme & P'axe de séparation que nous sommes en
train de chercher.

Cette distribution de tensions devra naturellement avoir,
pour résultante, la résultante du couple de moment M initia-
lement appliqué a la section et de la force — appliquée au
centre de gravité — qui équivaut a la distribution auxiliaire.

Le point d’application X de cette résultante — que nous
savons donc déterminer immédiatement — devra étre le
centre des moments statiques, ou si 'on préfére, 'antipode de
’axe de séparation par rapport a Iellipse centrale d’inertie de
cette portion de la section — limitée par ce méme axe — qui
est restée en régime élastique.

Ce résultat nous permet de déterminer aussitot I'axe de
séparation par des procédés graphiques usuels.

II'sullit de partager I'aire de la section donnée en un nombre
suflisant de bandes élémentaires par des cordes normales a
I'axe des y, considérer I'aire de chacune des bandes comme
une force paralléle aux cordes, relier ces forces par un polygone
funiculaire, et en déduire les moments statiques respectifs
par rapport a la normale & 'axe des y menée par X,

‘nsuite on reliera ces moments statiques — considérés a
leur tour comme des forces paralléles aux cordes — par un

second polygone funiculaire, en ayant soin de partir, dans sa
construction, du bord en régime élastique, et de procéder
dans I'ordre vers le bord auprés duquel se sont produites les
déformations plastiques.
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Le point ou ce second polygone funiculaire coupera son
premier coté déterminera la position de I'axe de séparation.

Ayant ainsi délimité la région en régime élastique, on
pourra facilement calculer la valeur moyenne de la tension
sur cette partie de la section.

Si l'on tient compte alors que cette valeur moyenne devra
coincider avec la valeur locale en correspondance du centre
de gravité de cette méme partie de la section, on pourra
aussitot tracer un diagramme des tensions duquel on déduira
facilement la représentation de I'état de tension réel en éli-
minant la distribution auxiliaire des tensions par une trans-
lation convenable de la droite de référence.

Dans le deuxiéme cas il est, par contre, avantageux de pro-
céder par différence en partant de I'état limite correspondant

a I'hypothése ou la plasticité serait étendue a toute la section
(fig. 7).

Le diagramme des tensions, pour une valeur quelconque
M du moment de flexion, différe en effet de celui qui corres-
pond au moment limite M, par deux distributions linéaires de
tensions, représentées graphiquement par deux triangles
ayant leurs bases sur la droite £ qui, a I’état limite, sépare
la partie tendue de la section de la partie comprimée, et leurs
sommets sur les droites de séparation cherchées.

Observons, en passant, que la position de cette droite est
dans chaque cas particulier parfaitement définie, et peut étre
facilement précisée puisqu’elle doit partager I'aire de la sec-
tion en parties inversement proportionnelles aux limites
d’élasticité e et e’

Or, puisque la différence entre le couple de moment M, et
celui de moment M devra nécessairement étre encore un
couple, il s’ensuit que les deux distributions triangulaires de
tensions dont nous venons de parler, considérées séparément,
doivent admettre des résultantes égales et contraires.

Ce qui revient a dire que les moments statiques des aires
auxquelles ces distributions se rapportent, pris par rapport
aux droites de séparation respectives, doivent étre égaux.

Adoptant alors la subdivision habituelle en bandes ¢lémen-
taires au moyen de cordes normales a 'axe des y, et reliant
les aires des différentes bandes, considérées comme des forces
paralléles aux cordes, par un polygone funiculaire, on consi-
dérera les deux branches de celui-ci qui sont situées de part
et d’autre de la droite £ en prenant le ¢6Lé commun comme
droite de référence.

On pourra dés lors aflirmer que la condition nécessaire el
suffisante pour que deux droites hh et k'R, normales a I'axe
des y, puissent jouer le role de droites de séparation pour un

moment M donné, est que les segments qu’interceptent sur
elles les deux branches du polygone soient égaux ; ou, ce qui
revient au méme, que la droite qui unit les points Ho et H,'
ot hh et h’h’ vont couper les deux branches du polygone soit
paralléle a la droite de référence.

Reste a calculer la valeur du moment M.

Pour cela nous remarquerons que ce moment peut toujours
s’obtenir par différence entre le moment limite M, etlasomme
des moments des deux distributions de tensions définies ci-
dessus par rapport & une droite quelconque normale a I'axe
des y, par exemple par rapport a la droite ZZ.

Il s’agit done simplement de calculer les moments de second
ordre des aires élémentaires auxquelles se rapportent ces
distributions de tensions, par rapport aux droites de sépara-
tion respectives et a la droite fixe ZZ.

On pourra donc se servir du polygone funiculaire déja tracé
pour en déduire les moments statiques des aires élémentaires
par rapport & £%. Ensuite, les moments statiques ainsi obtenus
seront reliés par un second polygone funiculaire dont on
considérera encore les deux branches situées de part de d’au-
tre de £Z et qui sera rapporté au coté commun pris comme
droite de référence.

La somme des ordonnées m et m’ que les deux branches du
polygone interceptent sur les droites hh et h'A" mesurera le
moment M, — M dans le rapport

1

a.b.c%g—

ot a est I'unité de mesure adoptée pour la réduction des
aires,

b la distance polaire choisie pour tracer le premier polygone,

¢ la distance polaire choisie pour tracer le second polygone,

d la distance des deux droites de séparation.

Si done, a une échelle quelconque des moments, on porte,
paralléelement a la droite de référence, un segment CL égal a

a.b.c(ete)

et si 'on méne par C, parallelement a H'H, un rayon CM,
le segment LM intercepté par un tel rayon sur la normale a
I'axe des y conduite par L mesurera, & la méme échelle, le
moment M, — M.

Si M, — M tend vers zéro, les deux points H et H' se rap-
prochent indéfiniment de la droite £ZZ et 1'état de tension
tend vers I’état limite correspondant & I'hypothése ot la plas-
ticité serait étendue & toute la section.

Par contre, si la différence M, — M augmente, les deux
points H et I’ s’éloignent jusqu’a ce que I'un d’eux atteigne
en K le bord de la section. La construction graphique que
nous venons de décrire, nous permettra alors de retrouver en
K’ la position de I'axe de séparation de la seule région qui
reste en régime plastique. En LN on aura la mesure du
moment M, — M;.

- -

Tout ce que nous venons de dire s’applique non seulement
au probléme classique de la flexion simple, auquel nous nous
sommes rapportés, mais aussi au cas, bien plus complexe et
bien plus général, d’une flexion accompagnée d’une traction

ou bien d’une compression.
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Le fait que le moment M est accompagné d’un effort nor-
mal — pourvu que celui-ci ne soit pas d’intensité suflisante
pour déterminer a lui seul le dépassement de la limite élastique
du matériau en tous les points de la section — n’influe en
effet sur les considérations précédemment développées, que
parce que la présence de cet effort normal change les valeurs
des tensions provoquées par le moment de flexion sur les
bords de la section quand sont atteintes les limites élastiques.

Tout se réduit donc a opérer comme dans le cas de la
flexion simple, pourvu que 'on prenne ces nouvelles valeurs
comme limite d’¢lasticité du matériau.

Cette analyse du probléeme de la flexion, que nous venons
d’exposer dans ses grandes lignes, conduit a des résultats qui
sont particuliérement intéressants au point de vue de la rela-
tion qui lie le moment de flexion & la courbure de 'axe de la
poutre.

Nous avons déja dit en effet que, dés que le phénomene
cesse d’étre élastique, cette relation cesse d’étre linéaire.

A la courbure élastique, toujours proportionnelle au moment
de flexion, vient s’adjoindre une courbure plastique, fonction
croissante elle aussi mais, en général, non linéaire du méme
moment.

Le diagramme, qui traduit graphiquement la relation entre
moments et courbures, fléchit vers I'axe des courbures.

Il s’éloigne de la droite qui représente la loi de Hooke plus
ou moins brusquement, selon les cas ; on a en tout cas aflaire
avec une courbe du genre de celle représentée par une ligne
continue dans notre figure 8.

e

‘7738 __________________ —

Fig. 8.

Or, P'expérience confirme, jusqu’a un certain point, ces
conclusions de la théorie.

Jusqu’a un certain point, parce que, dans la théorie, nous
avons délibérément fait abstraction de I'accroissement éven-
tuel de résistance dit a I'écrouissage du matériau.

Or, on a évidemment le droit de procéder ainsi tant qu’on
se propose d’étudier les lois de 1'équilibre élasto-plastique
pour des déformations plastiques assez petites, ¢’est-a-dire de
'ordre de grandeur des déformations élastiques. Clest le cas
de celles qui se produisent dans les constructions, méme les
micux calculées.

Mais quand les déformations deviennent plus grandes, el
que I’écrouissage se manifeste, il faut bien s’attendre & un
accroissement de rigidité de la poutre. On peut méme prévoir
la disparition de la valeur limite du moment de flexion ;
celui-ci va devenir une fonction croissante de la déformation,
et il sera limité seulement par le fait que, celle-ci allant
en croissant, il arrivera certainement un moment ot le maté-

riau se rompra.

Du point de vue expérimental ces prévisions sont d’ailleurs
complétement vérifiées.

Il suflit en effet d’essayer de relever la relation qui lie
le moment de flexion & la courbure dans une poutre fléchie en
fer homogeéne (ou en acier doux) pour constater :

1. que, lorsqu’on dépasse la valeur du moment de flexion,
pour laquelle les tensions, calculées d’apres la théorie de
Pélasticité, atteignent sur les bords de la section la limite
d’élasticité du matériau, le phénomeéne cesse aussitot d’étre
élastique, tandis que la relation qui lie le moment de flexion
a la courbure cesse d’étre linéaire ;

2. que, dés lors, le diagramme qui traduit graphiquement
cette relation s’incurve vers I'axe des déformations, en sui-
vant au début d’assez prés 'allure définie par la théorie de
I’équilibre élasto-plastique, et en s’en écartant ensuite, plus
ou moins brusquement, traduisant une évidente reprise de
résistance de la poutre ;

3. que la valeur limite du moment, telle qu’elle est définie
par la théorie de I'équilibre élasto-plastique, est atteinte et
méme dépassée, souvent pour des valeurs encore relativement
faibles de la déformation.

On peut donc raisonnablement songer a des théories qui
arrivent & interpréter analytiquement le phénomene de la
résistance a la flexion en régime élasto-plastique, avec une
approximation plus grande, ou, si I'on veut, dans un domaine
de valeurs plus étendu.

Toutefois on peut bien dire — d’accord avec 'expérience —
que la théorie de Péquilibre élasto-plastique, telle que nous
sommes en train de exposer, représente bien le phénomeéne
réel tant que les déformations satisfont a ces conditions que
nous avons énoncées dés le début, et qui se trouvent vérifiées
dans la plupart des problemes techniques que nous nous

sommies proposé de résoudre.

Dans ces cas, et dans les limites qu’ils comportent, le dia-
oramme dont nous venons de nous occuper peut en effet étre
considéré comme la traduction graphique de I'expression (10)
de la courbure :

M+ EfeydA
o A
b= EJ

Cette expression contient deux termes ; le premier
AT
EJ

se rapporte évidemment & la phase élastique du phénomene,
¢’est-a-dire aux déformations qui s’annulent lorsque s’annule
la sollicitation extérieure. 1l est représenté par les abscisses
de la portion rectiligne du diagramme, et de son prolongement.

l.e second terme

se rapporte au contraire a la phase plastique du phénoméne,
¢lest-a-dire aux déformations qui persistent méme aprés la
disparition des forces extérieures. Il est représenté par les
abscisses de la courbe, comptées a partir du dit prolongement.

Or, dans tous les cas ot les effets de Peffort tranchant peu-
vent étre négligés par rapport aux effets du moment de flexion,
le calcul des déformations des poutres fléchies dépend simple-
ment de Pintégration de 'équation diflérentielle

dy?
dz2 M
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ou u désigne la courbure.

Il s’ensuit que, en attribuant & p 'expression qui corres-
pond

a la seule courbure élastique,

a la seule courbure plastique,

ou & la courbure totale,
nous obtiendrons respectivement les valeurs

des seules déformations élastiques,

des seules déformations plastiques,

ou des déformations totales.

Et cela sans qu’il y ait aucun changement a apporter aux
méthodes connues.

Si, a titre d’exemple, nous choisissons, pour ce calcul, le
procédé graphique de Mohr, il suffira de considérer le dia-
gramme des courbures, quel qu’il soit, comme un diagramme
idéal de charge et de s’en servir, de la maniére habituelle,
pour la construction du polygone funiculaire.

.
. .

En appliquant une telle méthode, on parvient a des résul-
tats trés proches des résultats de 'expérience, et qui se prétent
assez bien a les interpréter.

Un fait en particulier vient ainsi a4 étre mis en évidence ;
un fait duquel j’ai déja parlé & maintes reprises, et dont il
faut bien reconnaitre I'importance fondamentale : a savoir
que par I'introduction des déformations plastiques nous renon-
cons, en méme temps et d’une facon définitive, non seulement
a la réversibilité du phénomeéne, mais aussi a sa linéarité.

Ce fait se présente trés nettement et avec une grande fré-
quence dans le cas des constructions en béton armé, ou la
limite d’élasticité du béton peut étre atteinte méme pour des
valeurs trés faibles de la sollicitation.

L’accord entre-la théorie et I'expérience devient alors sin-
gulierement frappant.

Prenons par exemple, choisie au hasard, une parmi les
nombreuses expériences sur des poutres en béton armé que
Bach et Graf ont réalisées, il y a maintenant plus de vingt
ans, dans la Materialpriifungsanstalt de la Technische Hoch-
schule de Stuttgart.

Il s’agit d’une poutre simplement fléchie, a section carrée
de 30 em de coté, armée tout le long de la face tendue de six
fers ronds équidistants de 17 mm de diamétre.

La partie de I’expérience dont nous voulons nous occuper
ici est celle qui se rapporte a la période qui précede Pappari-
tion des premiéres lésions.

Selon la documentation qui se trouve dans I'Ilandbuch de
von Emperger

on a expérimentalement relevé
des courbures de

0,132 X 10—5 cm—1

[)Ulll' (JI'S moments
de flexion de

30 000 kg.em

60 000 » 0,273
90 000 » 0,423
120 000 » 0,582
150 000 » 0,749
180 000 » 0,980

Bach et Graf ont cherché a mettre ces valeurs expérimen-
tales de la courbure en relation avec celles calculées dans
’hypothése, que toute la section réagit élastiquement, et
ceci en ayant recours a l'artifice habituel de faire varier de
maniére convenable le rapport des modules d’élasticité des
deux matériaux qui composent la poutre.

Mais ils n’obtiennent naturellement qu’un accord apparent,
et de toute facon nécessairement limité i des intervalles de

valeurs relativement restreints.
La réalité est tout autre; I'expérience montre netlement

que D'allure du phénomeéne n’est pas linéaire, et la théorie
classique de I’élasticité ne peut et ne pourra jamais I'inter-
préter.

Une interprétation satisfaisante s’obtient par contre si,
tout en maintenant au phénomeéne élastique la caractéristique
fondamentale de la linéarité, on introduit la considération des
déformations plastiques en admettant, comme d’habitude,
qu’elles interviennent et se superposent aux déformations
élastiques, la ou les limites d’élasticité du matériau sont
atteintes.

Pour cela il faut distinguer au préalable les valeurs de la
sollicitation pour lesquelles on peut raisonnablement consi-
dérer vérifiées les lois de 1'élasticité, de celles pour lesquelles
il est hors de doute qu'interviennent des déformations plas-
tiques.

Considérons par exemple la premiére valeur du moment
de flexion : 30 000 kg. cm.

Pour cette valeur de la sollicitation, les tensions unitaires
maxima, selon la théorie de 1’élasticité, prennent respective-
ment les valeurs de +5 et de — 6 kg/em?2.

Dans ces conditions, on peut, en toute tranquillité, admettre
que le matériau se comporte partout comme parfaitement
élastique, et qu’il réalise effectivement Ja distribution linéaire
de tensions intérieures qui, pour cette valeur du moment de
flexion, est représentée dans le premier diagramme de la
figure 9.

-6 =36

|
N

e 9 o ¢ o o

+§

L’accord entre la théorie et I'expérience s’obtient tout
naturellement en attribuant au béton un module d’élasticité
de 280 t/ecm?, ce qui — étant donné que le module du fer se
maintient toujours au voisinage de 2100 t/em? — équivaut
a prendre, pour le rapport des modules, la valeur 7,5.

De cette facon on trouve en elfet pour la courbure la valeur

©
ct

T 0432 x 10-5 em—

=
<

qui coincide exactement avee celle qui a été relevée expérimen-
talement.

Considérons par contre la derniére des valeurs du moment
de flexion du tableau, c¢’est-a-dire 180 000 kg. em.

D’aprés la théorie de 1'élasticité les tensions maxima sur
le contour de la section devraient, en ce cas, atteindre respec-
tivement les valeurs unitaires de 30 et de —36 kg/cm?,
la distribution des tensions sur la section étant celle qui est
représentée dans le second diagramme de la figure 10.

-40
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Or, la premiére de ces valeurs est notoirement inadmissible
pour un béton ordinaire.

I faut donc nécessairement admettre que, 1a ol les tensions
positives tendent & dépasser une certaine limite, le béton passe
du régime des déformations élastiques au régime des défor-
mations plastiques.

L’accord entre la nouvelle expression de la courbure

_9K P
P—ﬁTH

et 'expérience pourra s’obtenir — sans faire varier la valeur
attribuée au module — en prenant comme diagramme des
déformations plastiques (en fonction des y) un diagramme
triangulaire du type de celui pointillé dans la figure 10,

J7E

Fig. 11.

_Pour une telle distribution de déformations plastiques, on
a en effet

= 0.188 x 10— cm—!

Si P'on tient compte que

(9)(4
T— = —‘2 5 =B n—!
EJ—O.(J % 10—% ¢m

on retrouve la valeur de la courbure relevée expérimentale-
ment

u = 0.980 x 10— cm—!

Le diagramme des tensions intérieures (hachuré dans la
figure) présente, dans toute la région intéressée par les défor-
mations plastiques, une ordonnée constante égale a
-+ 14 kg/em?.

La valeur de la tension maximum négative, correspondant
au bord opposé de la section, s’est naturellement accrue en
conséquence ; elle est passée de — 36 a — 40 kg/cm?.

Dés lors, on peut traiter de la méme maniére les cas inter-
médiaires, en admettant que, pour eux aussi, le régime plas-
tique se substitue a celui de la parfaite élasticité partout ou
les tensions positives dans le béton atteignent la limite de
14 kg/cm?.

On obtient ainsi :

pour les
moments de
flexion de

les valeurs des courbures (en cm—1)
¢lastique | plastique totale

30 000 kg.em| 0,132 <105 | 0

0,132 %105

60 000 » | 0,264 0 _ 0,264
90 000 » | 0,396 0,020 105 | 0,416
120 000 » | 0,528 0,052 0,580
150 000 » | 0,660 [ 0,112 0,772

180 000 » | 0,792 10,188 0,980

L’accord de ces résultats avec les valeurs de la courbure
relevée expérimentalement est vraiment remarquable ; I’écart
ne dépasse en aucun cas le 3 %,.

Cet accord apparait clairement dans le diagramme (fig. 11)
ot les résultats expérimentaux de Bach et Graf ont été portés
a I’échelle en présence de la courbe représentative de la loi de
variation de la courbure en fonction du moment de flexion,
selon la théorie de I’équilibre élasto-plastique.

(A sutore.)

DIVERS

Le tartre, sa destruction et les moyens de
prévenir sa formation dans les chaudiéres indus-
trielles et les installations de chauffage central.

Formation du tartre.

On trouve généralement en solution dans I'eau, dans des
proportions diverses, les produits chimiques tels que : bicar-
bonates, sulfates, chlorures et nitrates de calcium, de magné-
sium et de sodium, parfois des sels de fer et d’aluminium. Le
résidu sec est généralement de 200-400 mgr/litre.

Lorsque I'eau s’évapore, les solutions se concentrent et les
différents sels précipitent ; tout d’abord les sulfates et carbo-
nates de calcium et de magnésium, puis, 4 beaucoup plus
forte concentration, les sels de sodium, des chlorures et des
nitrates. Seuls les premiers nous intéressent, car ce sont eux
qui forment le tartre.

Pour savoir combien une eau contient de carbonates et de
sulfates on détermine sa dureté !: la dureté totale renseigne
sur la quantité totale de tartre qu'une eau peut former, les
duretés temporaire et permanente donnent respectivement
des indications sur les proportions de calcaire et de gypse.

Un meétre cube d’eau de dureté moyenne (200 F) dépose
200 grammes de tartre. Pour les chaudiéres des bateaux du
Léman, par exemple, qui évaporent jusqu'a 40 tonnes d’eau
du lac (13° F) par jour, cela représente 5 & 6 kg de tartre.

Les deux constituants principaux du tartre sont donc: le
calcaire et le gypse.

Le calcaire se forme par 'action de la chaleur sur le bicar-
bonate de calcium suivant la réaction :

Ca (H COy)y ——>  Ca CO3+ Hy 0+ COy (1)

Lorsque son degré de saturation est atteint, le carbonate
de calcium précipite sous forme de fines particules qui — sous
Paction de la chaleur — se soudent pour former le tuf. Suivant
les conditions de température ou de pression, le dépot formé
est plus ou moins dur et il est souvent trés diflicile a enlever
mécaniquement.

Le gypse a la curieuse propriété d’étre moins soluble a
chaud qu’a froid. Si donc I'on concentre une solution de sul-
fate de calcium, il y aura précipitation sur les parties les
plus chaudes, en particulier sur les tubes des chaudiéres. Ce
«tartre gypse» est dangereux. Trés dur et adhérent, il forme
sur les éléments chauffants une couche peu conductrice de la
chaleur et provoque ainsi des pertes considérables au point
de vue thermique.

[analyse de I'eau révélera done la composition exacte du
tartre. Les eaux de notre pays étant essentiellement calcaires,
le carbonate de calcium est généralement le principal consti-
tuant du tartre. Il est accompagné, en quantités variables, de
sulfate de caleium, de silice et de sels de magnésium.

' Un degré francais de dureté (19 F) correspond d un gramme de caleaire

(Ca COy) par 100 litres d’cau,
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