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Théorie de l'équilibre des corps
élasto-plastiques

par M. Gustave COLONNETTI,
Membre de l'Académie Pontificale des Sciences,

Professeur à l'Ecole Polytechnique de Turin.

(Suite.) 1

111» Le problème de Barré de Saint-Venant.

Considérons un corps cylindrique — ou prismatique —
engendré par une aire plane A de forme quelconque, qui se
déplace dans l'espace ; chacun des points de A décrit une
droite normale à son plan.

La longueur du cylindre est, en tout cas, supposée grande
par rapport à ses dimensions transversales.

On suppose en outre que toutes les forces de volume sont
nulles, et que la surface latérale du cylindre, libre de toute
liaison, n'est soumise à aucune force.

Le cylindre ne sera donc soumis qu'à des liaisons et des
forces agissant sur ses deux bases.

On doit à Barré de Saint-Venant la solution rigoureuse du
problème de l'équilibre élastique d'un tel cylindre dans un
certain nombre de cas particuliers, choisis de manière à

permettre d'en déduire les solutions rigoureuses ou approchées

de tous les autres cas, même les plus compliqués.
Les cas particuliers, pour lesquels la solution de de Saint-

Venant est rigoureuse, sont précisément ceux où tout élé-

Sccondc des conférences données à Lausanne par M. le professeur
Colonnetti, les 9 et 10 mai 1941, et organisées par l'Ecole d'ingénieurs de
l'Université, avec le concours de l'Association des anciens élèves de l'E. I. L,,
de la Société vaudoise des ingénieurs et des architectes et du groupe des
Ponts et Charpentes de la Société suisse des ingénieurs et des * architectes.
La première conférence a été publiée au Bulletin technique du 28 juin 1941,
p. 145. (Rid.).

ment de surface tracé à l'intéBœur du corps, parallèlement à

l'axe du cy'indre, n'est soumis qu'à une tension tangentielle
dans la direction de cet axe.

Nous supposerons le système rapporté à un trièdre trirec-
tangle ayant son origine au centre de gravité de l'une des

bases. Les axes des x et des y seront les axes principaux
d'inertie de cette base, et l'axe des z coïncidera avec l'axe
géométrique du cylindre. Sur ce dernier axe, on prendra
comme direction positive celle qui se dirige vers l'intérieur
du corps.

Dans ces hypothèses, on devra avoir en tout point du corps

(1)

Or, si le corps est isotrope, l'énergie potentielle élastique
élémentaire peut s'écrire sous la forme

1
o. —s Oy a, + a, ax + ax av) +m J0j

t" e\ s-, ytys ~T~ Tra; f- T$y J

où E est le module d'élasticité normale du matériau, et m son
coefficient de contraction latérale ; tandis que G, qui est hé
à m et k E par la relation

G
1 E

prend, comme on sût, le nom de module d'élasticité tangentielle.

Par dérivation, on en déduit les expressions des composantes

de déformation en fonction de celles des composantes
spéciales de tension qui ne sont pas nulles
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mE Ty» — GXyi

"1-
m n

Y**
1 ¦

(2)

E fxv 0

Réciproquement on exprimera celles des composantes
spéciales de tension qui ne sont pas nulles, en fonction des

composantes de déformation, sous la forme

£e2
Gly.
G y*

(3)

Or, nous venons de dire que les solutions des problèmes de

l'équilibre élasto-plastique peuvent être déduites des

solutions des problèmes analogues de la théorie classique de

l'élasticité, en y remplaçant tout simplement les six composantes

de la déformation élastique par les six composantes
de la déformation totale.

Nous aborderons donc le problème d'une façon indirecte,
en nous servant des expressions que de Saint-Venant a

obtenues pour les composantes

€z \yz \zx

de la déformation élastique et en les attribuant aux composantes

correspondantes de la déformation totale

e* + e* V + Ty Tar + Ta

La sollicitation, qui devrait logiquement être une des données

du problème, se trouvera ainsi implicitement déterminée.
A 1' aide des formules (3) nous pourrons en effet calculer les

six caractéristiques de la sollicitation relative à une section

quelconque de cote 2

31 foe à A
A

9fc fcsz y dA 3n'=falxdA
A A

Q=f (V35 — T**y) dA
(4)

ts — jTyzdA & =ftn:dA
A

Les sollicitations sur les bases du cyffidre, c'est-à-dire sur
les sections de cote z 0 et z l s'obtiendront comme des

cas particuliers.
A ce propos, il faut bien remarquer que, en absence de

orces de volume et d'actions s'exerçant sur la surface latérale

du cylindre, les caractéristiques 9t, Ö, 75, 75' doivent
être indépendantes de z, tandis que 9R., êJlt' devront être des

fonctions linéaires de z, telles que

d€Hl
dz

75
d®(l'

dz
75' (5)

Et à présent voilà les quatre cas particuliers, dont la
combinaison linéaire permet de remonter à la solution directe et
générale du problème, c'est-à-dire à l'identification de l'état
de déformation déterminé par une sollicitation extérieure
tout à fait arbitraire.

Premier cas particulier.
Désignons par X une constante très petite, et posons

e* + e2 X

\yz \yz '

\zx — \zx ~

(6)

0

Des six caractéristiques de la sollicitation relative à une
section quelconque de cote z, les trois dernières sont identiquement

nulles. La deuxième et la troisième s'annulent également

si les déformations plastiques sont telles que

fTzxdA fezydA S 0
A A

Il ne reste donc que la sollicitation à extension simple,
définie par un effort normal 3L en fonction duquel on peut
exprimer la constante

SC + EJudA
A

EA
(7)

En substituant cette valeur de la constante dans la
première des (6) on a

e» + e*

01 + Ejez dA
A

EA

et donc

2H + Ej<=zdA
az= Ee, £ Ee,

Deuxième cas particulier.

Désignons par u une constante très petite, et posons

(8)

vy

o (9)

Y*r 0

Cette fois encore, des six caractéristiques de la sollicitation,
les trois dernières sont identiquement nulles. La première et
la troisième s'annulent également si les déformations
plastiques sont telles que

/ZdA fZxdA 0
A A

Il ne reste alors qu'une sollicitation à flexion simple, due au

moment de flexion 9TI et en fonction duquel on peut exprimer
la constante

H

STC -f- E$t,ydA
A

EJ
(10)

En substituant cette valeur de la constante dans la
première des (9) on a

e« + e*

0ir. + Eje,ydA
A

EJ
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et donc

9TC + EJe.zydA
Eez J Ee, (11)

Troisième cas particulier.
Soit u) une constante très petite, et uj une fonction harmonique

(finie, continue, bien déterminée en tous les points de

l'aire A et telle que sur le contour de cette aire sa dérivée,
prise normalement à ce même contour, prenne des valeurs
données). Posons

e, + e. 0

dy
dy

dy

-UJ [-j x
(12)

[te + y

Admettons encore que, sur le contour, on ait

Y« cos (nx) + y,,* cosflpt/) 0

Cette fois, des six caractéristiques de la sollicitation, les

trois premières sont identiquement nulles. Les deux dernières
s'annulent également si les déformations plastiques sont
telles que

flys dA /y«, dA 0
A A

Reste alors seulement la sollicitation à simple torsion, pour
laquelle, en désignant comme d'habitude par Jo le moment
d'inertie polaire par rapport au centre de gravité de la section,
et en posant

J„
q

Jo dy dy
-zr- x — y) tIA
WÊ& dx *

Q + G J (v I — Tac y) d A
A

GJ0
(13)

En substituant, la seconde et la troisième des (12) devien

nent respectivement

Q + G / (Tj« x — Yac y) dA
A I Ç^V_ _

dyfyz I" Ty

*Tat "T" Yar —

Donc on a

GJ0

Q + G J" (v x — T» y) dA
A

GJ„
d\\>

El

Gfyi

Q+Gf(lyex — -ra!y)dA M
A IO

Tzx — tr Yar —

Q + Gfifytx —Y«r y)\dA
—q

n.
dy

dx

— G-Tyt

(14)

Gft:

Quatrième cas particulier.
Soient u et y, deux constantes très petites, et vji une fonction

harmonique (finie, continue, bien déterminée en tous les

points de l'aire A, et telle que, sur le contour de cette aire,
sa dérivée, prise normalement à ce même contour, prenne
des valeurs données). Posons

(U + Tz)2/

Täc "F fzx

i(dvf 2 m —
dy 2 m

dy 2 m + 1

dx m

(15)

vy

Admettons encore que, sur le contour, on ait

Y«; cos (nx) + Y»« cos (ny) 0.

Si l'on suppose que la section soit symétrique par rapport
à celui des deux axes principaux d'inertie qui est dirigé
suivant y, et si l'on admet que les déformations plastiques
soient telles que

X Yac dA f (y,,* x — Y«* y) dA 0
A A

les quatre composantes 3t,€IÏC',&,75' de la sollicitation
s'annulent ; il ne reste qu'une sollicitation à flexion composée
définie par les deux caractéristiques

•SU E (u + yz) J — E J ë^ y dA
A

75 EfJ—Gf^yldA
A

qui sont notoirement liées par la relation (5)

d®K _; fe

Cette relation exige que les déformations plastiques
satisfassent encore à la condition

GSÏy,dA ~[ES7,ydA]
a az a

Cependant, de l'expression de Sit, on tire

U + TZ;

donc

e« + e,

SKI + E f e, y dA
A

EJ '

9TC + E J e, y dA
A

EJ

et l'on retrouve la (11)

&Z + E J e, y dA
G. jBe. E e.
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D'une manière analogue, de l'expression de 75 on tire

75+GSÏy,dA

EJ
(16)

et en substituant

Ty* + Tys

75+GSïy,dA
A

EJ
dy
dy

donc

- i (dy 2m -f1
Tat + Tac ËT-Î -k xyE J \dx m

Tyz tr Yyz

75+Gïfy2dA
A

2(m + l)J

75+GJ^dA

m
dy 2m — 1

2
1

2dy

Tac G Yac

;r G Ty«

¦ (17)

2 (m-fi) J m-^ (2m -f l)rrw — Gy*

Comme conséquence immédiate de ces calculs, on peut
considérer comme acquis un double résultat de portée absolument

générale ; résultat qui concerne la manière suivant
laquelle le phénomène de la plasticité influence d'une part
l'état de déformation du corps, d'autre part son état de
tension (c'est-à-dire la loi de distribution des tensions intérieures).

En fait, si l'on considère les déformations — et je parle,
bien entendu, des déformations totales, somme des déformations

élastiques et des déformations plastiques — on constate

que le dépassement de la limite d'élasticité, et l'intervention
correspondante des déformations plastiques, n'altèrent pas
le phénomène du point de vue qualitatif, mais seulement du

point de vue quantitatif.
Plus précisément, on constate que les choses se passent

comme si :

à l'effort normal effectivement appliqué &t venait se substituer

un effort normal ficSÖi**

SU + E jTzdA
A

au moment de flexion effectivement appliqué 9Tfc venait se

substituer un moment de flexion fictif

9TC -f E $lzydA
A

au moment de torsion effectivement appliqué & venait se

substituer un moment de torsion fictif

& + G $ (iVix — Yac y) dA
A

à l'effort tranchant effectivement appliqué 75 venait se

substituer un effort tranchanI fictif

Œ + GS lv.dA
A

Ceci explique deux faits nouveaux qui caractérisent la
manière de se déformer d'un corps en équilibre élasto-plastique.

A savoir que :

1. les déformations ne sont plus des fonctions linéaires des

forces extérieures appliquées, mais croissent plus rapidement
qu'elles ;

2. une. fraction de ces déformations a un caractère permanent,

c'est-à-dire subsiste même quand les forces extérieures
ont cessé d'agir.

Pour ce qui est par contre de l'état de tension, il s'y manifeste

un changement qualitatif qui est de la plus haute importance.

On constate en effet qu'en chaque point du corps la
distribution des tensions dépend, non seulement de la
sollicitation extérieure et de son accroissement apparent dû à

l'ensemble des déformations plastiques, mais encore, d'une
manière explicite, de la grandeur des déformations plastiques
qui se sont produites en ce point.

On devine sans difficulté que cette dépendance entre l'état
de tension et la distribution des déformations plastiques peut
avoir, en pratique, une grande importance et de tiès
remarquables conséquences.

En effet, non seulement les valeurs des tensions peuvent
se trouvei changées, mais aussi les positions où ces valeurs
deviennent maxima.

On peut même prévoiM^d'une manière absolument générale,

qu'il y aura une limitation des valeurs des tensions
intérieures là où le matériau, suivant les lois de la théorie
classique, aurait été soumis à des fatigues dépassant la limite
d'élasticité.

De là un soulagement au point où la situation menaçait de

devenir dangereuse.
A cette limitation devra naturellement correspondre une

augmentation des valeurs des tensions intérieures dans des

autres régions du corps, et plus précisément dans les régions
qui auraient été soumises à des fatigues inférieures, c'est-à-
dire qui n'atteignent pas encore la limite d'élasticité du
matériau.

Dans ces régions, le matériau se trouvera ainsi automatiquement

appelé à mieux contribuer à la résistance de l'ensemble.

IV. Une nouvelle théorie des poutres fléchies.

Ces faits sont susceptibles d-'être précisés théoriquement
d'une manière fort simple, et d'être contrôlés expérimentalement

avec la plus grande exactitude, dans le cas particulièrement

intéressant des poutres fléchies.
On peut en effet démontrer que, dans ce cas, lorsqu'on

dépasse la valeur du moment de flexion pour laquelle les

tensions, calculées d'après la théorie de l'élasticité, atteignent
sur les bords de la section la limite d'élasticité du matériau,
ces tensions cessent de s'accroître, tandis qu'un accroissement

plus rapide se vérifie dans les régions situées à l'intérieur de

la section, où les tensions sont moindres et la limite d'élasticité

est encore loin d'être atteinte.
Considérons en effet une section droite d'une poutre

fléchie (fig. 5).
Pour nous en tenir au cas le plus général, nous imaginerons

H

JU
Fie. 5.
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que la section soit dissymétrique, excepté par rapport à

l'axe de sollicitation — tracé sur le plan de la section du plan
qui contient la résultante des forces — plan de sollicitation
que nous supposerons coïncider avec l'un des axes principaux
centraux d'inertie de la section, et que nous choisirons comme
axe des y.

Nous admettrons en plus que les limites d'élasticité du
matériau en traction et en compression puissent être
différentes ; et nous désignerons les valeurs correspondantes des

tensions unitaires par e et par e'.
Nous représenterons par Me la valeur du moment de flexion

pour laquelle une de ces deux limites estiatteinte pour la
première fois sur l'un des bords de la section.

C'est là évidemment la valeur qui marque la fin du régime
élastique et l'apparition des premières déformations plastiques.

La distribution des tensions intérieures est, dans ces

conditions, celle qui est représentée par le diagramme placé, dans
notre figur®|mmédiatement à droite de la section.

Le dernier diagramme, à l'extrême droite de la figure, se

rapporte par contre au cas limite où la section tout entière
serait passée à l'état plastique.

En ce cas, on doit avoir en effet une distribution uniforme
de tensions d'intensité égale à e en tous les points de la partie
tendue de la section, et une distribution de tensions également
uniformes, d'intensité égale à e', en tous les points de la
partie comprimée.

Ce cas limite a, depuis longtemps, attiré l'attention des

savants. A son égard les opinions sont toutefois discordantes.
Il y a des auteurs — tels que Bleich et Zhudin — qui

considèrent cet état comme le terme de la phase élasto-
plastique de la résistance ; d'autres — comme Prager —
estiment qu'il pourrait succéder immédiatement à la phase
de la parfaite élasticité.

Personnellement, je crois qu'il faut regarder la valeur du
moment de flexion qui correspond à cet état, comme une
valeur limite vers laquelle le moment tend bien, mais d'une
manière asymptotique, et pour des déformations plastiques
croissant indéfiniment.

Cela revient à dire qu'en réalité cette valeur ne pourra
jamais être atteinte, puisque aucun matériau — quelque
grande que soit sa ductilité — ne peut subir des déformations
croissant indéfiniment sans se rompre.

Quoi qu'il en soit, nous désignerons par Mp la valeur limite
du moment de flexion ainsi définie.

Il est évident que, pour des valeurs de M comprises entre
Me et Mp deux cas peuvent se présenter.

En effet les déformations plastiques pourront être toutes
de même signe, c'est-à-&e être toutes localisées dans une
région unique située d'un côté bien déterminé de l'axe neutre
et, plus précisément, au voisinage immédiat du bord de la
section sur lequel la limite élastique aura d'abord été atteinte.

Ou bien il pourra se faire qu'il y ait des déformations
plastiques des deux signes, localisées dans deux régions
situées de part et d'autre de l'axe neutre, à la proximité des
deux bords opposés de la section.

D'une manière générale, le premier cas se produira pour des
valeurs de M comprises entre M« et une valeur intermédiaire
M< et le second sera réalisé pour des valeurs de M comprises
entre Mi et Mp.

Le problème fondamental qu'il s'agit de résoudre est
évidemment celui de la détermination de la droite — ou des
droites — de séparation de la région en régime élastique, de
la région — ou des régions — où ont pris naissance les
déformation» plastiques, et cela pour chaque valeur de M comprise
entre les limites dont nous venons de parler.

Or nous savons que, dans la région en régime élastique,
les tensions doivent toujours être des fonctions linéaires de y.

Nous avons admis, d'autre part, que dans les régions où
ont pris naissance des déformations plastiques, les tensions
se maintiennent constantes, et égales aux limites d'élasticité
respectives.

Grâce à cela, le problème se trouve parfaitement déterminé
dans les deux cas, et on arrive à leÄsoudre avec des procédés
graphiques très simples.

Dans le premier cas nous aurons recours à un petit artifice.
Nous imaginerons de superposer, à l'état de tension inconnu
que nous voulons étudier, une distribution auxiliaire de
tensions, uniforme sur toute la section et d'intensité précisément
égale à la limite élastique changée de signe (fig. 6).

-

Fig, 6.

La tension résultante devra alors être identiquement nulle
dans toute la région où se sont produites des déformations
plastiques.

Dans la région en régime élastique, au contraire, on obtiendra

une distribution linéaire de tensions dont l'intensité, sur
chaque élément d'aire, sera proportionnelle à la distance de
l'élément même à l'axe de séparation que nous sommes en
train de chercher.

Cette distribution de tensions devra naturellement avoir,
pour résultante, la résultante du couple de moment M
initialement appliqué à la section et de la force — appliquée au
centre de gravité — qui équivaut à la distribution auxiliaire.

Le point d'application X de cette résultante — que nous
savons donc déterminer immédiatement — devra être le
centre des moments statiques, ou si l'on préfère, l'antipode de
l'axe de séparation par rapport à l'ellipse centrale d'inertie de

cette portion de la section — limitée par ce même axe — qui
est restée en régime élastique.

Ce résultat nous permet de déterminer aussitôt l'axe de

séparation par des procédés graphiques usuels.
Il suffit de partager l'aire de la section donnée en un nombre

suffisant de bandes élémentaires par des cordes normales à

l'axe des y, considérer l'aire de chacune des bandes comme
uneforce parallèle aux cordes, relier ces forces par un polygone
funiculaire, et en déduire les moments statiques respectifs
par rapport à la normale à l'axe des y menée par X.

Ensuite on reliera ces moments statiques — considérés à

leur tour comme des forces parallèles aux cordes — par un
second polygone funiculaire, en ayant soin de partir, dans sa

construction, du bord en régime élastique, et de procéder
dans l'ordre vers le bord auprès duquel se sont produites les
déformations plastiques.
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Le point où ce second polygone funiculaire coupera son
premier côté déterminera la position de l'axe de séparation.

Ayant ainsi délimité la région en régime élastique, on

pourra facilement calculer la valeur moyenne de la tension

sur cette partie de la section.
Si l'on tient compte alors que cette valeur moyenne devra

coïncider avec la valeur locale en correspondance du centre
jp||$igravité de cette même partie de la section, on pourra
aussitôt tracer un diagramme des tensions duquel on déduira
facilement la représentation de l'état de tension réel en
éliminant la distribution auxiliaire des tensions par une translation

convenable de la droite de référence.

Dans le deuxième cas il est, par contre, avantageux de

procéder par différence en partant de l'état limite correspondant
à l'hypothèse où la plasticité serait étendue à toute la section

(fig- 7).
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Fig. 7.

Le diagramme des tensions, pour une valeur quelconque
M du moment de flexion, diffère en effet de celui qui correspond

au moment limite Mv par deux distributions linéaires de

tensions, représentées graphiquement par deux triangles

ayant leurs bases sur la droite E E qui, à l'état limite, sépare

la partie tendue de la section de la partie comprimée, et leurs

sommets sur les droites de séparation cherchées.

Observons, en passant, que la position de cette droite est

dans chaque cas particulier parfaitement définie, et peut être

facilement ^pcisée puisqu'elle doit partager l'aire de la
section en partieÉgjnversement proportionnelles aux limites
d'élasticité e et e'.

Or, puisque la différence entre le couple de moment Mp et
celui de moment M devra nécessairement être encore un
couple, il s'ensuit que les deux distributions triangulaires de

tensions dont nous venons de parler, considérées séparément,
doivent admettre des résultantes égales et contraires.

Ce qui revient à dire que les moments statiques des aires

auxquelles ces distributions se rapportent, pris par rapport
aux droites de séparation respectives, doivent être égaux.

Adoptant alors la subdivision habituelle en bandes élémentaires

au moyen de cordes normales à l'axe des y, et reliant
les aires des différentes bandes, considérées comme des forces

parallèles aux cordes, par un polygone funiculaire, on
considérera les deux branches de celui-ci qui sont situées de part
et d'autre de la droite EE en prenant le côté commun comme

droite de référence.
On pourra dès lors affirmer que la condition nécessaire et

suffisante pour que deux droites hh et h'h', normales à l'axe
des w, puissent jouer le rôle de droites de séparation pour un

moment M donné, est que les segments qu'interceptent sur
elles les deux branches du polygone soient égaux ; ou, ce qui
revient au même, que la droite qui unit les points Ho et Ho'
où hh et h'h' vont couper les deux branches du polygone soit
parallèle à la droite de référence.

Reste à calculer la valeur du moment M.
Pour cela nous remarquerons que ce moment peut toujours

s'obtenir par différence entre le moment limite Mp et la somme
des moments des deux distributions de tensions définies ci-
dessus par rapport à une droite quelconque normale à l'axe
des y, par exemple par rapport à la droite EE.

Il s'agit donc simplement de calculer les moments de second
ordre des aires élémentaires auxquelles se rapportent ces
distributions de tensions, par rapport aux droites de séparation

respectives et à la droite fixe EE.

On pourra donc se servir du polygone funiculaire déjà tracé

pour en déduire les moments statiques des aires élémentaires

par rapport à EE- Ensuite, les moments statiques ainsi obtenus

seront reliés par un second polygone funiculaire dont on
considérera encore les deux branches situées de part de d'autre

de O, et qui sera rapporté au côté commun pris comme
droite de référence.

La somme des ordonnées m et m' que les deux branches du

polygone interceptent sur les droites hh et h'h' mesurera le

moment M» M dans le rapport

1

e-f e'
a. b c j—d

où a est l'unité dé|pnesure adoptée pour la réduction des

aires,
b la distance polaire choisie pour tracer le premier polygone,
c la distance polaire choisie pour tracer le second polygone,
d la distance des deux droites de séparation.
Si donc, à une échelle quelconque des moments, on porte,

parallèlement à la droite de référence, un segment CL égal à

a b c (e -f e')

et si l'on mène par C, parallèlement à H'H, un rayon CM,
le segment LM intercepté par un tel rayon sur la normale à

l'axe des y conduite par L mesurera, à la même échelle, le

moment M.p M.

Si Mp — M tend vers zéro, les deux points H et H' se

rapprochent indéfiniment de la droite EE et l'état de tension

tend vers l'état limite correspondant à l'hypothèse où la
plasticité serait étendue à toute la section.

Par contre, si la différence Mp — M augmente, les deux

points H et H' s'éloignent jusqu'à ce que l'un d'eux atteigne
en K le bord de la section. La construction graphique que
nous venons de décrire, nous permettra alors de retrouver en

K' la position de l'axe de séparation de la seule région qui
reste en régime plastique. En LN on aura la mesure du

moment Mp — Mi.

Tout ce que nous venons de dire s'applique non seulement

au problème classique de la flexion simple, auquel nous nous

sommes rapportés, mais aussi au cas, bien plus complexe et
bien plus général, d'une flexion accompagnée d'une traction
ou bien d'une compression.
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Le fait que le moment M est accompagné d'un effort normal

— pourvu que celui-ci ne soit pas d'intensité suffisante

pour déterminer à lui seul le dépassement de la limite élastique
du matériau en tous les points de la section — n'influe en
effet sur les considérations précédemment développées, que
parce que la présence de cet effort normal change les valeurs
des tensions provoquées par le moment de flexion sur les

bords de la section quand sont atteintes les limites élastiques.
Tout se réduit donc à opérer comme dans le cas de la

flexion simple, pourvu que l'on prenne ces nouvelles valeurs
comme limite d'élasticité du matériau.

Cette analyse du problème de la flexion, que nous venons
d'exposer dans ses grandes lignes, conduit à des résultats qui
sont particulièrement intéressants au point de vue de la relation

qui lie le moment de flexion à la courbure de l'axe de la

poutre.
Nous avons déjà dit en effet que, dès que le phénomène

cesse d'être élastique, cette relation cesse d'être linéaire.
A la courbure élastique, toujours proportionnelle au moment

de flexion, vient s'adjoindre une courbure plastique, fonction
croissante elle aussi mais, en général, non linéaire du même

moment.
Le diagramme, qui traduit graphiquement la relation entre

moments et courbures, fléchit vers l'axe des courbures.
Il s'éloigne de la droite qui représente la loi de Hooke plus

ou moins brusquement, selon les cas ; on a en tout cas affaire

avec une courbe du genre de celle représentée par une ligne
continue dans notre figure 8.

JIZ

Fig. 8.

Or, l'expérience confirme, jusqu'à un certain point, ces

conclusions de la théorie.
Jusqu'à un certain point, parce que, dans la théorie, nous

avons délibérément fait abstraction de l'accroissement éventuel

de résistance dû à l'écrouissage du matériau.
Or, on a évidemment le droit de procéder ainsi tant qu'on

se propose d'étudier les lois de l'équilibre élasto-plastique

pour des déformations plastiques assez petites, c'est-à-dire de

l'ordre de grandeur des déformations élastiques. C'est le cas

de celles qui se produisent dans les constructions, même les

mieux calculées.
Mais quand les déformations deviennent plus grandes, et

que l'écrouissage se manifeste, il faut bien s'attendre à un
accroissement de rigidité de la poutre. On peut même prévoir
la disparition de la valeur limite du moment de flexion ;

celui-ci va devenir une fonction croissante de la déformation,
et il sera limité seulement par le fait que, celle-ci allant

en croissant, il arrivera certainement un moment où le matériau

se rompra.

Du point de vue expérimental ces prévisions sont d'ailleurs
complètement vérifiées.

Il suffit en effet d'essayer de relever la relation qui lie
le moment de flexion à la courbure dans une poutre fléchie en
fer homogène (ou en acier doux) pour constater :

1. que, lorsqu'on dépasse la valeur du moment de flexion,
pour laquelle les tensions, calculées d'après la théorie de

l'élasticité, atteignent sur les bords de la section la limite
d'élasticité du matériau, le phénomène cesse aussitôt d'être
élastique, tandis que la relation qui lie le moment de flexion
à la courbure cesse d'être linéaire ;

2. que, dès lors, le diagramme qui traduit graphiquement
cette relation s'incurve vers l'axe des déformations, en
suivant au début d'assez près l'allure définie par la théorie de

l'équilibre élasto-plastique, et en s'en écartant ensuite, plus
ou moins brusquement, traduisant une évidente reprise de

résistance de la poutre ;
3. que la valeur limite du moment, telle qu'elle est définie

par la théorie de l'équilibre élasto-plastique, est atteinte et
même dépassée, souvent pour des valeurs encore relativement
faibles de la déformation.

On peut donc raisfpnablement songer à des théories qui
arrivent à interpréter analytiquement le phénomène de la
résistance à la flexion en régime élasto-plastique, avec une
approximation plus grande, ou, si l'on veut, dans un domaine
de valeurs plus étendu.

Toutefois on peut bien dire — d'accord avec l'expérience —¦

que la théorie de l'équilibre élasto-plastique, telle que nous

sommes en train de exposer, représente bien le phénomène
réel tant que les déformations satisfont à ces conditions que
nous avons énoncées dès le début, et qui se trouvent vérifiées
dans la plupart des problèmes techniques que nous nous
sommes proposé de résoudre.

Dans ces cas, et dans les limites qu'ils co'mportent, le

diagramme dont nous venons de nous occuper peut en effet être
considéré comme la traduction graphique de l'expression (10)

de la courbure :

9E -f ESZydA

^.^^ *= Ej— j^^H
Cette expression contient deux termes ; le premier

EJ

se rapporte évidemment à la phase élastique du phénomène,
c'est-à-dire aux déformations qui s'annulent lorsque s'annule

la sollicitation extérieure. Il est représenté par les abscisses

de la portion rectiligne du diagramme, et de son prolongement.
Le second terme

S^ydA
8

se rapporte au contraire à la phase plastique du phénomène,
c'est-à-dire aux deformations qui persistent même après la

disparition des forces extérieures. Il est représenté par les

abscisses de la courbe, comptées à partir du dit prolongement.
Or, dans tous les cas où les effets de l'effort tranchant

peuvent être négligés par rapport aux effets du moment de flexion,
le calcul des déformations des poutres fléchies dépend simplement

de l'intégration de l'équation différentielle

dz2
— u
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où u désigne la courbure.
Il s'ensuit que, en attribuant à \x l'expression qui correspond

à la seule courbure élastique,
à la seule courbure plastique,
ou à la courbure totale,

nous obtiendrons respectivement les valeurs
des seules déformations élastiques,
des seules déformations plastiques,
ou des déformations totales.
Et cela sans qu'il y ait aucun changement à apporter aux

méthodes connues.
Si, à titre d'exemple, nous choisissons, pour ce calcul, le

procédé graphique de Mohr, il suffira de considérer le

diagramme des courbures, quel qu'il soit, comme un diagramme
idéal de charge et de s'en servir, de la manière habituelle,
pour la construction du polygone funiculaire.

En appliquant une telle méthode, on parvient à des résultats

très proches des résultats de l'expérience, et qui se prêtent
assez bien à les interpréter.

Un fait en particulier vient ainsi à être mis en évidence ;

un fait duquel j'ai déjà parlé à maintes reprises, et dont il
faut bien reconnaître l'importance fondamentale : à savoir

que par l'introduction des déformations plastiques nous renonçons,

en même tempSt d'une façon définitive, non seulement
à la réversibilité du phénomène, mais aussi à sa linéarité.

Ce fait se présente très nettement et avec une granäe

fréquence dans le cas des constructions en béton armé, où la
limite d'élasticité du béton peut être atteinte même pour des

valeurs très faibles de la sollicitation.
L'accord entre Ja théorie et l'expérience devient alors

singulièrement frappant.
Prenons par exemple, choisie au hasard, une parmi les

nombreuses expériences sur des poutres en béton armé que
Bach et Graf ont réalisées, il y a maintenant plus de vingt
ans, dans la Materialprüfungsanstalt de la Technische
Hochschule de Stuttgart.

Il s'agit d'une poutre simplement fléchie, à section carrée
de 30 cm de côté, armée tout le long de la face tendue de six
fers ronds équidistants de 17 mm de diamètre.

La partie de l'expérience dont nous voulons nous occuper
ici est celle qui se rapporte à la période qui précède l'apparition

des premières lésions.
Selon la documentation qui se trouve dans I'Handbuch de

von Emperger
pour des moments

de flexion de
on a expérimentalement relevé

des courbures de

0,132 Xl0-5cm-i
0,273
0,423
0,582
0,749
0,980

30 000 kg.cm
60 000 »

90 000 »

120 000 »

150 000 »

180 000 »

Bach et Graf ont cherché à mettre ces valeurs expérimentales

de lirIBourbure en relation avec celles calculées dans

l'hypothèse, que toute la section réagit élastiquement, et
ceci en ayant recours à l'artifice habituel de faire varier de

manière convenable le rapport des modules d'élasticité des

deux matériaux qui composent la poutre.
Mais ils n'obtj^nent naturellement qu'un accord apparent,

et de toute façon nécessairement limité à des intervalles de

valeurs relativement restreints.
La réalité est tout autre ; l'expérience montre nettement

que l'allure du phénomène n'est pas linéaire, et la théorie
classique de l'élasticité ne peut et ne pourra jamais l'interpréter.

Une interprétation satisfaisante s'obtient par contre si,
tout en maintenant au phénomène élastique la caractéristique
fondamentale de la linéarité, on introduit la considération des
déformations plastiques en admettant, comme d'habitude,
qu'elles interviennent et se superposent aux déformations
élastiques, là où les limites d'élasticité du matériau sont
atteintes.

Pour cela il faut distinguer au préalable les valeurs de la
sollicitation pour lesquelles on peut raisonnablement considérer

vérifiées les lois de l'élasticité, de celles pour lesquelles
il est hors de doute qu'interviennent des déformations
plastiques.

Considérons par exemple la première valeur du moment
de flexion : 30 000 kg. cm.

Pour cette valeur de la sollicitation, les tensions unitaires
maxima, selon la théorie de l'élasticité, prennent respectivement

les valeurs de -f5 et de — 6 kg/cm2.
Dans cesconditions. on peut, en toute tranquillité, admettre

que le matériau se comporte partout comme parfaitement
élastique, et qu'il réalise effectivement la distribution linéaire
de tensions intérieures qui, pour cette valeur du moment de

flexion, est représentée dans le premier diagramme de la
figure 9.

-6 -36

n n

+5 30

Fis. 9.

L'accord entre la théorie et l'expérience s'obtient tout
naturellement en attribuant au béton un module d'élastieité
de 280 t/cm2, ce qui — étant donné que le module du fer se

maintient toujours au voisinage de 2100 t/cm2 — équivaut
à prendre, pour le rapport des modules, la valeur 7,5.

De cette façon on trouve en effet pour la courbure la valeur

9lt
Ë~J

0.132 X 10-6

qui coïncide exactement avec celle qui a été relevée expérimentalement.

Considérons par contre la dernière des valeurs du moment
de flexion du tableau, c'est-à-dire 180 000 kg. cm.

D'après la théorie de l'élasticité les tensions maxima sur
le contour de la section devraient, en ce cas, atteindre
respectivement les valeurs unitaires de -f-30 et de —36 kg/cm,
la distribution des tensions sur la section étant celle qui est

représentée dans le second diagramme de la figure 10.

-40

+1$

FiK. 10.
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Or, la première de ces valeurs est notoirement inadmissible

pour un béton ordinaire.
Il faut donc nécessairement admettre que, là où les tensions

positives tendent à dépasser une certaine limite, le béton passe
du régime des déformations élastiques au régime des
déformations plastiques.

L'accord entre la nouvelle expression de la courbure

M
9T£

El
et l'expérience pourra s'obtenir — sans faire varier la valeur
attribuée au module — en prenant comme diagramme des

déformations plastiques (en fonction des y) un diagramme
triangulaire du type de celui pointillé dans la figure 10.

J7ZJft JJZ
77 VEJ I EJ

Fig. m

Pour une telle distribution de déformations plastiques, on
a en effet

û~ 0.188 X lO^cm-1
Si l'on tient compte que

m,
El 0:92 X 10-8cr

on retrouve la valeur de la courbure relevée expérimentalement

]ï 0.980 X 10-5 cm-1

Le diagramme des tensions intérieures (hachuré dans la
figure) présente, dans toute la région intéressée par les
déformations plastiques, une ordonnée constante égale à

-f 14 kg/cm2.
La valeur de la tension maximum négative, correspondant

au bord opposé de la section, s'est naturellement accrue en

conséquence ; elle est passée de — 36 à — 40 kg/cm2.
Dès lors, on peut traiter de la même manière les cas

intermédiaires, en admettant que, pour eux aussi, le régime
plastique se substitue à celui de la parfaite élasticité partout où
les tensions positives dans le béton atteignent la limite de

14 kg/cm*.
On obtient ainsi :

pour, les
moments de

flexion de

30 000
60 000
90 000

120 000
150 000
180 000

les valeurs des courbures (en cm-1)

élastique plastique totale

0,132x10-
0,264
0,396
0,528
0,660
0,792

0
0
0,020x10-
0,052
0,112
0,188

0,132x10-
0,264
0,416
0,580
0,772
0,980

L'accord de ces résultats avec les valeurs de la courbure
relevée expérimentalement est vraiment remarquable ; l'écart
ne dépasse en aucun cas le 3 %.

Cet accord apparaît clairement dans le diagramme (fig. 11)
où les résultats expérimentaux de Bach et Graf ont été portés
à l'échelle en présence de la courbe représentative de la loi de
variation de la courbure en fonction du moment de flexion,
selon la théorie de l'équilibre élasto-plastique.

(A suivre.)

DIVERS

Le tartre, sa destruction et les moyens de

prévenir sa formation dans les chaudières
industrielles et les installations de chauffage central.

Formation du tartre.
On trouve généralement en solution dans l'eau, dans des

proportions diverses, les produits chimiques tels que :

bicarbonates, sulfates, chlorures et nitrates de calcium, de magnésium

et de sodium, parfois des sels de fijjf et d'aluminium. Le
résidu sec est généralement de 200-400 mgr/litre.

Lorsque l'eau s'évapore, les solutions se concentrent et les

différents sels précipitent ; tout d'abord les sulfates et carbonates

de calcium et de magnésium, puis, à beaucoup plus
forte concentration, les sels de sodium, des chlorures et des

nitrates. Seuls les premiers nous intéressent, car ce sont eux
qui forment le tartre.

Pour savoir combien une eau contient de carbonates et de

sulfates on détermine sa dureté 1 : la dureté totale renseigne
sur la quantité totale de tartre qu'une eau peut former, les

duretés temporaire et permanente donnent respectivement
des indications sur les proportions de calcaire et de gypse.

Un mètre cube d'eau de dureté moyenne (20° F) dépose
200 grammes de tartre. Pour les chaudières des bateaux du
Léman, par exemple, qui évaporent jusqu'à 40 tonnes d'eau
du lac (13° F) par jour, cela représente 5 à 6 kg de tartre.

Les deux constituants principaux du tartre sont donc : le
calcaire et le gypse.

Le calcaire se forme par l'action de la chaleur sur le
bicarbonate de calcium suivant lfciéaction :

Ca (H CO» Ca CO% -f H2 0 + G02 (1)

Lorsque son degré de saturation est atteint, le carbonate
de calcium précipite sous forme de fines particules qui — sous
l'action de la chaleur — se soudent pour former le tuf. Suivant
les conditions de température ou de pression, le dépôt formé
est plus ou moins dur et il est souvent très difficile à enlever
mécaniquement.

Le gypse a la curieuse propriété d'être moins soluble à

chaud qu'à froid. Si donc l'on concentre une solution de
sulfate de calcium, il y aura précipitation sur les parties les

plus chaudes, en particulier sur les tubes des chaudières. Ce

« tartre gypse » est dangereux. Très dur et adhérent, il forme
sur les éléments chauffants une couche peu conductrice de la
chaleur et provoque ainsi des pertes considérables au point
de vue thermique.

L'analyse de l'eau révélera donc la composition exacte du
tartre. Les eaux de notre pays étant essentiellement calcaires,
le carbonate de calcium est généralement le principal constituant

du tartre. Il est accompagné, en quantités variables, de
sulfate de calcium, de silice et de sels de magnésium.

' l'n degré françai
{Ca COt) par 100 litr

de chiiele (1° F)
s d'eau.
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