Zeitschrift: Bulletin technique de la Suisse romande

Band: 67 (1941)

Heft: 19

Sonstiges

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 24.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

BULLETIN TECHNIQUE

DE LA SUISSE ROMANDE

ABONNEMENTS:

Suisse: 1 an, 13.50 francs Etranger: 16 francs

Pour sociétaires :

Suisse: 1 an, 11 francs Etranger: 13.50 francs

Prix du numéro : 75 centimes.

Pour les abonnements s'adresser à la librairie F. Rouge & C^{1e}, à Lausanne. Paraissant tous les 15 jours

Organe de la Société suisse des ingénieurs et des architectes, des Sociétés vaudoise et genevoise des ingénieurs et des architectes, de l'Association des anciens élèves de l'Ecole d'ingénieurs de l'Université de Lausanne et des Groupes romands des anciens élèves de l'Ecole polytechnique fédérale. —

COMITÉ DE PATRONAGE. — Président: R. Neeser, ingénieur, à Genève; Vice-président: M. Imer, à Genève; secrétaire: J. Calame, ingénieur, à Genève. Membres: Fribourg: MM. L. Hertling, architecte; A. Rossier, ingénieur; Vaud: MM. F. Chenaux, ingénieur; E. Elskes, ingénieur; Epitaux, architecte; E. Jost, architecte; A. Paris, ingénieur; Ch. Thévenaz, architecte; Genève: MM. L. Archinard, ingénieur; E. Odier, architecte; Ch. Weibel, architecte; MM. J. Béguin, architecte; R. Guye, ingénieur; A. Méan, ingénieur; Valais: M. J. Dubuis, ingénieur; A. De Kalbermatten, architecte.

RÉDACTION: D. BONNARD, ingénieur, Case postale Chauderon 475, LAUSANNE.

Publicité : TARIF DES ANNONCES

Le millimètre (larg. 47 mm.) 20 cts. Tarif spécial pour fractions de pages.

Rabais pour annonces répétées.

ANNONCES-SUISSES s. A.
5, Rue Centrale,
LAUSANNE
& Succursales.

CONSEIL D'ADMINISTRATION DE LA SOCIÉTÉ ANONYME DU BULLETIN TECHNIQUE A. STUCKY, ingénieur, président; M. Bridel; G. Epitaux, architecte; M. Imer.

SOMMAIRE: Théorie de l'équilibre des corps élasto-plastiques, (suite), par M. Gustave Colonnetti, membre de l'Académie Pontificale des Sciences, professeur à l'Ecole Polytechnique de Turin. — Divers: Le tartre, sa destruction et les moyens de prévenir sa formation dans les chaudières industrielles et les installations de chauffage central. — Nécrologie: Alfred Michaud, ingénieur Service de placement.

Théorie de l'équilibre des corps élasto-plastiques

par M. GUSTAVE COLONNETTI,

Membre de l'Académie Pontificale des Sciences, Professeur à l'Ecole Polytechnique de Turin.

(Suite.) 1

Ill. Le problème de Barré de Saint-Venant.

Considérons un corps cylindrique — ou prismatique — engendré par une aire plane A de forme quelconque, qui se déplace dans l'espace; chacun des points de A décrit une droite normale à son plan.

La longueur du cylindre est, en tout cas, supposée grande par rapport à ses dimensions transversales.

On suppose en outre que toutes les forces de volume sont nulles, et que la surface latérale du cylindre, libre de toute liaison, n'est soumise à aucune force.

Le cylindre ne sera donc soumis qu'à des liaisons et des forces agissant sur ses deux bases.

On doit à Barré de Saint-Venant la solution rigoureuse du problème de l'équilibre élastique d'un tel cylindre dans un certain nombre de cas particuliers, choisis de manière à permettre d'en déduire les solutions rigoureuses ou approchées de tous les autres cas, même les plus compliqués.

Les cas particuliers, pour lesquels la solution de de Saint-Venant est rigoureuse, sont précisement ceux où tout élément de surface tracé à l'intérieur du corps, parallèlement à l'axe du cylindre, n'est soumis qu'à une tension tangentielle dans la direction de cet axe.

Nous supposerons le système rapporté à un trièdre trirectangle ayant son origine au centre de gravité de l'une des bases. Les axes des x et des y seront les axes principaux d'inertie de cette base, et l'axe des z coïncidera avec l'axe géométrique du cylindre. Sur ce dernier axe, on prendra comme direction positive celle qui se dirige vers l'intérieur du corps.

Dans ces hypothèses, on devra avoir en tout point du corps

$$\begin{aligned}
\sigma_x &= 0 \\
\sigma_y &= 0
\end{aligned} \quad \tau_{xy} = 0$$
(1)

Or, si le corps est isotrope, l'énergie potentielle élastique élémentaire peut s'écrire sous la forme

$$\begin{split} \phi = & \frac{1}{2E} (\sigma_{x}^{2} + \sigma_{y}^{2} + \sigma_{z}^{2}) - \frac{1}{mE} (\sigma_{y} \sigma_{z} + \sigma_{z} \sigma_{x} + \sigma_{x} \sigma_{y}) + \\ & + \frac{1}{2G} (\tau_{yz}^{2} + \tau_{zx}^{2} + \tau_{xy}^{2}) \end{split}$$

où E est le module d'élasticité normale du matériau, et m son coefficient de contraction latérale; tandis que G, qui est lié à m et à E par la relation

$$G = \frac{1}{2} \frac{m E}{m + 1}$$

prend, comme on sait, le nom de module d'élasticité tangentielle.

Par dérivation, on en déduit les expressions des composantes de déformation en fonction de celles des composantes spéciales de tension qui ne sont pas nulles

¹ Seconde des conférences données à Lausanne par M. le professeur Colonnetti, les 9 et 10 mai 1941, et organisées par l'*Ecole d'ingénieurs* de l'Université, avec le concours de l'Association des anciens élèves de l'E. I. L., de la Société vaudoise des ingénieurs et des architectes et du groupe des Ponts et Charpentes de la Société suisse des ingénieurs et des architectes. La première conférence a été publiée au *Bulletin technique* du 28 juin 1941, p. 145. (*Réd.*).