Zeitschrift: Bulletin technique de la Suisse romande

Band: 64 (1938)

Heft: 21

Artikel: Un nouveau procédé de congélation et ses possibilités d'application

Autor: Daxelhofer, J.-P.

DOI: https://doi.org/10.5169/seals-49235

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 21.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

BULLETIN TECHNIQUE

DE LA SUISSE ROMANDE

ABONNEMENTS:

Suisse: 1 an, 12 francs Etranger: 14 francs

Pour sociétaires :

Suisse: 1 an, 10 francs Etranger: 12 francs

Prix du numéro : 75 centimes.

Pour les abonnements s'adresser à la librairie F. Rouge & C^{1e}, à Lausanne. Paraissant tous les 15 jours

Organe de la Société suisse des ingénieurs et des architectes, des Sociétés vaudoise et genevoise des ingénieurs et des architectes, de l'Association des anciens élèves de l'Ecole d'ingénieurs de l'Université de Lausanne et des Groupes romands des anciens élèves de l'Ecole polytechnique fédérale. — Organe de publication de la Commission centrale pour la navigation du Rhin.

COMITÉ DE PATRONAGE. — Président: R. Neeser, ingénieur, à Genève; Vice-président: M. Imer à Genève; secrétaire: J. Calame, ingénieur, à Genève. Membres: Fribourg: MM. L. Hertling, architecte; A. Rossier, ingénieur; Vaud: MM. C. Butticaz, ingénieur; E. Elskes, ingénieur; E. PITAUX, architecte; E. Jost, architecte; A. Paris, ingénieur; Ch. Thévenaz, architecte; Genève: MM. L. Archinard, ingénieur; E. Odier, architecte; Ch. Weibel, architecte; Neuchâtel: MM. J. Béguin, architecte; R. Guye, ingénieur; A. Méan, ingénieur cantonal; Valais: MM. J. Couchepin, ingénieur, à Martigny; J. Dubbuis, ingénieur, à Son.

RÉDACTION : H. DEMIERRE, ingénieur, 11, Avenue des Mousquetaires, La Tour-de-Peilz.

ANNONCES

Le millimètre sur 1 colonne, largeur 47 mm : 20 centimes.

Rabais pour annonces répétées.

Tarif spécial pour fractions de pages.

Régie des annonces : Annonces Suisses S. A. 8, Rue Centrale (Pl. Pépinet) Lausanne

CONSEIL D'ADMINISTRATION DE LA SOCIÉTÉ ANONYME DU BULLETIN TECHNIQUE A. Dommer, ingénieur, président; G. Epitaux, architecte; M. Imer; A. Stucky, ingénieur.

SOMMAIRE: Un nouveau procédé de congélation et ses possibilités d'application (suite), par J.-P. Daxelhofer, ingénieur-conseil, à Paris. — Concours pour l'étude des plans d'un bâtiment destiné à la Banque populaire valaisanne S. A., à Sion (suite et fin). — L'ultramicroscope. — A propos de l'Exposition nationale (planche hors texte). — Rhin-Main-Danube. — Calcul rationnel du prix de revient du chauffage de demi-saison, par la méthode du « degré-jour ». — Ventilation des pièces d'habitation. — Convention entre le Conseil de l'Ecole polytechnique fédérale et le Département de l'instruction publique et des cultes du canton de Vaud. — Réglementation des professions d'ingénieur et d'architecte en République Argentine. — Normes techniques et industrielles anglaises. La semaine internationale contre le cancer. — Correspondance. — Bibliographie. — Service de placement. — Documentation.

Un nouveau procédé de congélation et ses possibilités d'application,

par J.-P. DAXELHOFER, ingénieur-conseil à Paris,

(Suite 1).

Congélation de solutions salines.

Le problème de la congélation de terrains imbibés de solu-tions salines est encore mal connu. Il doit aussi être examiné sous un point de vue un peu différent de celui du laboratoire de physique. L'opinion générale, dont les traités sur la question sont le reflet, est la suivante (voir en par-ticulier un mémoire de M. Durnerin au Congrès scienti-fique international de Liége 1922) et [13] page 170 : Pour être certain de créer une enceinte étanche, dans un terrain imbibé d'eau salée, par exemple de l'eau de mer, il faudrait le refroidir au-dessous de la température eutectique qui est de — 23º C pour l'eau de mer. Voici pourquoi : si l'on refroidit une solution de sel de cuisine par exemple, il se produit, à une température déterminée pour chaque concentration, un commencement de congélation. Les cristaux qui se forment sont de la glace pure. Donc, petit à petit, la solution se concentre et son point de congélation s'abaisse. On ne peut congeler la solution saline proprement dite, qu'au moment où elle forme un eutectique. Si l'on augmente la concentration en sels au delà de ce point et qu'on la refroidisse, ce n'est plus de la glace qui se sépare, mais du sel pur. Pour l'eau de mer, l'eutectique est une solution à 23,6 % de sel pour 100 parties d'eau dont le point de congélation est à — 23° C (pour le NaCl : 29 % et — 21,2°).

Dans les travaux de congélation, in e s'agit nullement de

Dans les travaux de congélation, il ne s'agit nullement de congeler une solution dans sa totalité, mais de créer un diaphragme continu. Le froid se propageant à partir d'un axe, il semble que l'eau devrait geler à la température correspondant à la concentration en sel (pour une solution à 5 % de

sel de cuisine, c'est-à-dire environ 50 gr par litre, ce serait à — 3° C) et que la solution concentrée devrait être repoussée, tout comme est repoussé l'excès d'eau dù au changement de volume. Des essais en laboratoire ont montré que c'est bien ce qui se passe, si l'on veut congeler une solution à partir d'un certain nombre de tubes.

L'appareil utilisé était constitué par un bac cylindrique de 30 cm de diamètre et de 30 cm de haut, calorifugé sur toutes ses faces. Le bac était traversé par 6 tubes de cuivre, disposés sur un cercle de 16 cm, à travers lesquels était établi un courant froid dont la température pouvait descendre à — 25°. Un couvercle amovible permettait de surveiller les progrès de la congélation

On constate que, pour une solution de sel de cuisine à 50 gr environ par litre, il se forme un anneau de glace pure autour des tubes à une température voisine de — 3°. Ces anneaux grandissent et finissent par se souder les uns aux autres, de façon à constituer une paroi continue.

Une analyse ultérieure permit de vérifier que la glace qui entourait les tubes était très pure. Elle était bomogène et transparente, alors que vers — 22° il se forme au centre du bac des cristaux friables qui correspondent à l'eutectique de sel de cuisine.

L'essai fut répété avec du sable imbibé d'eau salée. Aucune diffusion du sel n'a pu être décelée. L'analyse chimique a montré que la quantité de sel contenue dans le sable gelé, était la même, à la précision des mesures près, que l'échantilon soit prélevé près d'un tube, entre deux tubes ou au centre du bac.

Il en résulte que toute la masse a pu geler à une température de —3° à —4° G. De nouveaux essais sont en cours pour déterminer les causes de ces divergences, ainsi que l'influence d'une circulation d'eau.

Les insuccès notés lorsque la congélation a été appliquée dans des terrains imbibés d'eau salée ne paraissent pas devoir être attribués uniquement au fait que la température de congélation n'avait pas atteint la température eutectique. Les phénomènes paraissent plus complexes.

Ainsi, lors du creusement d'un puits dans le Hanovre; une venue d'eau chargée en sels de potasse, n'a pu être arrêtée malgré un refroidissement à — 45° C [7] et [9].

¹Voir Bulletin technique du 24 septembre 1938, page 269.

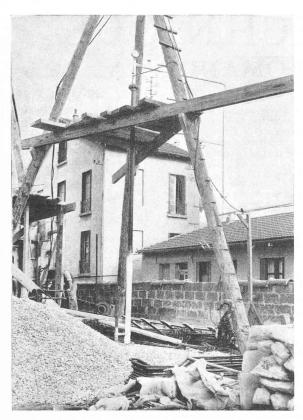


Fig. 3. — Tube congélateur pénétrant de 40 m dans le sol et muni d'un dispositif permettant de congeler le sol à partir d'une profondeur déterminée.

Influence de la rapidité de congélation.

Il est clair que la vitesse de congélation ou mieux le gradient thermique, joue un rôle important dans la congélation des sols.

Des essais effectués par Jung donnent une indication intéressante sur ce point, bien qu'ils aient été effectués sur de très petits échantillons, examinés au microscope.

Un échantillon d'argile, contenant 51,4 % d'eau, soumis à une température de $-1^{\rm o}$ donne naissance à de fortes couches de glace ; à $-10^{\rm o}$, à des cristaux dans la masse ; à $-25^{\rm o}$, à des cristaux plus petits, enfin à $-190^{\rm o}$, aucune cristallisation n'est plus visible et la masse est homogène. Avec une argile ne contenant que 24,8 % d'eau, il ne se forme plus de couches de glace, mais de minces lames cristallines ; à $-25^{\rm o}$, les cristaux sont imperceptibles et à $-78^{\rm o}$, les cristaux disparaissent et on obtient une masse homogène.

Avantages du procédé Rodio-Dehottay.

De ce qui précède, on peut se rendre compte qu'il est désirable, à tous points de vue, de réaliser des températures aussi basses que possible et de dégager un froid intense afin de réaliser une vitesse maximum de congélation. En effet, la résistance des terrains est augmentée, les déformations sont plus faibles et, ce qui n'est pas négligeable, le prix des travaux exécutés est abaissé.

C'est ce qui fait l'intérêt du procédé de congélation Rodio-Dehottay à détente directe de gaz carbonique dans les tubes congélateurs. Ainsi, en travaillant avec une pression d'aspiration de 10,25 atm, la température d'évaporation du liquide est de — 40° . De cette façon, on crée immédiatement un froid très intense dans les congélateurs, qui peuvent se contracter avant d'être emprisonnés dans un cylindre de glace. La quantité de froid dégagée par m de tube, peut être voisine du maximum, c'est la quantité de calories cédées par le sol, pour vaporiser le CO^2 liquide qui emplit les congélateurs en régime normal. Il est possible de dégager 500 à 800 frigories/h par

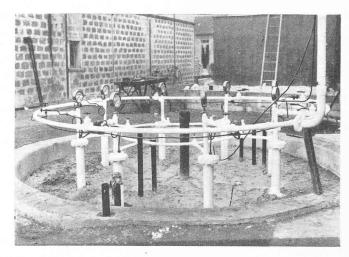


Fig. 4. — Installation pour réalisation d'un puits circulaire de 2,50 m de diamètre et 5 m de profondeur (8 tubes congélateurs, un puits filtrant central et 7 tubes pour mesures de températures).

m de tube congélateur si, par exemple, le sol contient beaucoup d'eau. Toutefois, ce facteur dépend du terrain seul. C'est ainsi que dans un cas particulier le froid maximum dégagé était de 200 frig/m tube seulement. (A titre de comparaison, à Anvers, on dégageait environ 75 frig/h/m tube).

Si l'on examine la transmission de chaleur lorsqu'un cylindre de glace d'un certain diamètre enserre le tube congélateur, on se rend compte que le diamètre du tube joue un rôle secondaire. La quantité de chaleur qui parvient au tube étant déterminée, on ne peut agir que sur le gradient thermique pour accélérer la congélation, le diamètre du tube a peu d'influence, sauf au début. C'est pourquoi on choisit en général un diamètre de congélateur de 3" qui pénètre facilement dans un sondage de 4 ½", type de sondage économique jusqu'à 30-40 m de profondeur dans de mauvais terrains.

L'installation mécanique ne présente rien de particulier si ce n'est qu'il faut l'établir avec soin, étant donné les hautes pressions qui règnent dans les tuyauteries d'alimentation en CO^2 liquide et la facilité avec laquelle le CO^2 s'échappe des joints. A titre d'indication, le CO^2 traverse une membrane de

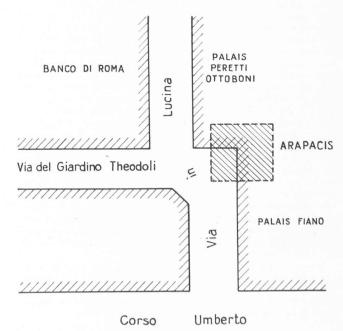


Fig. 5. — Situation de l'Ara Paris,

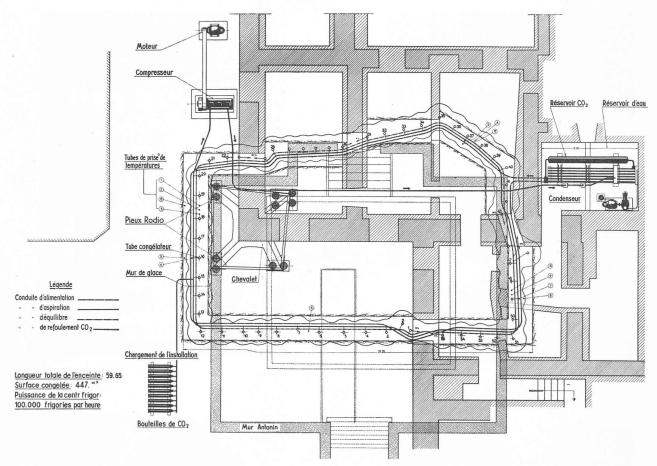


Fig. 6. — Plan d'ensemble de l'installation de congélation de l'Ara Pacis.

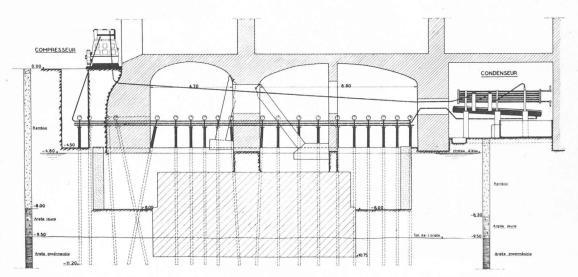


Fig. 7. — Installation de congélation de l'Ara Pacis. — Coupe. — Echelle 1 : 200.

caoutchouc trois fois plus facilement, à 20°, que l'hydrogène [I0].

La mise au point industrielle de ce procédé n'en a pas moins été longue et coûteuse. Les essais ont permis de démontrer que la répartition des températures le long d'un tube de 40 m de longueur était pratiquement uniforme (fig. 3) et qu'il était possible de réaliser une enceinte de 1 m d'épaisseur et 2,50 m de diamètre en 4 jours de marche (ce temps pouvant être abaissé dans de bonnes conditions de marche de l'installation, fig. 4).

Ils ont permis, en outre, de vérifier qu'il était possible de créer un diaphragme étanche en présence d'un courant d'eau.

Application pratique.

C'est à la suite de ces essais que fut entreprise la première application industrielle du procédé pour le compte de la Société G. Rodio $\mathcal{G}^{.}$ C^{te} , de Milan. C'est le premier travail de congélation exécuté en Italie.

Il s'agissait de récupérer les ruines d'un célèbre monument

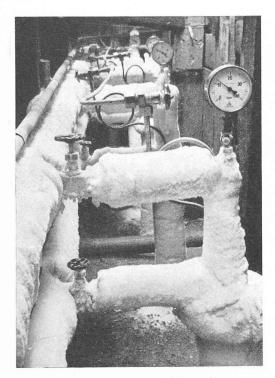


Fig. 8. — Tubes congélateurs $N^{\rm os}$ 8 à 12, placés au fond d'une fouille de 4,50 m de profondeur.

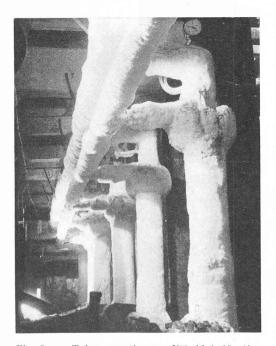


Fig. 9. — Tubes congélateurs N^{os} 16 à 20. (Au premier plan un tube pour prise de températures.)

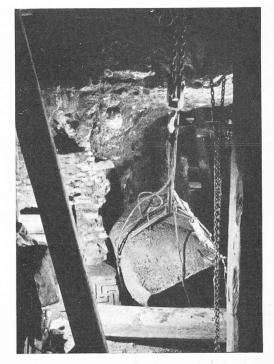


Fig. 10. — Extraction d'un bloc de marbre sculpté.

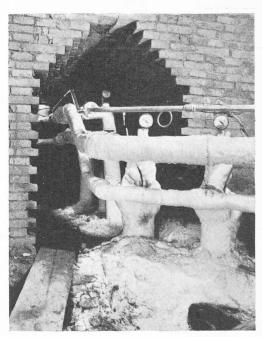


Fig. 11. — Tubes congélateurs Nos 24 (incliné) et 25 assurant la continuité du diaphragme congelé sous un mur d'environ 3,00 m d'épaisseur.

romain : l'Ara Pacis, élevé par l'empereur Auguste et inauguré en l'an 9 avant Jésus-Christ.

Ce monument se trouvait sous l'eau et en partie sous un palais du 16me siècle auquel il servait partiellement de fondation (fig. 5). Lors de travaux de consolidation du Palais Fiano, exécutés en 1858, on mit à jour quelques fragments intéressants du monument. Des fouilles systématiques, effectuées en 1903 sous la chaussée, avaient permis de se rendre compte de l'intérêt archéologique et artistique de ce monu-

ment, ainsi que du danger que présentaient des pompages effectués sans précautions spéciales.

Comme il était impossible de battre des palplanches, impossible de faire des injections de ciment qui auraient abîmé les fines sculptures sur marbre, très difficile de faire des écrans par injections chimiques, étant donné la finesse des terrains, leur caractère nettement argileux et leur hétérogénéité, très dangereux de faire un pompage en fouille, étant donné la stabilité précaire du bâtiment situé au-dessus des ruines, et

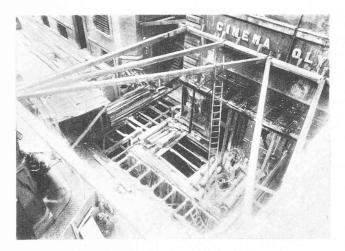


Fig. 12. — Vue générale du chantier.

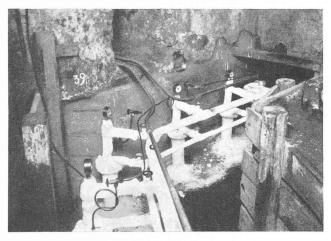


Fig. 13. — Tubes congélateurs dans le sous-sol du bâtiment ($N^{\rm os}$ 38 à 41) et arrivée des conduites principales d'alimentation en CO^2 liquide.

déjà fissuré en plusieurs endroits, à la suite des travaux de 1903, il fut décidé de créer une enceinte par congélation du sol qui résolvait parfaitement le problème posé par le Ministère des Beaux-Arts et des Antiquités.

La présence d'une couche d'argile supposée imperméable, à 7 m environ de profondeur, rendait le problème relativement facile.

Les difficultés d'exécution furent cependant nombreuses: Tout d'abord, les forages pour la mise en place des congélateurs durent être exécutés dans des conditions très difficiles, étant donné le peu d'espace libre et la présence de nombreuses canalisations dont l'emplacement n'était pas exactement connu (égouts, câbles à haute tension, gaz, eau sous pression, téléphone).

Etant donné le peu d'espace disponible, la centrale frigorifique dut être scindée en deux. Le compresseur fut installé dans la Via in Lucina et le condenseur, avec sa pompe d'alimentation et un réservoir, dans les caves du bâtiment (voir fig. 6).

Enfin, la congélation proprement dite ne fut pas très aisée, par le fait de l'hétérogénéité des terrains traversés par les tubes congélateurs (variables suivant la verticale et d'un tube à l'autre) et parce qu'une partie des congélateurs se trouvait dans des maçonneries romaines ou à travers les murs du bâtiment.

Les travaux de congélation commencèrent en novembre mais durent être suspendus pour diverses raisons, en particulier, un effondrement de chaussée qui produisit la rupture de plusieurs tubes congélateurs.

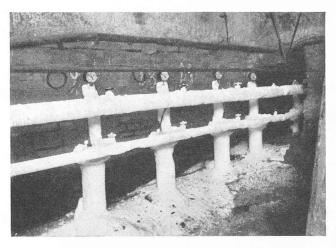


Fig. 14. — Tubes congélateurs en sous-sol, Nos 27 à 30, pendant l'entretien de la paroi congelée.

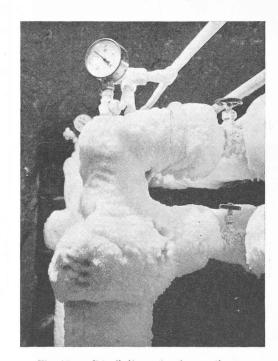


Fig. 15. — Détail d'une tête de congélateur.

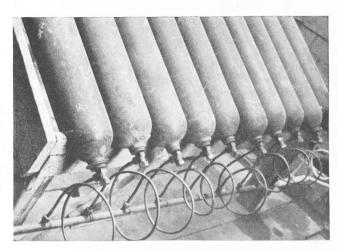


Fig. 16. — Poste de chargement de l'installation.



Fig. 17. — Pieux de châtaignier, en partie décomposés, servant de fondation à certaines parties des bâtiments existants.

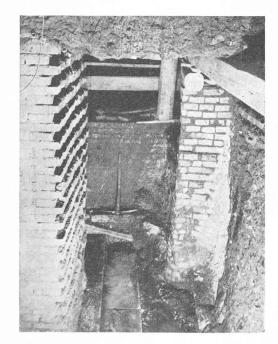
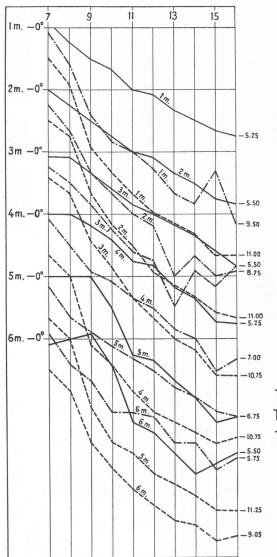



Fig. 18. — Vue des travaux de reprise en sousœuvre après pompage à l'intérieur de l'enceinte. (Le socle sur lequel s'élevait l'Ara Pacis est visible en bas à gauche.)

La figure 6 donne un plan d'ensemble des installations et le tracé de l'enceinte congelée. Les tubes congélateurs n° 1 à 23 sont au fond d'une fouille blindée de 4,50 m de profondeur (voir fig. 7, 8 et 9). Les tubes 1, 2, 3, 4, 5, 6, 7, 8 et 55 traversent le socle de l'Ara Pacis.

Toute la zone située hors de l'enceinte avait été explorée en 1903 par puits et galeries. Partout, ailleurs, l'enceinte est située à l'extérieur du Mur Antonin, au delà duquel on ne

T10: à 50 cm. entre 2 tubes
T11: à 50 cm. hors de l'enceinte
TA: à 50 cm. de l'enceinte

Légende :

Fig. 19. — Courbes d'abaissement de température. (Relevé du 7 au 15 janvier 1938.)

pouvait trouver aucun débris du monument. En effet, le niveau du sol de Rome avait été surélevé à cet endroit à l'époque d'Antonin, et des escaliers construits pour accéder à l'Ara Pacis. Sur cette figure 6, est indiqué, en outre, le dispositif de soutènement de l'angle du bâtiment, permettant l'exploration complète des fondations en cet endroit. Ce soutènement a été réalisé par un chevalet en béton armé reposant sur des groupes de pieux, par l'intermédiaire de 4 vérins hydrauliques.

La figure 7 donne une coupe schématique sur laquelle on peut noter l'épaisseur des fondations englobant de nombreux blocs de marbre sculptés, dont certains pesaient jusqu'à 3 tonnes (fig. 10). On remarque que le socle du monument repose sur une couche d'argile imperméable et que le niveau de la nappe phréatique s'est élevé de plus de 5 m, depuis l'époque d'Auguste.

Pour assurer la continuité de l'enceinte congelée au-dessous et au travers de ces murs épais, il a fallu établir un certain nombre de congélateurs inclinés (fig. 11, congélateurs 24-25).

La figure 12 donne une idée du peu d'espace disponible. À droite, en bas, on aperçoit le passage qui a permis d'assurer, pendant toute la durée des travaux, l'exploitation de la salle de cinéma située au rez-de-chaussée du bâtiment dont toutes les fondations ont été explorées et reprises en sous-œuvre.

La figure 13 est une vue des congélateurs dans les caves ; les deux conduites sans givre sont les conduites d'alimentation principales en CO2 liquide qui viennent de la cave contenant le condenseur et le réservoir à haute pression.

La figure 14 montre les congélateurs 27 à 30 (voir plan

La figure 15 donne un détail de tête de congélateur en action ; le robinet inférieur permet d'isoler le congélateur de la conduite d'équilibre. Le robinet supérieur met en communication le congélateur avec la conduite d'aspiration du gaz assurant l'évaporation du liquide emplissant le congélateur. Le manomètre indique la pression d'aspiration : 14 kg/cm², ce qui indique que la température régnant dans le tube est infé-

La figure 16 montre la batterie de chargement, seule, la première bouteille est en cours de vidange (tube givre

La figure 17 montre l'état précaire des fondations du bâtiment. Une partie des murs reposait sur des pilots de bois dont les têtes étaient pourries. En certains endroits, les pieux avaient entièrement disparu, ce qui montre le danger qu'aurait présenté, de ce simple fait, tout entraînement de matière par pompages prolongés.

Sur la figure 18, on remarque le socle du monument recou-

vert de plaques de marbre.

Les travaux furent terminés en mars et ont pu être menés à bonne fin sans causer de dommages à la construction au-

dessous de laquelle ont été exécutées les fouilles.

Des mesures très précises de température ont été faites en divers points, afin de suivre la marche de la congélation et régler l'entretien de la paroi. Ces mesures ont été exécutées au moyen d'un thermomètre à résistance électrique dans des tubes spéciaux pleins de saumure incongelable, au nombre de 12.

La figure 19 donne un exemple des courbes d'abaissement de température observé entre 2 tubes congélateurs (T 10 situé entre les congélateurs 48 et 49, fig. 6, et A situé entre les nos 37 et 38), on remarque que l'abaissement est, en moyenne de 0,8° C par jour. Le tube T 11 était situé à 50 cm d'un congélateur mesurés

perpendiculairement à l'enceinte et vers l'intérieur.

Lors de l'arrêt de la congélation, la paroi constituée avait

une épaisseur de 1,50 à 2 m.

C'est un travail type pour une reprise en sous-œuvre ou pour une fondation en terrain aquifère dans des terrains très hétérogènes où les procédés courants ne résolvent pas complètement le problème 1. (A suivre.)

Concours pour l'étude des plans d'un bâtiment destiné à la Banque Populaire Valaisanne S. A., à Sion.

(Suite et fin.) 2

Extrait du rapport du jury.

Le jury s'est assemblé les 23 et 24 mai à Sion. Il a constaté que 57 projets ont été remis en temps utile.

Puis il procède à plusieurs tours d'élimination. Au premier tour tombent 7 projets; au deuxième tour, 12 projets; au troisième tour, 12 projets et au quatrième, 13 projets.

Le jury reste en présence de 11 projets et procède, en vue de leur classement définitif, à une critique plus approfondie de leurs différents éléments.

A la suite de ces considérations, le jury classe les six meilleurs projets dans l'ordre suivant : 1er rang : Arolla ; 2e rang : Yen ; 3e rang : Fonctions ; 4e rang : Valais ; 5e rang : Crédit ; 6e rang : Unité.

Il décide de répartir la somme mise à sa disposition en quatre prix, qu'il fixe de la manière suivante : 1er prix :

Voir Bulletin technique du 24 septembre 1938, page 274.

Fr. 2300.—; 2e prix: Fr. 2000.—; 3e prix: Fr. 1200.—; 4e prix : Fr. 1000.

Le jury estime que le projet primé en premier rarg peut être exécuté sans grande modification, et en recommande

l'exécution.

L'ouverture des plis donne connaissance des noms suivants: 1er prix: G. Gorjat et R. Bæhler, architectes à Lausanne; 2e prix: *Donato Burgener*, architecte à Sierre; 3e prix: *Marcel Mayor*, architecte à Lausanne; 4e prix: Maurice Grivel, architecte à Lausanne.

L'ultramicroscope.

A l'occasion du Congrès international de cytologie expérimentale, qui s'est tenu, cette année, à Zurich dans la seconde semaine d'août, le docteur en médecine H. Ruska a présenté une communication sur un moyen de recherche, ouvrant de nouveaux horizons à l'étude de la microstructure de la vie organique et des substances inorganiques. Il s'agit de l'ultramicroscope, développé dans les laboratoires de la Société Siemens & Halske.

Alors que les microscopes optiques ne peuvent dépasser des grossissements de 2000 fois environ, on peut, actuellement, atteindre, avec l'ultramicroscope, des grossissements d'environ 30 000 fois. Les images obtenues sont alors assez nettes pour pouvoir être encore réagrandies optiquement d'environ 4 à 5 fois. On est donc à même d'obtenir aujourd'hui des grossissements globaux de cent mille et plus. Autrement dit, un microscope « optique » permet, dans les meilleures conditions, de distinguer des corps jusqu'à une dimension minimum d'environ 1,6/10 000 mm, qui apparaissent alors sous une dimension de 0,3 mm; le nouvel ultramicroscope permet, par contre, d'apercevoir des corps qui sont encore de 10 à 100 fois plus petits. On atteint ainsi des dimensions de l'ordre du millionième de millimètre. C'est précisément dans cet ordre de « grandeur » que se déroule une part importante de la vie organique, en particulier celle des virus infravisibles, ces infimes espèces de bactéries, qui provoquent les maladies telles que la rougeole, la parotidite, la grippe, la rage et la fièvre aphteuse. Jusqu'ici, personne n'avait été à même de voir ces virus. Les bactéries, que l'on a déjà pu observer à l'aide du microscope normal, et qui sont de véritables géants comparativement aux virus, peuvent être maintenant pour ainsi dire examinées de part en part avec de tels grossissements! De même, dans le monde inorganique, si l'on veut bien seulement se référer à la chimie des colloïdes, bien des phénomènes se déroulent à l'échelle de l'ordre de grandeur du cent-millième ou du millionième de millimètre. Les figures 1 à 3 représentent, à titre d'exemples, des clichés pris avec le microscope courant et avec l'ultramicroscope.

Le caractère marquant de l'ultramicroscope est qu'il travaille avec des rayons de longueur d'onde beaucoup plus courte que celle des rayons lumineux, exclusivement utilisés par les autres microscopes. Tandis que les rayons

¹ Voir aussi: Prof. Fr. Mauro: Il recupero dell'Ara Pacis Augustæ