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Notes sur le calcul des déversoirs

et seuils,

par M. CH. JAEGER, ingénieur diplômé.

Remarques préliminaires.

Des progrès considérables ont été faits depuis quelques
années en hydrodynamique, en sorte que l'hydraulique
et ses méthodes classiques ont été quelque peu négligées.
Certains spécialistes estiment qu'un problème n'est résolu

que s'il l'est par les méthodes de l'hydrodynamique générale,

par opposition à l'hydraulique, qui suppose admises,

une fois pour toutes, un certain nombre d'hypothèses
simplificatrices.

Cependant, il nous semble que l'on pourrait, en
certains cas, trouver des solutions hydrauliques approchées
de problèmes complexes, que les théories hydrodynamiques

n'ont point encore permis d'aborder. De plus, maint
ingénieur sera plus familiarisé avec les calculs hydrauliques

qu'avec les théories récentes de l'hydrodynamique.

On déclare également que toute formule hydraulique
doit être confirmée par une série d'expériences décisives.

C'est parfaitement exact. Mais les formules
d'hydrodynamique peuvent-elles se passer d'un pareil contrôle
Il faudrait donc que chaque travail soit appuyé d'expériences

de laboratoire. Peut-on cependant exiger d'un

praticien qu'il trouve à la fois le temps et les moyens
financiers nécessaires à ces travaux souvent fort longs

et délicats Dans bien des cas, il se bornera, par la force
des choses, à publier ses calculs, sans pouvoir malheureusement

leur donner la rigueur scientifique qu'ils auraient,
confirmés par des recherches expérimentales systématiques.

Avant de publier nos calculs, nous tenions à répondre
à l'avance à certaines objections relatives au choix
même de la méthode, et à marquer nous-mêmes quelle

portée il convient de donner à notre étude.

I. Déversoirs à crête arrondie1.

1. Généralités.

Boussinesq a traité de magistrale façon le problème des

déversoirs à crête mince, en leur appliquant le principe de

Bélanger du maximum du débit. Que son travail soit —
actuellement — peu utilisé en pratique, s'explique fort
bien. Il existe, en effet, d'excellentes formules empiriques,

donnant le débit d'un déversoir à crête mince, en
fonction de la hauteur de charge. Il était à la fois nécessaire

et possible d'établir de pareilles formules : nécessaire

parce que ces déversoirs servent au jaugeage des

débits, jaugeages qui requièrent le maximum d'exactitude

; et possible, parce qu'il n'existe qu'une seule

forme de déversoir en mince paroi et sans contraction
latérale.

Nombre de formules empiriques donnent le débit d'un
déversoir à paroi épaisse. Elles sont de valeur très inégale
et se rapportent toutes à des cas bien particuliers. Hors
de ces cas, nous ne savons point comment les utiliser, ni
s'il est possible d'extrapoler à des ouvrages réels les

valeurs obtenues en laboratoire. On est donc obligé de

reprendre, pour chaque cas nouveau de quelque importance,

des mesures et des études aussi longues que
délicates. Certes, nous ne pensons pas que l'on puisse, d'ici
longtemps, se passer de cette base expérimentale. C'est

au contraire, en raison même de l'importance que nous
leur attribuons, que nous estimons indispensable de faire
précéder ces recherches de calculs théoriques.

Nous allons donner, à cet effet, pour les déversoirs à

crête arrondie, une méthode de calcul approchée, qui
s'apparente beaucoup à celle imaginée par Boussinesq
dans sa « Théorie approchée de l'écoulement de l'eau sur
un déversoir en mince paroi et sans contraction latérale ».

Il existe un certain nombre d'études qui nous permettront

de comparer nos formules à des résultats
expérimentaux connus. Nous nous appuierons, en particulier,
sur les recherches de Rehbock et de Koch. Cependant,

1 Voir BousFiNFSQ : « Théorie approchée de l'écoulement de l'eau sur un
déversoir en mince paroi et sans contraction latérale », Paris, 1907. —
F lameNT : «Hydraulique», Paris, 1923. — Forchheimer: «Hydraulik»,
Berlin, 1930.
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ce sont les travaux de M. L. Escande 1, de l'Institut
électro-technique de Toulouse, qui ont été le point de

départ de nos recherches et qui justifient le mieux le

principe de notre calcul. Etudiant le barrage du Pinet,
sur le Tarn, et le barrage de Puechabon, sur l'Hérault,
M. Escande a démontré 2

que l'équation de continuité et
le théorème de Bernoulli ont été vérifiés l'un et l'autre
dans les deux cas. Il existe par le fait, tout au moins

pour certains déversoirs, un potentiel des vitesses dans
la nappe déversante, exception faite de la couche limite,
qui est toujours à écoulement turbulent et pour laquelle
les vitesses n'obéissent plus à la loi de Bernoulli. La
couche limite correspond à une variation brusque de la
loi de répartition des vitesses, mais non de la loi des

pressions. Dans un pareil déversoir, nous pourrons donc

appliquer au calcul du coefficient de débit le théorème
de Bernoulli (le débit de la couche-limite est négligeable)
et le théorème plus général des quantités de mouvement.
Nous pourrons, en outre, calculer les pressions le long
du parement, puisque l'existence de la couche-limite ne
modifie pas leur répartition. Ces recherches expérimentales

nous permettent donc d'aborder avec quelques
chances de succès les deux problèmes pratiques les plus
importants des déversoirs à crête arrondie : le calcul du
coefficient de débit et la répa-ttition des pressions le long
du parement aval.

2. Calcul du coefficient de débit et répartition
des pressions le long du parement aval.

a) Equation de Bernoulli.
Considérons un déversoir massif, à crête arrondie

(fig. 1). Soit Rx le rayon de courbure au sommet, compris
dans le plan vertical I — /, et R un rayon de courbure
quelconque en un point du parement aval, où la tangente

ß
<>

6<x

^
M

ß

Fig. 1. — Ecoulement de l'eau sur un déversoir
à crête arrondie.

»Voir L. Escande: a Etude théorique et expérimentale sur la similitude
des fluides incompressibles pesants », Paris, Edition de la « Revue générale
de l'Electricité », 1929. — « Comptes rendus des séances de l'Académie des

.Sciences», 29 octobre 1928, t. CLXXXVII, p. 756-758. — «Bulletin
technique de la Suisse Romande », 1930 ; N° 17,18, 19, 20, 21, «Recherches sur
les barrages-déversoirs ».

2 L. Escande : < Bulletin technique de la Suisse Romande », 1930,

p. 242 et 243.

fait un angle 8 avec l'hori|sjntale. Soit ß l'angle de la
partie rectiligne du parement aval. Soient encore C
l'ordonnée d'un point quelconque du parement, mesurée à

partir du sommet de la crête, h l'épaisseur de la nappe
en une section d'inclinaison quelconque 6, et Z l'ordonnée
d'un point quelconque de cette section. Nous réservons
l'indice «1» aux valeurs de la section/—let l'indice
« 2 » aux valeurs de la section // — II. Introduisons, en
outre, les valeurs relatives suivantes, obtenues en divisant

les valeurs réelles par la hauteur H de la ligne
d'énergie :

R C „ h Z
P Tl; C=-; K=Sfc et »^.

Nous supposons que le bassin à l'amont du déversoir
est infiniment grand, c'est-à-dire que la vitesse d'approche

de l'eau V est négligeable. Considérons une section
O — O k l'amont du barrage, telle que V2/2g étant
négligeable, nous puissions y confondre la ligne d'énergie et le
niveau de l'eau. Dans ces conditions, nous écrirons,
d'après Bernoulli, en désignant par v la vitesse et par p
la pression en un point quelconque de la nappe déversante

situé en aval de /—/ (en considérant un filet
liquide MM') :

ri: H + C Zi mm
Y ~ 2f?

Dérivons (1) par rapport à Z : il vient :

v do
0 cos

1 dp_+ t dZ ' gdz

Le théorème de d'Alembert, aussi connu sous le nom
d'équation générale d'équilibre dynamique, nous donne

pour un filet liquide :

(3)
dz s

expression dans laquelle T est la composante des forces
extérieures selon l'axe des Z et w' l'accélération centrifuge.

Faisons une hypothèse relative à la valeur du
rayon de courbure d'un filet liquide en un point
d'ordonnée Z. Admettons qu'il soit égal à R-\-Z. En ce cas

R + Z

C'est d'ailleurs la seule hypothèse secondaire que nous
introduirons dans nos calculs. Elle est d'un emploi
courant en hydraulique et nous ne l'appliquons qu'aux
seuls profils situés en aval de / — 7,pour lesquels la relation

semble très plausible. Elle ne le serait plus pour les

profils situés en amont de /—/.
Dans ces conditions (3) devient dans le champ de

gravitation :

dp y t>a

(4)
dz

Y COS i

Comparons (2) et (4), il vient :

1 do I

ödz + TTTz

R + Z'

0
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(5) v {R + Z)=.'lR (>t{R+h) ;

0( et i>„ représentant la vitesse des filets extrêmes,
intérieur et extérieur, de la nappe.

En désignant par p0 la pression en un point d'abscisse

Z=0 et en-posant :

/V=Ü2

on aura successivement :

Pour Z=0

fk'.

Pour Z=h

¦>.g[H + C — ^)=<J~2gH{l + c-

ce= \/2g(H+C — hcosQ= \j2gH (I + c — K cos G)

et pour Z quelconque :

2g H+C
T R + z

Nous avons en outre :

(6)

d'où :

R+h p + K
R

JV=l + c-
p + A"

lgH(l + c—X

1+c — N
+ c — KcoiQ'

(i + c — KcosQ).

mH\]2gH
(8)

2,3(p+X)i/l K coï 9 log p + K

En vertu de l'équation de continuité, cette formule
est valable pour une section quelconque, comprise entre

/ •—'I et //— //. Si nous l'appliquons par exemple à deux
sections d'inclinaison 8' et 8", on obtient une relation
entre K' et K" qui implique, pour autant que l'écoulement

obéit réellement à la loi de continuité et au théorème

de Bernoulli, certaines conditions de forme et

d'épaisseur auxquelles la nappe déversante doit satisfaire.

Ecrivons l'équation (8) pour les profils / — / et

II — // ; nous aurons successivement :

(9)

et

(10)

Ces diverses relations nous suffisent pour déduire,

sans autre, que le débit linéaire q j; {B largeur du
déversoir) est donné par la formule :

m

0.6

2,3(p1 + X1

2,3(Pl+K]

2,3(p2+A2ï

Kl log

1 — Kt log

Pi + K,
Pi

Pi

l+c2-#acosßlogPi±^-2.

Cette dernière équation nous fournit une première
relation entre Kx et K2. L'équation des quantités de

mouvement nous en fournira une seconde. On pourrait
aussi remplacer le calcul par une mesure directe de h^

donnant Kx, mesure qu'il serait aisé d'effectuer en même

temps que celle de H.
Avant d'aborder le calcul mentionné, nous allons

étudier la forme des courbes m, données par l'équation (9)

lorsque px est constant. Nous avons résumé nos calculs
dans le tableau I et reproduit les courbes sur la figure 2.

0.4

0,2

0

1

o

3
—c—A-:r-5 -±_

"6 - ^O^v.

'

k

8

Fis — Déversoir à crête arrondie.

Variation du coefficient de débit, m, en fonction do Ki — et de fa —

Dp, 2)p=l 1,5 5) p 3
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Tableau I.

Valeur du coefficient de débit m en fonction de p et de Kt.

K1= 0,4

Pl=0,5 0,411

Pi=l 0,364

Pl=l,5 0,3475

Pl=2 0.3385

Pl=3 0,3285

Pl=4 0,324

0.5

0,49

0,429

0,406

0,394

0,3816

0,374

0,6

0,549

0,476

0,446

0,4305

0,411

0.406

0,65

0,555

0,479

0,451

0,433

0,4235

0,4145

0,7

0,575

0,494
'

0,461

U.442

0,4235

0,4145

0.75

0,572

0,4895

0.4556

0.438

0,4175

0,4065

0,8

0,555

0.4725

0,438

0.410

0,401

0,3.905

0,85

0,5195

0,440

0,409

0,3905

0,3725

0,3605

0,9

0,455

0,:i85

11,3565

0,3405

0,3232

0,314

Il était évident que le coefficient m devait dépendre
de la valeur de px. Notre tableau et, mieux encore, nos

courbes montrent que m dépendra également de Kx ;

c'est-à-dire de la forme du parement aval. On voit d'ailleurs

aisément entre quelles limites m peut varier. Il est

très intéressant que toutes les courbes p1= const,
présentent un maximum pour Kx compris entre 0,68 et

0,72, à savoir :

pour p 0,5 1 1.5 2 3 4

mmax= 0,576 ,0,495 0,462 0,442 0,424 0,415

Nous rechercherons donc plus loin quelles conditions

un déversoir devra remplir pour que le débit soit maximum

pour un rayon de courbure donné.

b) Théorème des quantités de mouvement.

L'équation des quantités de mouvement, écrite pour
la masse d'eau comprise entre les sections /—¦/ et //—//,
nous fournira la seconde relation entre K1 et K2, dont
nous avons besoin pour résoudre le problème. Sans entrer
dans le détail d'un calcul que le lecteur pourra refaire

aisément, nous désignerons par :

iï2V,=- / + ?U

la somme des quantités de mouvement et des pressions
dans la section /— /; et par

H2 W,-- •/(ï r

la composante horizontale des mêmes grandeurs dans

le profil // —• //. La somme des composantes horizontales

des pressions le long du parement aval prendra la

forme :

H*P- ¦A- in 8 d I

L'équation des quantités de mouvement, écrite en valeurs

relatives, deviendra :

(11) Vt+P T2

Dans cette équation, on a, tous calculs effectués :

1 „. r, /Pl + #i\Y PA
(12; W1=K1--Kl M Pi Pi + Ai

et

13)

H^ (1 + c2) K2 cos

fp2+K2\

K\ cos2 j

Ä2cosß
9-2*2

\ 9-2 f ' \P2 + A"2

Quant à la valeur P, elle reprjlfente l'intégrale :

(14) P I -Vp sin 8 d

sur la résolution de laquelle nous reviendrons encore.
L'équation (11) contenant une intégrale est probablement

insoluble, dans le cas général, par un calcul direct.
Nous procéderons par tâtonnements en admettant des

solutions K[ et K", auxquelles correspondront deux
valeurs bien déterminées K% et K% satisfaisant à l'équation
(10). On vérifiera ensuite si ces solutions K[, K\ ou K" K%

satisfont à l'équation (J 1). Ce ne sera point le cas, en
général, mais avec quelque habitude du calcul, ces deux
essais suffiront pour que l'on puisse interpoler assez

exactement la racine réelle cherchée, d'où nous déduirons
le coefficient de débit m, au moyen de l'équation (9).

Il y a lieu de revenir sur la difficulté signalée plus haut,
soit le calcul de l'intégrale P. Elle contient la valeur A",

fonction elle-même de K. Or K lui-même est donné par
l'équation (8). Le problème paraît insoluble. On peut
tourner la difficulté en exprimant, en première approximation

que K varie linéairement entre Kx et K2. On
vérifie alors que l'intégration est possible dans la plupart
des cas et en particulier, qu'elle sera relativement simple
dans le cas où le déversoir est de forme circulaire, p est
alors constant et c une fonction de cos 8. Nous ne
reproduisons pas ce calcul laborieux et d'ailleurs criticable
au point de vue mathématique. Il est, en effet, aisé
de tourner toutes ces difficultés en considérant entre
/ — /et // — // une série de profils d'inclinaison
qi q// q"' ^ pour lesquels nous calculons, pour une
valeur donnée K[ ou K\ de K^ la valeur de N, au moyen
des équations (7) et (10). Il sera alors aisé de résoudre

graphiquenient l'intégrale P dans tous les cas, et sans

hypothèse intermédiaire.
Le problème est donc résolu du point de vue

mathématique. (A suivre.)

L'architecture ouvrière
par Albert SARTORIS, architecte.

Dans le domaine des théories touchant aux problèmes
nouveaux de la maison ouvrière, qui ont des interférences
avec de nombreuses et importantes questions morales
el sociales, on remarque depuis quelques années une
intense activité. En fait, jusqu'au début de ce siècle, en
matière d'architecture ouvrière, nous nous étions accoutumés

au désintéressement le plus complet. A part quelques

rares réalisations tentées en Italie, en Angleterre
et en Belgique, nous ne rencontrons ailleurs que peu
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