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Calcul des cercles de vannage
des turbines hydrauliques,
par H. MEYER, Ingénieur E. I. L, à Genève.

Le calcul de la résistance des cercles de vannage

pour les turbines hydrauliques mérite parfois une grande
attention de la part du constructeur, soit à cause des

efforts considérables qui agissent sur cet organe, soit
à cause de l'exiguité de la place qui peut lui être réservée

dans la construction de la machine, soit encore, dans

les très grosses turbines, pour réduire son poids qui
peut devenir important. Il est alors nécessaire, si on

veut le construire rationnellement, de pouvoir
déterminer d'une façon aussi précise que possible les efforts

que son matériau devra supporter.
Les équations de la statique ne suffisent pas pour

déterminer les efforts internes agissant dans le cercle.

Elles ne nous fournissent que les conditions de l'équilibre

extérieur. Le problème est hyperstatique interne,
dont l'ordre peut être pratiquement réduit à 3, comme

nous le verrons plus loin.
Nous devrons alors nous baser sur les théories de la

déformation élastique pour déterminer toutes
les inconnues du problème.

Calcul de la résistance.
Considérons un cercle de vannage tel qu'il

est généralement construit et représenté par
la figure 1. Cet organe possède un certain
nombre de tourillons placés concentrique-

ment, qui agissent par l'intermédiaire de biel-

lettes sur les leviers clavetés sur les axes des

aubes directrices de la turbine. La rotation
du cercle autour de l'axe passant parson centre

et perpendiculaire à son plan permet alors

la commande simultanée de toutes les

aubes. Le cercle est attaqué par deux bielles

(parfois une seule), agissant en deux points
placés à l'extérieur du cercle. Ces bielles sont
commandées par un levier double fixé sur

l'arbre de réglage. Le cercle est guidé par deux appuis
placés généralement sur un diamètre perpendiculaire à

l'axe bissecteur des deux bielles et empêchant tout
déplacement perpendiculaire à cet axe, tout en permettant

un léger mouvement dans le sens de cet axe même,

déplacement nécessité par la cinématique du système.
Sur l'un de ces appuis agira, comme nous le verrons,

une réaction déterminée par les conditions d'équilibre
extérieur.

Les forces agissant sur ce cercle sont donc celles

provenant des aubes directrices, les forces agissant
suivant les bielles et la réaction de l'appui. Il y a lieu
de remarquer que les forces à considérer comme
provenant des aubes sont les réactions des biellettes sur
les tourillons du cercle.

Dans notre étude, nous négligerons les forces de

frottement aux appuis du cercle, qui sont faibles du reste,

et nous supposerons que les bielles agissent tangentiel-
lement, ce qui est très approximativement le cas, car
la rotation du cercle est de faible amplitude. En général,

ces trois systèmes de forces agissent dans des plans

différents, de par la construction du cercle. Pour l'étude
du problème, nous allons déplacer toutes les forces
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parallèlement à elles-mêmes de façon à les amener
toutes dans le plan déterminé par le cercle décrit par
le centre de gravité de la section radiale du cercle de

vannage. Nous devrons alors, pour ne pas changer
l'équilibre, adjoindre au système obtenu des moments
correspondant au déplacement des forces. Nous aurons
donc, d'une part le système plan des forces produisant
des moments dont les vecteurs sont perpendiculaires à

ce plan et, d'autre part, des moments dus au déplacement

des forces, dont les axes se décomposent suivant
deux vecteurs contenus dans le plan. Le premier de ceux-ci
est tangent au cercle et produira de la torsion, l'autre,
dirigé suivant le rayon du cercle, donnera de la flexion.

Le moment dû au système plan provoquera une flexion
gauche du cercle, car, en général, aucun des axes
principaux d'inertie n'est situé dans le plan considéré. On

pourra alors calculer les tensions dues à cette flexion
par les méthodes bien connues.

Les moments de flexion et de torsion sont déterminés

par l'attaque des forces dans des plans différents. Le
premier est équilibré, en partie également, par la réaction

des pièces de guidage empêchant le soulèvement
du cercle. Ces moments sont en général faibles par
rapport à celui que nous avons considéré plus haut ou,
pour parler plus exactement, les efforts qu'ils
déterminent dans la section sont relativement faibles, car
ils agissent suivant des axes par rapport auxquels les

moments d'inertie de la section sont très élevés. En
effet, plus on éloignera l'un de l'autre les plans dans
lesquels agissent les différentes forces, plus ces moments
seront grands ; mais, en même temps, on augmentera
la hauteur du cercle/ c'est-à-dire le moment d'inertie
résistant à ceux-ci.

Dans notre étude, nous ne considérerons donc que le
système plan des forces.

Soient :

n nombre de biellettes attaquées par le cercle,
F effort maximum agissant suivant ces biellettes,
ß angle que la force F fait avec le rayon passant

par son point d'application,
r rayon du cercle passant par les points

d'application des forces F,
P effort agissant dans chaque bielle,
R rayon du point d'attaque des bielles,
9 demi-angle que forment les deux rayons

passant par les points d'application des

forces P,
Rt distance du centre O à l'intersection des

deux forces P, c'est-à-dire à la résultante
de ces deux forces,

P1 réaction de l'appui,
p rayon du cercle décrit par le centre de

gravité de la section radiale du cercle de

vannage,
(p position angulaire d'un tourillon quelconque,
a position angulaire d'une section quelconque

du cercle.

Nous prenons comme axe origine celui qui passe par
l'appui où agit la réaction P1 soit Oy.

Appliquons maintenant les équations de la statique.
Les projections de toutes les forces sur l'axe Oy nous
donnent

2P Pi F =0.2| ProJ-

Le dernier terme de cette égalité est nul. La réaction
de l'appui Px est donc égale et opposée à la résultante
des deux forces P. La projection sur l'axe Ox nous
donne une valeur nulle.

En prenant les moments de toutes les forces par
rapport au centre du cercle, on obtient :

2 PR nFr sin ß P1iî1

Les forces P et P1 sont donc déterminées par les
égalités ci-dessus.

Aucune de ces équations ne nous donne de relation
entre les forces appliquées au système et les efforts
internes que supporte le matériau du cercle. Nous allons
alors employer la théorie de la déformation et le théorème

de Castigliano appliqué au système hyperstatique
nous donnera les relations nécessaires.

Pour cela, nous coupons le cercle au point d'application
de la réaction d'appui Px, juste avant celle-ci,

c'est-à-dire que P1 sera appliqué à la partie de gauche
de la coupure.

Pour ne rien changer à l'équilibre du cercle, nous devons
remplacer l'effet de la partie de droite de la coupure sur
celle de gauche par un système deforces tel que ces deux
sections ne se déplaceront pas l'une par rapport à l'autre.
Nous devons donc lui appliquer un moment fléchissant
M0, une compression Q0 et un effort de cisaillement V0,
A chacune de ces valeurs, nous donnons pour l'instant
un sens arbitraire qui est celui indiqué sur la figure 1.
Les valeurs que nous trouverons ensuite seront affectées
d'un signe qui nous indiquera le vrai sens de ces efforts.

Considérons maintenant une section quelconque A
du cercle située entre les sections 0 et 1, dont la position
angulaire soit a et calculons le moment fléchissant MA
dans cette section.

Pour simplifier les calculs, nous décomposons les
forces F en leurs deux composantes F1 et F« suivant
les axes Oy et Ox.

Le moment MA sera alors :

MA M0 + PlZ + Z«F22/ + T*Fxx- Qoz,- V>

expression dans laquelle Z" est le nombre de forces Ft et
F2 agissant dans l'intervalle compris entre O et a. Cette
équation est valable pour a compris entre O et c^.

Le moment fléchissant dans une section B comprise
entre les sections l et 2 sera représenté par l'expression
précédente à laquelle nous devrons adjoindre un terme
représentant le moment de la force P par rapport à la
section B. Ce moment JVfg sera alors

Mb M0 + Pxz + Z$F# + ï^x-Q&- V0z- Pu,
MA — Pu,
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où a aura une valeur comprise entre ax et a».

Il en sera de même pour le moment dans une section C

comprise entre ot2 et 2tc

Mo MA — Pu,— Pu2

où a peut prendre une valeur comprise entre a2 et 2tc.

Toutes opérations effectuées, il vient

MA MQ-\-P1psina-{-I.^Fsin((p-Jr^) [rcoscp — pcosa]-f-

+I"Fcos(cp-|-ß)[psina—rsinqp]—Q0p{l — cosa) — yopsina.

De même nous obtiendrions deux équations
identiques pour MB et Mo auxquelles seraient adjoints des

termes tenant compte des moments de P.
Pour permettre le calcul des expressions Za, nous

supposons que les forces F sont uniformément réparties

sur tout le cercle. Si F' est alors la force agissant sur
l'unité de longueur d'un élément du cercle, nous aurons

sur un élément de longueur ds une force F1 ds.

On devra avoir alors

F'ds 2txrF' nF.

c'est-à-dire :

(1) F'
nF
5Ttr

On aura en outre :

2Pfl 2nr2.F'sin|

:'est-à-dire

P
r2F'

(2)
R

nFr
~2Rsinß -j^-i

P,
2m*F' nFr
-s-sinß —sin|

En remplaçant les Z" par les valeurs ainsi trouvées,
on obtient alors :

(3)

MA M0+Pjpsincx-r-ir'A sin(qp-fß) [rcos <p—p cos a]d<p~\-
f*a Jo

-\-F'A cos(<p -f ß) [psin a — r sin 9] dq> — Q0 p (1 — cos a) —

— V0 p sin a.

cette équation étant valable pour 0 <C et -< eu.

Dans les intervalles compris entre ax et ot2 d'une part
et a2 et 2tc d'autre part, nous aurons à tenir compte
des termes additifs Pu, et Puz, c'est-à-dire que nous
aurons :

(4)
MB MA — P[R — pcos(ot—a,)] où a!-<a-<a2
M0 MA — P[R — pcos(a—a,)]— P[R—pcos(a—<x2)]

où a2 ¦< o <i 2 it.

Le moment fléchissant dans une section quelconque
du cercle est donc déterminé en fonction des trois
inconnues hyperstatiques M0, Q0 et V0.

Pour calculer celles-ci, nous appliquons le théorème

relatif au travail de déformation.

Ce travail, pour tout le cercle, est donné par 33relation

(•2TC I C» 2TC

\Mzds.=^p\ M2da.
Jo -1 Jo

^ -\MH

Nous négligeons les travaux de déformation dus à la

compression et aux efforts tranchants, qui sont très

faibles par rapport à celui de la flexion. Nous pouvons
calculer M0 en posant

2®

Mf0
0

P (.2TT J.2TT 2M
est-à-dire -^r-r \ M2da \ M WÊM da ¦¦

dM0\ X dM0
0.

Nous obtiendrons de même la valeur de Q0 et celle

de V0 par les relations

2\.3M
Wo

rMt
X °

da=0 et KMw
Jo dV0

da =0.

Nous avons donc les trois équations nécessaires pour
le calcul des inconnues.

Calcul de M0.

Nous avons dans ce cas
dM
JMn

1 c'est-à-dire

f»2TT pCtj r»a2 r»2TT f*2TZ

\ Mda \ MAda + V MBda + V Mcda= \ MAda
J0 J0 Jaj Ja2 J0

(5)

MAda +
(*2TT /»2TT

— \ Pu,da — \ Pu2da 0.

En remplaçant les divers termes par les valeurs trouvées

plus haut (3), on a, toutes opérations effectuées et en

tenant compte de ce que

3
01 =2 U~~

sin ou — cos I

TT -j- t

cos a, —• cos a2 — sin

pcosti —
(6) 2M0 + 2F'r[ur sinß + p cos ß]-P][/?-_p

- 2pf?0 0.

Calcul de Q0

n dM 1
^Nous avons -r-y — p(l— cosa).

En opérant comme nous l'avons fait pour M0, nous
obtiendrons, tous calculs effectués :

2Af0 + F'r[2nr sin ß + 3p cos ß] -
W -P

Calcul de \
On a dan

1 cos6 )R—-(cos9 + 6sini
TT / TT

3p<?0=0.

s ce cas

dM
dV — psina,

ce qui conduit par le même processus à :

y0=p1_F'£sinß(2r-fp) + />(,2£ —±cose
P \TT p À
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Mais comme nous avons P, 2 P cos-9. il vient
finalement.

(8)
nF

V0 =^-sinf
3tt r
Tfi'

Reprenons les équations (6) et (7) et additionnons-les,
après avoir multiplié la première par trois et la deuxième

par deux. Nous éliminerons ainsi Q0 el nous obtiendrons
la valeur de M0. Si, de même, nous soustrayons ces
deux équations, nous éliminons M0, ce qui nous donnera
la valeur de Q0.

PNous avons donc en définitive, si nous posons X
R

Mn
nFr

2(1 —\)eos9 — \6shi9

(9) Q0='nF
2n

nF

*inß((2 — X)-cos9 '

R

V. 9 TT

3rrr

Ut
(A suivre.)

Pont roulant à 2 vitesses de levage.

« Time is money. » Cette maxime appliquée à la
construction des ponts roulants a conduit à l'adoption de
vitesses de manutention de plus en plus grandes. Toutefois
l'on s'est bien vite aperçu que de telles vitesses, surtout
pour le levage, ne convenaient pas pour certaines manœuvres

délicates telles qu'elles se présentent dans les

fonderies, les halles de tournage et d'ajustage ou lors du

montage ou du démontage de machines, notamment dans
les usines électriques.

Pour remédier à cet inconvénient on a eu recours au
réglage de la vitesse en faisant varier le nombre de tours
du moteur. Tant que l'on disposait du courant continu
ce réglage était facilement réalisé au moyen de résistances
ohmiques. Mais lorsque le courant continu fut supplanté
par le courant bi- ou triphasé il fallut trouver d'autres
solutions. Certains constructeurs ont appliqué le réglage
Léonard qui nécessite la transformation du courant
alternatif en continu. D'autres ont préconisé l'emploi
de moteurs spéciaux à collecteur, tels que les moteurs
Déri par exemple. Tous ces systèmes ne s'emploient plus
que dans des cas très spéciaux à cause de leur coût trop
élevé.

Les Ateliers de Constructions Mécaniques de Vevey
ont résolu le problème en partant du principe qu'il n'était
pas nécessaire d'avoir tout une gamme de vitesses mais
qu'il suffisait de pouvoir disposer, en plus de la vitesse
normale qui peut être choisie aussi grande que l'exige
le rendement économique de l'installation, d'une vitesse
réduite permettant de soulever ou de déposer les charges
avec précaution. Le système qu'ils ont inventé et fait
breveter dans plusieurs pays permet d'obtenir deux
vitesses différentes au moyen d'un seul moteur tournant
à vitesse constante. Les ponts roulants munis de ce
dispositif peuvent donc être alimentés par du courant bi ou
triphasé et être équipés de moteurs asynchrones de

construction absolument normale ; en outre comme
l'organe réalisant le changement de vitesse sert en même
temps de réducteur de vitesse et remplace l'engrenage à vis
sans fin communément employé, les frais résultant de
l'adoption de ce perfectionnement sont pour ainsi dire
insignifiants en comparaison des avantages qu'il procure.

Le système adopté est basé sur les propriétés des

trains d'engrenages planétaires. L'appareil ?i| présente
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