Zeitschrift: Bulletin technique de la Suisse romande

Band: 57 (1931)

Heft: 4

Artikel: Module de finesse d'Abrams et calcul de l'eau de gâchage des bétons

Autor: Bolomey, J.

DOI: https://doi.org/10.5169/seals-44127

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 27.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

BULLETIN TECHNIQUE

Réd.: D' H. DEMIERRE, ing.

DE LA SUISSE ROMANDE

Paraissant tous les 15 jours

ORGANE DE PUBLICATION DE LA COMMISSION CENTRALE POUR LA NAVIGATION DU RHIN ORGANE DE L'ASSOCIATION SUISSE DE TECHNIQUE SANITAIRE

ORGANE EN LANGUE FRANÇAISE DE LA SOCIÉTÉ SUISSE DES INGÉNIEURS ET DES ARCHITECTES

SOMMAIRE: Module de finesse d'Abrams et calcul de l'eau de gâchage des bétons, par J. Bolomey, professeur à l'Ecole d'Ingénieurs de Lausanne. — Les maisons métalliques. — Les fleuves internationaux. — L'influence des applications domestiques de l'électricité sur le marché de l'énergie électrique. — Le cinquantenaire du « Génie Civil ». — Palais de la Société des Nations. — Le mouvement architectural, technique et industriel. — Bibliographie. — Carnet des concours. — Service de placement.

Module de finesse d'Abrams et calcul de l'eau de gâchage des bétons

par J. BOLOMEY, professeur, chef de la Division des matériaux pierreux du Laboratoire d'essai des matériaux de l'Ecole d'Ingénieurs de Lausanne.

La résistance d'un béton dépend des facteurs suivants :

Qualité et dosage du liant,

Quantité d'eau de gâchage,

Durée et mode de durcissement,

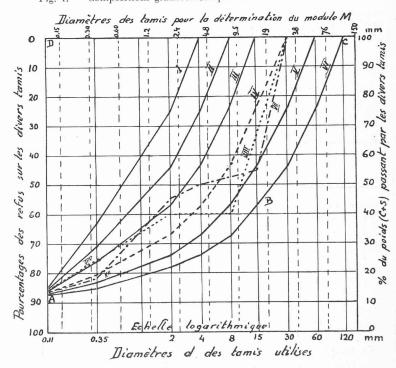
Compacité du béton (densité).

La composition granulométrique du ballast et sa nature (roulé ou concassé, dureté et forme des grains) n'interviennent qu'indirectement en modifiant la quantité d'eau de gâchage nécessaire pour obtenir la consistance désirée. Ceci pour autant que le ballast soit propre, qu'il provienne d'une roche dure, qu'il n'y ait pas de démélange des matériaux.

Tout indirecte qu'elle soit, l'influence de la composition granulométrique n'en est pas moins considérable; elle équivaut en importance à celle du dosage ou à celle de la qualité du liant ainsi que le montrent les tableaux I et II ainsi que les figures 1 et 2.

Ceux-ci donnent les caractéristiques de bétons au dosage d'environ 300 kg de ciment A ou B, gâchés à la même consistance (béton mou de chantier pour constructions armées) en utilisant des ballasts de même provenance (ballasts roulés) mais diversement gradués.

Les résistances à 28 jours des bétons au ciment A ont varié de 88 à 262 kg/cm², soit de 1 à 3; celles des bétons au ciment B de 130 à 272 kg/cm², soit de 1 à 2. Les densités de ces divers bétons sont comprises entre 2,17 et 2,47 tonnes par m³, les quantités d'eau de gâchage entre 253 et 136 litres par m³. Ces écarts auraient été encore plus considérables si on avait fait varier, non seulement


la composition granulométrique, mais aussi la nature du ballast et la consistance du béton.

Le dosage est ainsi tout à fait insuffisant, à lui seul, à garantir la qualité d'un béton; il faut encore faire intervenir les caractéristiques du ballast.

Comment définir celles-ci?

Une méthode consiste à considérer qu'un ballast est d'autant meilleur qu'il possède une plus forte densité

Fig. 1. — Compositions granulométriques des bétons au ciment A.

Bétons au ciment A $(R_{n28} = 411 \text{ kg/cm}^2)$.

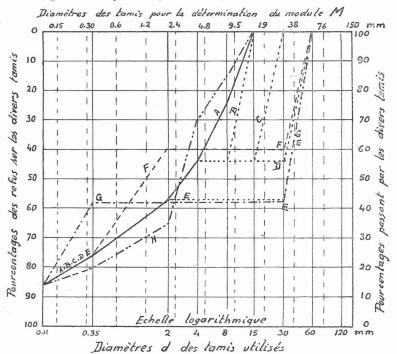
	Ciment kg/m³	Ballast kg/m³	Eau kg/m³	Densité kg/m³	M	C: E	Re 28 j kg/cm²	
I	290	290 1630		2173	2.53	1.14	88	
II	293	1753	214	2260	3.28	1.36	108	
III	293	1822	202	2317	4.05	1.47	131	
IV	295	1925	165	2385	4.88	1.77	201	
v	293	1997	157	2447	5.71	1.86	205	
VI	295	2045	136	2476	6.56	2.17	262	
VII	291	1909	173	2373	4.86	1.68	177	
VIII	293	1907	180	2380	4.87	1.62	170	

Tableau I

Essais comparatifs de bétons au même dosage et à la même consistance préparés avec des ballasts roulés de diverses compositions granulométriques.

Dosage 300 kg de ciment A. Consistance molle.

	D =	I 4 mm		II 8 mm		II . 15 mm		V 30 mm		V 60 mm		71 120 mm		/II 30 mm		111 30 mm
	%	kg/m³	%	kg/m^{3}	%	kg/m^{3}	%	kg/m^3	%	${\rm kg/m^3}$	%	kg/m³	%	kg/m³	%	kg/m³
*																
Ciment A $(R_{n28} = 411 \text{ kg/cm}^2)$	15.1	290	14.3	293	13.8	293	13.3	295	12.8	293	12.6	295	13.3	291	13.3	293
» + 0—0.35 mm	37	710	29	586	24	510	20	445	17	385	15	350	18	395	25	550
» + 0—2 »	74	1420	56	1140	43	905	33	735	26	590	22	520	45	987	40	880
+ 0—4 »	100	1920	74	1510	56	1180	43	955	33	750	26	615	50	1090	40	880
+ 0—8 »	-	-	100	2046	76	1605	56	1245	43	980	33	780	52	1140	40	880
» + 0—15 »			-		100	2115	76	1690	56	1280	43	990	55	1210	71	1560
» + 0—30 »	-				-	-	100	2220	76	1740	56	1320	100	2200	100	2200
» + 0—60 »		-	-		-	_			100	2290	76	1780	-	-	-	
» + 0—120 »	-	-	-		-	_		-		-	100	2340			-	-
Eau de gâchage effective E	13,2	253	10.5	214	9.5	202	7.5	165	6.9	157	5.8	136	7.9		8.2	180
Densité du béton $\Delta t/m^3$		2.173		2.260°		2.317		2.385		2.447		2.476		2.373	2.	380
, $(\Delta:2.35)^2 imes C/E$		97	1.	27	1.	43	1.	83	2.	02	2.	42	1.	71	1.	68
$\begin{bmatrix} c: (1-s) \end{bmatrix}^2$ (Feret)		065	0.	085	0.	114	0.	146	0.	152	0.	186	0.	134	0.	130
Résistances à (Cubes de 20 cm	kg/cr	n² 88	1	08	1	31	2	01	2	05	2	62	1	77	1	70
la compression of a market state of the latest and a market state))	85	1	06	1	31	2	10	2	12	2	25	1	84	1	72
28 jours (" " 7 »	>>	87	1	15	1	35								_		_
Module de finesse du béton M	2	.53	3	.28	4	.05	4	.88	5	.71	6	.56	4	.86	4	.87
» » » du ballast M'	3	.00	3	.8	4	.7	5	.6	6	.6	. 7	.6	5	.7	5	.7
(E' = 38.5 : M)	15.	2 %	11	.7 %	9	.5 %	7	.9 %	6	.7 %	5	.8 %	7	,9 %	7	.9 %
Eau de gâchage $E'' = \sum \frac{p.N}{\sqrt[3]{d^2}}$		2 %		.94 %		.02 %		.36 %		.05 %		.13 %	7	.71 %		.17 %
Rapports entre eau de gâchage calculée et eau effective $E': E$.15 .02		.11 .04		.00 .95 \	1000	.05 .98		.97 .88	1000	.00	_	.00		.97


Tableau II

Essais comparatifs de bétons en vue de déterminer le degré de précision du calcul de l'eau de gâchage au moyen du module de finesse d'Abrams ou par la formule $E = \Sigma\left(\frac{p.N}{\sqrt[3]{d^2}}\right)$.

Dosage 300 kg de ciment B. Consistance molle.

	-		00450	500 NS	40 00	nem D.	00710	otunee	morre.							
	D = 1			B 15 mm		C 30 mm		D 60 mm		E 60 mm	$D = 60 \mathrm{mm}$				H 15 mm	
	%	${\rm kg/m^3}$	%	kg/m³	%	kg/m³	%	kg/m³	%	kg/m³	%	kg/m³	%	kg/m³	%	kg/m
Ciment B ($R_{n28} = 515 \text{ kg/cm}^2$)	13.8	294	13.8	295	13.8	302	13.8	302	13.8	304	13,8	295	13.8	281	13,8	292
» + 0—0,35 mm	24	510	24	510	24	525	24	525	24	530	24	510	42	855	20	425
» + 0—2 »	43	915	43	915	43	940	43	940	43	950	60	1280	42	855	25	74
» + 0—4 »	56	1190	56	1190	56	1230	56	1230	43	950	60	1280	42	855	70	148
» + 0—8 »	76	1620	56	1190	56	1230	56	1230	43	950	60	1280	42	855	85	1800
» + 0—15 »	100	2130	100	2140	56	1230	56	1230	43	950	60	1280	42	855	100	212
» + 0—30 »					100	2190	56	1230	43	950	60	1280	42	855	_	_
» + 0—60 »			-	_	-		100	2190	100	2200	100	2130	100	2028	-	_
Eau de gâchage E	9.1	195	8.8	188	8.4	184	8.0	175	7.1	156	8.6	184	10.4	212	8.8	18
Densité du béton $\Delta t/m^3$	2	2.325		2.328		2.374		2.355		2.356	2.	314	2.	240	23	307
$(\Delta: 2.35)^2 \times C/E$	1.4	8	1.54		1.67		1.72		1.94		1.56		1.30		1.52	
$[c:1-s]^2$	0.0	95	0.097		0.112		0.112		0.119		0.095		0.073		0.090	
Module de finesse du béton M	4.0)5	4.24		4.65		5.09		5.57		4.62		5.24		4.04	
Module du ballast M'	4.7		4.	9	5.	4	5.	9	6.5 5.4		6.1 4.7		7			
Résistances \ Cubes de 16 cm	219 kg	g/cm^2	235 k	g/cm²	240 k	g/cm^2	238 1	g/cm²	272 k	${ m kg/cm^2}$	202 1	kg/cm²	-	kg/cm²	215 k	g/en
compression " " 7 "	236))	251		235))	250	,	3071	,	236 ¹) »	1591) »	212))
			-					ortier ext							1	100
Eau de gâchage $E' = 38.5 : M$	9.5		9,	1	8.	3	7.	6	6.	9	8.	.3	7.	4	9.	5
Eau de gâchage $ \begin{array}{c} E' = 38.5 : M \\ \text{calculée} \end{array} $ E' = $\Sigma \frac{p \cdot N}{\sqrt[3]{d^2}}$ Rapports entre	9.0		8.	8	8.	5	8.	3	7.	8	9.	4	10.	1	8.	4
Temple of the second se	1.0	4	1.	03	0.	99	0.	95	0.	97	0.	96	0.	71	1.	08
$\left. egin{array}{ll} { m l'eau} \ { m calcul\'ee} \ { m et} \ { m } { m $	0.9	9		00	1.			04		10		10		97	0.	96

Fig. 2. — Compositions granulométriques des bétons au ciment B.

Bétons au ciment B $(R_{n28} = 515 \text{ kg/cm}^2)$.

	Ciment kg/m³	Ballast kg/m³	Eau Densité kg/m³		М	C:E	Re 28 j kg/cm²	
A	294	1836	195	2325	4.05	1.51	219	
В	295	1845	188	2328	4.24	1.57	235	
C	302	1888	184	2374	4.65	1.64	240	
D	302	1888	175	2355	5.09	1.72	238	
E	304	1896	156	2356	5.57	1.94	272	
F	295	1835	184	2314	4.62	1.61	202	
G	281	1747	212	2240	5.24	1.33	130	
\mathbf{H}	292	1828	187	2307	4.04	1.57	215	

apparente, c'est-à-dire qu'il a moins de vides, et à rechercher dans quelles proportions les grains de différentes grosseurs doivent être mélangés pour obtenir le maximum de compacité. Ce ballast idéal devra être à forte densité apparente et de plus contenir une proportion convenable de particules fines pour que le béton soit facile à travailler sans que cela nuise à sa résistance.

Ces conditions sont réalisées assez exactement par la parabole ou par la courbe de Fuller, ainsi que par les diverses formules qui en sont dérivées.

Il ne suffit pas toutefois qu'un ballast soit rigoureusement gradué suivant une loi déterminée pour obtenir un béton à haute résistance. En effet, les bétons I à VI du tableau I et figure 1 sont tous très exactement gradués suivant la parabole de Fuller modifiée 1 et pourtant leurs

$$P = 10 + 90 \sqrt{d:D}$$

résistances varient du simple au triple ; d'autre part les bétons VII et VIII, irrégulièrement gradués, sont plus résistants que les bétons I à III à granulation théorique. Le tableau II et la figure 2 fournissent des renseignements analogues pour les bétons préparés avec le ciment B.

L'examen plus approfondi des résistances des bétons I à VIII permet toutefois de tirer les conclusions suivantes:

- 1. Les résistances des bétons à granulations théoriques croissent au fur et à mesure que le diamètre maximum D des grains de gravier augmente.
- 2. A égalité de diamètre D, les résistances des bétons à granulations théoriques sont généralement supérieures à celles des bétons irrégulièrement gradués.

Ainsi, bien que la résistance d'un béton exactement gradué suivant une loi définie ne soit pas nécessairement très élevée, elle est cependant toujours très voisine de celle maximum qui peut être obtenue en tenant compte de la qualité et du dosage du liant, du diamètre maximum D admis, de la nature du ballast, de la facilité de mise en œuvre caractérisée par la plasticité 1 et la consistance.

La granulation théorique ne résout cependant qu'une partie du problème posé; elle ne garantit pas à elle seule une qualité déterminée du béton, puisque la résistance de celui-ci varie en même temps que le diamètre D du ballast.

D'autre part il est souvent impossible, sur les chantiers de moyenne et de petite importance, de disposer d'un ballast à granulation

exactement conforme à celle théorique admise. Il y aura généralement des divergences plus ou moins-accentuées.

Le problème de la meilleure granulation n'est donc pratiquement résolu que si nous pouvons déterminer exactement l'influence de la variation du diamètre D, ou celle d'un écart plus ou moins prononcé de la granulation effective par rapport à celle théorique, sur la résistance d'un béton.

Considérons les bétons I à VIII au même dosage de ciment A, ou ceux A à H au même dosage de ciment B (tableaux I et II). Nous remarquons que la résistance

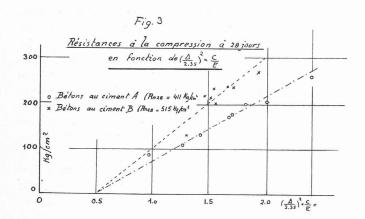
¹ Ballasts I à VI gradués suivant la formule

Poids du (ballast + liant) de diamètre plus petit que d mm,

en % du poids total des matières sèches.

⁼ Diamètre maximum des grains du ballast.

I II III IV V VI 120 mm 60 15 30


⁼ Diamètre quelconque compris entre 0,1 et D mm

Dans le langage courant on confond fréquemment la plasticité avec la consistance. La plasticité est fonction de la teneur du béton en particules très fines (< 0,2 mm): elle confère au béton un aspect pâteux, même si celuici est relativement sec; elle empêche les matériaux de se démélanger.

La consistance ou fluidité du béton dépend de la quantité d'eau de gâchage

effective par rapport à celle strictement nécessaire pour remplir tous les $\,$ vides du mélange (liant + ballast).

Un béton pourra être plastique et pourtant relativement sec; un autre sera fluent et pourtant manquera de plasticité: il aura la tendance à se démélanger. En général, pour éviter le démélange, un béton devra être d'autant plus plastique (c'est-à-dire à forte teneur en particules fines) qu'il sera utilisé une consistance plus fluide.

augmente en même temps que la quantité d'eau de gâchage diminue ; elle croît en même temps que la densité du béton. Si nous reportons les résistances effectives en fonction du rapport ciment : eau (C/E) rectifié par celui de la densité Δ du béton à une densité moyenne admise égale à 2,35, c'est-à-dire en fonction de $(\Delta:2,35)^2\times C/E$, nous constatons qu'elles se répartissent assez exactement sur des droites ayant pour équation (voir fig. 3) :

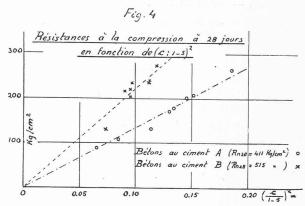
$$\begin{split} & \text{Ciment } A \text{ R}_{28} = \left[(\Delta: 2{,}35)^2 \times \text{C/E} - 0{,}50 \right] \times 142 \text{ kg/cm}^2 \\ & \text{Ciment } B \text{ R}_{28} = \left[(\Delta: 2{,}35)^2 \times \text{C/E} - 0{,}50 \right] \times 205 \text{ kg/cm}^2 \end{split}$$

Les nombres 142 et 205 sont les cæfficients de qualité K à 28 jours des ciments utilisés, C est le dosage, E la quantité d'eau de gâchage 1 .

Le cœfficient de qualité et le dosage étant donnés, la résistance du béton ne dépend plus que de la quantité d'eau de gâchage. Il en résulte qu'un ballast est d'autant meilleur qu'il exige moins d'eau de gâchage; deux ballasts qui exigent la même quantité d'eau de gâchage sont équivalents.

Cette loi n'est générale que si les ballasts considérés permettent d'obtenir des bétons compacts à plasticité suffisante, c'est-à-dire que s'ils correspondent à des bétons de chantier.

Le problème de la meilleure granulation se ramène ainsi à la détermination de la quantité d'eau de gâchage en fonction de la composition granulométrique.


Ce calcul peut se faire par deux méthodes:

- A. Méthode graphique par le module de finesse d'Abrams.
- B. Méthode analytique par le calcul direct de l'eau de gâchage correspondant à chaque composante du béton.

(A suivre.)

 1 On obtient des résultats analogues (voir fig. 4) en reportant les résistances en fonction de $(c:1-s)^2$ d'après la formule de Feret

Ciment A
$$R = (c: 1-s)^2 \times 1320$$

B $R = (c: 1-s)^2 \times 2200$

Les maisons métalliques.

Voici, d'après une documentation qui nous a été obligeamment fournie par l'« Office technique pour l'utilisation de l'acier » (Paris, 25 rue du Général Foy), la description schématique et très succincte du principe de quatre systèmes français de maisons métalliques.

La maison des « Forges et Ateliers de Commentry-Oissel. »

Ce type est de la catégorie ossature métallique, remplissage en mur plein. La composition très ingénieuse de l'ossature est basée sur l'emploi d'un élément standard unique constitué par des cadres rectangulaires d'acier s'assemblant facilement côte à côte par de simples boulons.

Les cadres ont une largeur de un mètre environ et leur hauteur est celle d'un étage. Leur largeur conditionne évidemment l'ouverture des portes et des fenêtres et les dimensions du plan. L'expérience montre que tous les problèmes de cet ordre, posés par les architectes, ont pu être résolus car il est toujours possible d'adapter un parti de plan à la nécessité d'avoir, par exemple, des dimensions en cotes rondes.

Tous les cadres étant identiques et chacun de très faible poids, le montage sur place en est très facile : un homme suffit pour prendre le cadre à pied d'œuvre et le mettre en place. Le travail préalable habituel de piquetage devient inutile, on part d'un seul point de repère, par exemple un des angles de l'habitation, et on n'a plus qu'à juxtaposer les cadres et à les réunir par des boulons. Tous les cadres étant identiques, il n'est même pas nécessaire de les repérer. Si l'un d'eux correspond à la présence d'une baie ou d'une porte, il suffit d'ajouter une barre transversale à la hauteur de la traverse qui doit délimiter la hauteur de la baie ou de la porte, des trous d'assemblage étant prévus, à cet effet, à la hauteur voulue, dans tous les cadres.

Par ailleurs, l'élément cadre étant constitué comme le montre la figure 1, par deux fers élémentaires en cornière, il suffit d'approvisionner en atelier lesdites barres cornières aux longueurs voulues.