Zeitschrift: Bulletin technique de la Suisse romande

Band: 57 (1931)

Heft: 3

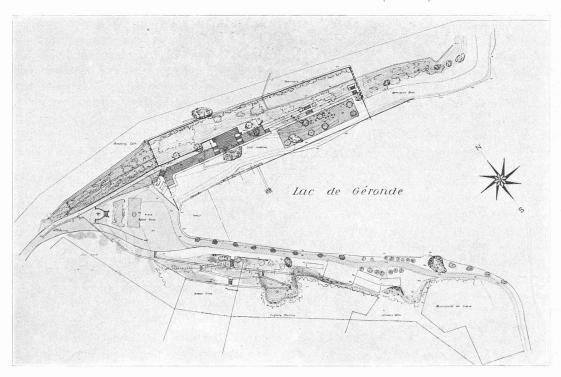
Wettbewerbe

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus


Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 27.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

CONCOURS POUR LA PLAGE DE GÉRONDE (SIERRE)

Plan de situation. — Echelle 1: 2000.

projet « Zinal », de M. A Wælflé, architecte, à Lausanne.

He prix ex æquo,

Perspective.

face supérieure de la dalle au droit des chapiteaux et sous l'influence des encorbellements divers.

L'armature bien comprise peut alors se placer principalement dans deux directions simplement orthogonales, comme le veut une bonne marche du chantier et une position avantageuse des aciers ; on relègue alors au-dessus des chapiteaux et auprès des angles des murs les armatures diagonales, destinées à combattre les moments obliques, signes des torsions essentielles au problème de la plaque.

Lausanne, janvier 1931.

(A suivre.)

Concours d'idées pour la Plage de Géronde.

(Suite et fin.) 1

2. Ex æquo : Zinal et Suzanne. — De l'avis du Jury, le projet « Zinal » offre la meilleure utilisation exclusive de la

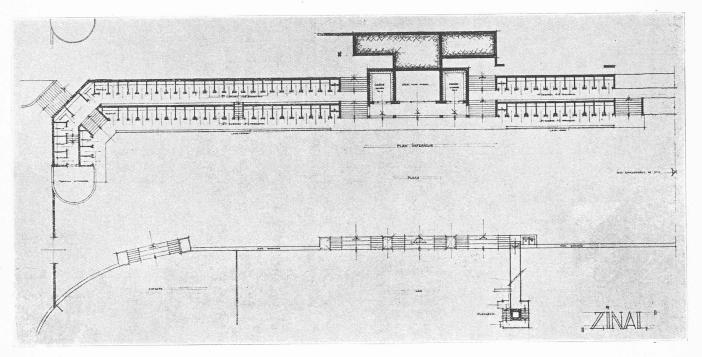
¹ Voir Bulletin technique du 24 janvier 1931, page 24.

rive nord du lac. Ce projet bien présenté a des qualités soit comme plan soit comme architecture. Le projet « Suzanne » est une variante de la solution du projet primé en premier rang, il s'adapte cependant moins bien à la topographie du terrain.

A ces deux concurrents classés ex æquo il est remis un prix de 350 francs.

Le Jury retient le projet *Pad* qui offre de jolies qualités d'adaptation au terrain. Il est sobre de ligne et pouvant rendre des services au Comité du C. N. S., le jury en recommande l'acquisition pour le prix de 100 francs.

Ce classement exécuté, le Jury procède à l'ouverture des enveloppes des projets primés.


Le résultat est le suivant :

 1^{er} prix : M. Hans $Bi\acute{e}ri,$ architecte à La Chaux-de-Fonds.

 $2^{\rm e}$ prix ex æquo : M. Albert Wælflé, architecte, Lausanne ; M. Pierre Cahorn, architecte, Genève.

Le projet proposé pour l'achat (« Pad ») est présenté par l'Association professionnelle des dessinateurs et techniciens, à Lausanne.

CONCOURS POUR LA PLAGE DE GÉRONDE (SIERRE)

Plan de distribution. — Echelle 1 : 400 He prix, projet de M. A. Wælflé.

Les ponts en béton armé de très grande portée.

« Le béton armé constitue actuellement la solution la plus sûre et la plus économique pour la réalisation de toutes les portées, quelque grandes qu'elles soient. L'exécution d'une voûte de 1000 m n'offre aucune difficulté qui ne puisse être entièrement résolue par des méthodes dérivant directement de celles employées à Plougastel, qui ne sont qu'un développement de celles imaginées un demi-siècle plus tôt par mon illustre professeur de l'Ecole des Ponts et Chaussées, M. l'inspecteur général des Ponts et Chaussées Séjourné.

» Les difficultés qui s'opposeraient à la réalisation de voûtes encore beaucoup plus grandes sont d'ordre financier et non technique, et seraient moindres avec le béton armé qu'avec

tout autre système de construction.»

C'est la fin de l'exorde d'une conférence que le grand ingénieur français E. Freyssinet a faite, le 11 juillet dernier, devant la Société des ingénieurs civils de France, et reproduite dans le Bulletin de cette Société, juillet-août 1930. Quoique un tel exposé soit d'autant plus malaisément résumable que M. Freycinet se plaît parfois à user d'une concision un peu ésotérique, nous allons tenter de donner un aperçu de quelques-unes des vues originales et des considérations ingénieuses qu'il développe. Exemple:

« Je ne me dissimule pas que l'affirmation d'une supériorité quelconque des pierres sur les métaux pour la réalisation de hautes résistances spécifiques a les plus grandes chances d'être tenue pour un paradoxe par des ingénieurs habitués

à l'emploi exclusif des métaux.

» On est naturellement tenté d'attribuer le privilège de fait des métaux, spécialement des composés du fer, à la supériorité de leurs propriétés de cohésion par rapport aux propriétés similaires des autres matériaux.

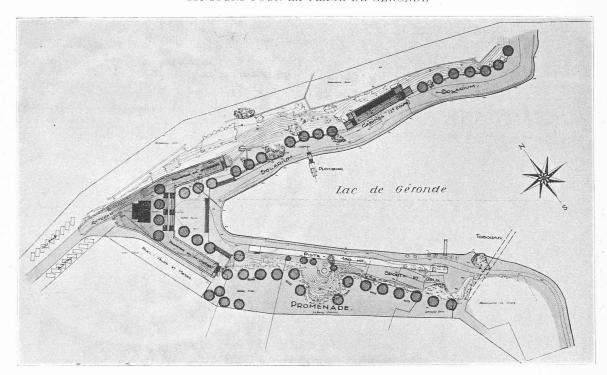
» Or, ce point de vue est inexact, et le rapport de la cohésion à la densité semble, au contraire, être indépendant de la nature chimique des corps. »

A l'appui de son affirmation, M. Freyssinet allègue que, pour les matériaux les plus disparates, le rapport du module

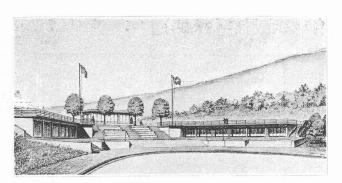
d'Young et de la résistance à la rupture d'une part à la densité d'autre part accuse une curieuse analogie dont témoignent les tableaux suivants:

	Module d'Young kg/m ² (1)	Densité (2)	Cohésion unitaire Rapport 1:2
Aciers	200 à 220.10 ⁸	7,800	$25 \ \text{à} \ 28.10^8$
Verres et silicates divers	60 à 80.10 ⁸	2,500 à 2,750	24 à 29.108
Celluloses, bois très sec	9 à 12.10 ⁸	0,300 à 0,500	$24 \ \text{à} \ 30.10^8$
Calcaires très compacts	60.10 ⁸	2,500	24.108

Résistance des matériaux non fragiles (traction).


	Taux de rupture dans la striction kg/mm²	Densité	Cohésion unitaire
Aciers de toutes nuances Bois très secs	200 à 300 6	7,800 0,300 à 0,400	26 à 38 15 à 20

Résistance des matériaux fragiles (compression).


	Taux de rupture kg/mm²	Densité	Cohésion unitaire
Verres	50	2,500 à 2,700	18 à 20
	25 à 30	2,500	10 à 12
	12	1,300	9

« La loi d'unité du quotient des caractéristiques mécaniques par la densité ressort nettement de la comparaison des modules d'Young : elle se vérifie moins bien avec les coefficients de rupture, mais il faut remarquer que les taux de rupture ne donnent qu'une limite inférieure de la cohésion et nous verrons tout à l'heure que pour les matériaux fragiles elle peut

CONCOURS POUR LA PLAGE DE GÉRONDE

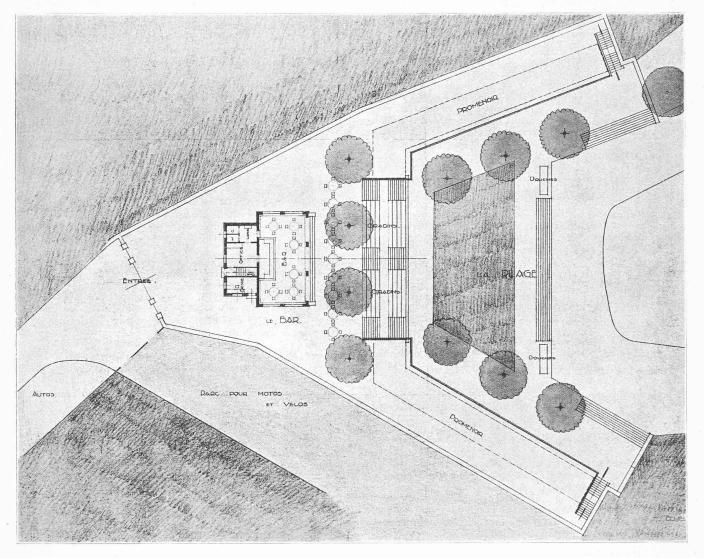
Plan de situation. — Echelle 1:2000.

Perspective.

He prix ex æquo,
projet « Suzanne », de M. P. Cahorn,
architecte, à Genève.

être très éloignée de la valeur réelle. On remarque d'ailleurs que les chiffres les plus bas sont relatifs aux matériaux les moins homogènes (pierres), ce qui semble indiquer que, si on pouvait opérer sur des matériaux homogènes, les chiffres se grouperaient encore mieux.

» La nature chimique des matériaux n'a donc pas, au point de vue de la cohésion et de la déformabilité élastique, rapportées à l'unité de masse, l'importance déterminante qu'on lui attribue souvent, et la supériorité essentielle des métaux par rapport aux pierres, en tant que matériaux de construction, n'est pas due à une valeur plus élevée de la cohésion unitaire. »


Alors, à quoi cette supériorité tient-elle? A la nature des déformations qui différencie les matériaux en « plastiques » et « fragiles ».

« Un corps plastique, sollicité au delà de la limite d'élasticité, se déforme généralement sans changement appréciable de volume, donc par glissement des molécules sans augmentation de leur distance moyenne, comme pour un liquide.

» Pour des corps, dont les métaux ferreux sont le meilleur exemple la sollicitation nécessaire pour provoquer l'augmentation de la déformation plastique croît avec celle-ci; à un moment donné, elle atteint en certains points la valeur de la cohésion, et il se produit une augmentation de la distance des centres des molécules au delà de la limite des attractions moléculaires : c'est la rupture. La limite pratique d'emploi d'un matériau de cette catégorie dépend donc non de la cohésion mais de la limite où commencent les glissements, ou limite d'élasticité. Elle est d'autant plus élevée que cette limite élastique est plus voisine du taux de destruction de la cohésion. »

Quant aux corps fragiles (verres, roches diverses et ciments) ils sont caractérisés par leur «incapacité à se déformer plastiquement avant de rompre : c'est cette incapacité et nullement une valeur inférieure des forces de cohésion qui est la cause de la faible résistance à la traction des corps fragiles. » Outre cette insuffisance de résistance à la traction, les corps fragiles accusent une bien fâcheuse sensibilité aux chocs, « parce que l'énergie nécessaire pour y porter localement les sollicitations au taux de rupture s'y réduit à celle de la déformation élastique dans tout le corps sous des sollicitations moyennes faibles, et à l'énergie de rupture en un seul point qui est infiniment petite puisque toute rupture amorcée se continue nécessairement. »

CONCOURS POUR LA PLAGE DE GÉRONDE

Plan au niveau du bar. — Echelle 1 : 500. II^e prix : projet de M. *P. Cahorn*.

Or, ce défaut de résistance et cette sensibilité aux chocs sont fonction du degré d'homogénéité d'un corps quelconque en ce sens que pour qu'il « ait à la fois la résistance maximum et la fragilité minimum, nous constatons qu'il faut qu'il soit aussi homogène que possible, ne présente ni vides intérieurs, ni occlusions de corps étrangers, ni discontinuités de section ou de forme, ni hétérogénéité de nature. Ces conditions sont relativement réalisées par des fils métalliques provenant de lingots parfaitement sains et exempts de toute ségrégation ou de soufflure. Par contre, toutes les autres formes de la construction métallique et particulièrement les charpentes rivées ou soudées en sont toujours très éloignées; ce qui implique la nécessité absolue de n'employer en construction métallique, en dehors des fils ou barres cylindriques utilisés à cet état, que des métaux à très grande marge de plasticité, donc à limite élastique basse ; cette qualité étant absolument indispensable pour ramener les exagérations locales des sollicitations maxima à un niveau suffisamment inférieur au taux de rupture.

» Pour cette raison le rapport entre le taux de sollicitation correspondant à la limite pratique d'utilisation, qui dans le cas d'efforts de compression est au plus égal à la limite élastique (car, au delà, il y a flambement des pièces) et le taux correspondant à la destruction de la cohésion est toujours très bas ; il est de l'ordre de $^1/_{15}$ pour les aciers doux de constructions ordinaires, il s'élève jusque vers $^1/_8$ pour les charpentes en aciers très homogènes obtenus par addition de nickel ou autres métaux spéciaux, à $^1/_4$ ou $^1/_3$ pour les meilleurs aciers spéciaux employés dans l'aviation ou la construction automobile ; encore de tels métaux imposent-ils de grandes précautions dans le choix des formes ; il atteint seulement $^2/_5$ dans les meilleurs fils pour câbles de ponts.

» Mais heureusement si tous les matériaux simples accusent cette infériorité de la résistance pratique par rapport à la limite de cohésion, il n'en est pas de même des «associations de matériaux utilisés en compression». En effet, on peut obtenir des matériaux mixtes pour lesquels, dans le travail à la compression seulement, la résistance pratique soit non seulement égale, mais même supérieure à la constante de cohésion universelle (sic), sans fragilité, par l'association de deux matériaux en proportions très différentes; l'un qui transmet les efforts et joue le rôle principal, doit posséder un frottement interne élevé et une limite élastique confondue avec la limite de cohésion universelle, c'est-à-dire la plus haute possible. C'est par suite un corps fragile à l'état isolé et doué d'une faible résistance de traction. Le second intervient pour