Zeitschrift: Bulletin technique de la Suisse romande

Band: 57 (1931)

Heft: 10

Inhaltsverzeichnis

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 27.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

BULLETIN TECHNIQUE

Réd.: D' H. DEMIERRE, ing.

DE LA SUISSE ROMANDE

Paraissant tous les 15 jours

ORGANE DE PUBLICATION DE LA COMMISSION CENTRALE POUR LA NAVIGATION DU RHIN

ORGANE DE L'ASSOCIATION SUISSE DE TECHNIQUE SANITAIRE

ORGANE EN LANGUE FRANÇAISE DE LA SOCIÉTÉ SUISSE DES INGÉNIEURS ET DES ARCHITECTES

SOMMAIRE: Barrage en enrochements de Salt Springs de 100 m de hauteur, avec un masque souple en béton, par I. C. Sterle (adaptation française par L. Du Bois, ingénieur). — Deux applications de l'électricité dans un immeuble moderne: réfrigération et buanderie. — Chronique: Un nouveau câble téléphonique. — Grands travaux en perspective. — Les courses de la S. I. A. et de L'A3 E2 I. L. — Ecole d'Ingénieurs de Lausanne et enseignement professionnel. — Divers: Petit moteur Saurer-Diesel à 4 cylindres. — L'Ecole d'application du centre de préparation aux affaires, créée par la Chambre de commerce de Paris. — La lumière électrique. — Nécrologie: Gustave Kernen. — Bibliographie. — Carnet des concours. — Service de placement.

Barrage en enrochements de Salt Springs de 100 m de hauteur

avec un masque souple en béton

par I. C. STEELE.

Adaptation française par M. L. DU BOIS, ingénieur.

Le barrage de Salt Springs est un ouvrage en enrochements que fait actuellement construire la Pacific Gas et Electric Company pour créer sur la Mokelumne River en Californie un réservoir d'énergie hydro-électrique. En raison de sa hauteur anormale soit 91,45 m au-dessus du lit du cours d'eau et 100 m au-dessus de la fondation la plus profonde, on a déterminé avec le plus grand soin les talus amont et aval, et on a choisi de même les matériaux et le mode de construction. L'emplacement est d'un accès difficile et on disposait sur place de roches granitiques en quantité plus que suffisante; on s'est arrêté par suite à un barrage du type en enrochements, comme convenant le mieux à l'emplacement choisi. Le parement amont en béton armé se compose de panneaux carrés de 18,29 m de côté supportés au droit des joints par une ossature en béton noyée dans la couche de l'enrochement spécialement mise en place à l'aide de derricks. Le profil du parement amont est tel qu'il forme une surface à double courbure étudiée en vue de donner le maximum de garantie contre la formation de fissures, quand se produira le tassement du remblai. Les travaux sont exécutés par le service des constructions de la Compagnie, ce qui a supprimé la nécessité de fournir des dessins et des spécifications complets avant le commencement des travaux. Il a donc été possible de modifier les plans en cours d'exécution, quand des situations imprévues se sont présentées.

Utilisation de la retenue.

Le barrage Salt Springs créera une retenue de 160 millions de mètres cubes, destinée à régulariser le débit naturel de la rivière Mokelumne, et augmenter d'une

¹ Extrait de l'Engineering News-Record, du 16 janvier 1930 et du 28 août 1930. La rédaction de cette grande revue américaine a obligeamment mis à notre disposition les photographies qui illustrent cette note. Réd.

façon économique la production d'énergie de ce cours d'eau. La création de cette retenue aura pour résultat immédiat la construction de deux nouvelles usines et la reconstruction d'une usine existante. Le débit de la rivière, régularisé par le réservoir, passera par la nouvelle usine d'énergie de Salt Springs, qui doit être construite presque au pied du barrage; la hauteur de la chute utilisée par cette usine sera approximativement celle créée par le barrage. Immédiatement en aval de cette usine l'eau sera dérivée dans une canalisation de 29 km, et rejoindra la rivière sous une chute utilisée par l'usine d'énergie du Tiger Creek (chute de 372 m). La décharge de cette usine sera dérivée de nouveau et utilisée par l'usine Electra, complètement reconstruite.

Le programme qui vient d'être exposé produira une puissance de 146 000 kVA, et l'aménagement que l'on se propose de créer sur la Bear River (principal affluent de la rivière Mokelumne) permettra un accroissement supplémentaire de puissance de 25 000 kVA. Quand cette dernière installation sera achevée, la rivière sera utilisée jusqu'à la limite pratique de sa capacité de production, exception faite de quelques affluents de minime importance.

La mise à exécution de ce programme dépendra de considérations économiques basées sur le prix du réservoir de Salt Springs. Ce barrage se trouve à environ 80 km de la voie ferrée, à 65 km des lignes de transport d'énergie existantes, et à 48 km d'une route nationale. L'accès difficile de l'emplacement et une quantité illimitée d'excellent granit d'extraction facile ont suggéré la solution économique d'un barrage en enrochements lors des études préliminaires. Ce type d'ouvrage comporte le minimum de transports, ce qui réduit par la force des choses les frais d'entretien de la route d'accès au chantier, une voie ferrée pour desservir l'emplacement du barrage étant hors de question. L'étude estimative détaillée d'ouvrages en béton de divers types a confirmé cette évaluation provisoire et on a adopté les projets d'un barrage en enrochements constitué par un remblai en roches non liées, la partie amont seule étant mise en place à l'aide de derricks, et revêtue d'un dallage en béton armé, constituant le masque d'étanchéité.