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Calcul de systèmes hyperstatiques d'ordre élevé

par décomposition en systèmes fondamentaux

par M. le Dr Maurice PASCHOUD, Recteur de
l'Université de Lausanne.

(Suite et fin. a

Bibliographie :
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2. Kleinlogel : Rahmenformeln, 5e edit. 1925.
3. Kleinlogel : Mehrstielige Rahmen, 2e édit. 1927.
4. Saliger : Der Eisenbeton, 5e édit. 1925.

Dans cette leçon, qui a un caractère essentiellement

pratique, nous nous bornons à considérer des constructions

du type de celles que M. Kleinlogel calcule dans

ses volumes et nous employons les notations de cet
auteur.

Rappelons d'abord certaines notions.

A) Théorème des trois moments. (1. page 26.)

Si Mjj, My et Mw sont les moments sur trois appuis
consécutifs d'une poutre continue, on a la relation :

(1)
MvKm + 2Mr{Km + K„) + MwKn + RmKm +

+ Ln Kn Q •

Les indices w et « se rapportent aux travées qui relient
les appuis UV et VW respectivement :
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l est la longueur d'une travée, / son moment d'inertie,
le et Ie sont une longueur et un moment d'inertie
auxiliaires, enfin R et L sont ce qu'en allemand on appelle
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les termes dus aux charges, termes qui s'introduisent
dans le calcul quand on emploie les méthodes de Mohr.

Ce théorème qui s'applique dans le cas où les 3 appuis
ne subissent pas de dénivellation relative permet, par
exemple, le calcul du semi-portique représenté dans la

figure 1 (2. page 6), où le nœud B reste fixe, pourvu que
l'on néglige, comme on le fait généralement, les défor-

1 Deuxième leçon faite au Cours théorique et pratique do béton armé,
organisé par la Société suisse des ingénieurs et des architectes, à Lausanne,
du 8 au 12 octobre dernier.

* Voir Bulletin technique du 30 novembre 1929, page 281.

mations dues aux efforts tranchants et aux efforts
normaux. Il s'écrit alors, en prenant \c l et Ic I2:

Pab(i+b) m0 + 2MB (K + 1) + 0 -f 0 +

d'où MB —

P

Pab!l + b) „ A h
avec A —IP {K + 1) ' l I,

Le moment fléchissant en B étant connu, les réactions
d'appui se calculent sans difficulté au moyen des conditions

d'équilibre.

k* .H

DA

Fig. 2.

Si nous voulions calculer le portique à 2 articulations
de la figure 2, (2. page 102), il faudrait généraliser la
relation (1) pour la rendre applicable au cas où les 3 appuis
subissent des dénivellations relatives. En effet, les nœuds
B et C peuvent subir des déplacements horizontaux BB'
et CC.

En appliquant cette relation généralisée aux nœuds A,
B, C, elle donnerait (4. page 531) :

(2) 2Mb(K + 1) + Me +
et aux nœuds B, C, D,

(3) MM + 2Ma{K + i) +

Pab(l+b) 6EI2
P l

Pab{l + b) QEIZ

"T'
AB est la Variation subie par l'angle ABC (AB'C —ABC)

et Ac a une signification analogue.
Les charges étant verticales, MB M0 Hh.
D'autre part

(4) AB + Ac= 0. (4. page 538.)

En additionnant (2) et (3) membre à membre et en
tenant compte de (4), on obtient tout de suile

3Pab
Mb Mc avec A* h h

21{2K + 3)

B) Théorème des quatre moments.

Si, au lieu de cadres simples, on avait à calculer une
Poutre continue sur appuis élastiques comme celle qui est
représentée dans la figure 3, il faudrait utiliser, au lieu
du théorème des 3 moments, celui des 4 moments qui en
est une généralisation immédiate (4. page 555).

Appliqué aux appuis B, D, F, il donne

MB,Km + 2MDiKm + 2MDtKn + MFlKn + RnKm +
+ LnKn 0.



BULLETIN TECHNIQUE DE LA SUISSE ROMANDE 297

I, T
B D

^ i
ï~Sa

Fig. 3.

Mb, est le moment fléchissant dans la poutre immédiatement

à droite du nœud B, Mb, ce moment immédiatement

à gauche de D et ainsi de suite. Si l'appui A, au lieu

d'être fixe, est mobile sur une horizontale, on a un cadre

multiple dont l'entretoise AH peut se déplacer horizontalement

sous l'action des charges. On calculerait ce cadre

au moyen du théorème des 4 moments généralisé qui,

appliqué, par exemple, aux appuis B, D, E s'écrirait

l MB,Km + 2MD,Km + 2MDlKn + ME Kn +

+ RmKm + Ln Kn —j-° Anla

C) Les théorèmes des 3 et des 4 moments permettent
de calculer tous les cadres à éléments rectilignes traités

par Kleinlogel. Mais, lorsque ces cadres sont compliqués,
les calculs sont souvent longs et très pénibles. Ces calculs

se simplifient beaucoup si l'on décompose les systèmes

proposés en systèmes fondamentaux, comme le montre

l'exemple suivant, très simple, mais qui fait bien saisir

la portée de la méthode.

Après cet exemple, nous en traiterons d'autres, plus

compliqués et nous terminerons par quelques considérations

générales.

D) Considérons la poutre continue sur appuis élastiques

de la figure 4. (3. page 36). C'est un système d'ordre

o- t B, D

Fig. 4.

2 que l'on peut calculer en appliquant deux fois le théorème

des 4 moments, à ABXB2C, puis à ABXB3D.

Mais, on peut procéder autrement, en décomposant

le système proposé en deux autres, l'un étant une poutre
à deux appuis simples AB, l'autre un semi-portique à

deux articulations (où D est fixe puisque dans le système

proposé A est fixe), comme il est indiqué dans la figure 5.

Pour tenir compte de la continuité, on fait agir sur

chacun de ces deux systèmes fondamentaux un couple

de moment M qu'il s'agit de déterminer et qui n'est pas

autre chose que le moment Mb, de la poutre proposée.

Calculons le semi-portique CBD quand il est sollicité par
la force P. Si Mb, =» Mb, sont les moments fléchissants

produits de part et d'autre de B par cette charge, on a,

d'après le calcul fait au § A, en tenant compte des

changements de notations,

M'n. M'b.
Pab(l2 + a)

avec K-Ï3-
2ll(K + l) ' aV6C A

72Z2

Pour trouver les moments produits de part et d'autre
de B, dans ce semi-portique, par le couple M, on peut
utiliser la relation précédente en supposant que P aug-

M

V iB

-i-r

A-

èJC-i

Fig. 5.

mente indéfiniment, que b tend vers zéro, mais de

façon que le produit Pb tende vers M. Alors, o tend vers
l2 et l'on a

.»» *,» M
Mb, Mb, — -ft-TTi ¦

Si le semi-portique est sollicité à la fois par P et par
M, le principe de superposition donne,

,„, ** » r i,., *.„ PabiU + a) M
(6) ^=^.-^ + ^ -2g(A-271)J-Aqn-

Il reste à exprimer que, réunis, les deux systèmes
fondamentaux constituent le système proposé.

Le théorème des 4 moments appliqué à ABXB2C
donne la relation d'où l'on tire la valeur de M Mb,
indiquée par Kleinlogel

_ Pa(l-a*)K2 l, 72
Mb>~ 2ÏV ' °U Kl-hL\>

Ä% ^s 1

~hT~K' N Kl + KlK* + K% et a I
Mb, connu, (6) donne Mb, et le calcul se termine sans

difficulté. On a ainsi remplacé le calcul d'un système d'ordre

2 par celui d'un système d'ordre 1 et d'un système

isostatique. Il a suffi d'appliquer une seule fois le théorème

des 4 moments pour arriver au résultat.
Au lieu de résoudre un système de 2 équations à 2

inconnues, on n'a eu à résoudre que des équations à une
inconnue.

Le calcul a été facilité par le fait que nous avions

calculé, au préalable, le semi-portique à deux articulations.
Nous aurions du reste trouvé les résultats nécessaires

dans 2. Si donc l'on possède le volume 2, mais pas le

volume 3, le calcul du système proposé, d'ordre 2, se fait
en résolvant simplement une équation à une inconnue.

L'avantage ainsi obtenu n'est pas très sensible dans

l'exemple qui précède parce que le système à calculer est

simple. Il deviendra plus net sur les exemples suivants.
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Fig. 6.

E) Considérons le cadre à deux étages de la figure 6,
encastré. C'est un système d'ordre 6 dont les formules ne
sont pas données dans 3 où les cadres à 2 étages considérés

sont articulés à la base. Le calcul direct de ce cadre
est assez long. Voyons comment ce calcul se simplifie
quand on décompose ce cadre en systèmes fondamentaux
de façon à pouvoir utiliser 2.

Le premier de ces systèmes fondamentaux sera le
cadre supérieur (fig. 7) supposé à deux articulations et

D3*

Fig. 7.

sollicité par la force P, par deux couples Mb, et Me,
et par les forces Hb, et Hb, dont il n'y a pas lieu de tenir
compte puisqu'on néglige les déformations dues aux
efforts normaux.

Le second (fig. 8) sera le cadre inférieur, encastré et
sollicité par les deux forces Hb, et He, dont la somme est
1 Tonne et par les couples Mb, et Me,.

Pour le premier système, on obtient tout de suite (2.

pages 114 et 128)

Me + 1,875 + 0,423Mb, — 0,577M^
MD — 1,875 — 0,577Mb, + 0,423MÄ,

B

(7)

(8)

Fig. 8.

Pour le second on trouve (2. pages 139 et 149)

Ma - • 1,262 — 0,088Mb, — 0,287M^
Mb, + 0,845 + 0,475 ms, + 0,2 75 M*,
Mb, + 0,845 — 0,525 MB, + 0 275M«,
Me, - 0,845 + 0,275M5, — 0,525M*.
MEl - 0,845 + 0,275M^ + 0,475M£,
M, + 1,262 — 0,287 Mb, — 0,088 M«,

Il faut maintenant exprimer que, réunis, les deux
systèmes fondamentaux constituent le système proposé.

On a évidemment

Ab32 + Ac 0 et Ae„ + AD 0.

La première de ces relations donne, si l'on calcule
Ab„ et Ac au moyen du théorème des 4 moments

3,90 Mb, — 1,92 Me, + 4,78 0

et la deuxième

— 1,92 Mb, + 3,90 MB, — 4,78 0.

De ces deux équations on tire

MB, — 0,82 mt., Me, + 0,82 mt.

et les équations (7) et (8) donnent

Me =-- -f 1,06 mt
MA — 1,43 mt
MBs -f 1,50 mt
MEl — 0,68 mt

MD — 1,06 mt
Mb, — + 0,68 mt
Me, — 1,50 mt
Me + 1,43 mt

Le premier système fondamental est d'ordre 1, le
deuxième d'ordre 3 et il a suffi, ces systèmes calculés,
de résoudre 2 équations à 2 inconnues pourSialculer le
système proposé qui est d'ordre 6. Le calcul que nous
venons de faire est beaucoup plus rapide que le calcul direct
et il est particulièrement simple si l'on possède 2.

F) En utilisant 3, le calcul du système précédent peut
encore se faire de la façon suivante. On considère comme
système fondamental celui de la figure 9, à 2 articulations,

1 T.

A»

sollicité par la force de 1 T. en C et par deux couples
inconnus, de moments Ma et Mp appliqués en A et en jF

respectivement. On trouve alors (3. pages 336 et 326).

Mb, + 2,110 + 0,343M4 — 0,657Mp
MB, + 2,695 + 0,372 MA — 0,464MF
Mb, — 0,585 — 0,034M4 — 0,200Mf
Me + 1,290 -f 0,100MA — 0,066Mp
MD — 1,290 — 0,066MA + 0,100Mj
MB, + 0,585 — 0,200MA — 0,034M*
Me, — 2,695 — 0,464M4 + 0,372 Mp
Me, — 2,110 — 0,657Ma + 0,343MP
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Pour que, sous l'action de la charge et des deux couples,
le système fondamental soit identique au système
proposé, il faut que l'on ait

AA + AB„ 0 et A?+ASa 0.

En appliquant 2 fois le théorème des 4 moments, la

première condition donne

2,01 Ma + 2,01 Mb, + 2Mb, + Me, 0

ou 2,98MA — 1,88 M». + 6,95 0.

La deuxième donne ensuite

— 1,88M^ + 2,98Mj. — 6,95 0

et l'on trouve comme plus haut,

MA — 1,43 mt et Mp + 1,43 mt.

G) La méthode employée ci-dessus peut se résumer

comme suit : Par des sections appropriées, on partage le

système proposé en systèmes fondamentaux, en remplaçant,

dans chaque coupure, la continuité par un moment
fléchissant, un effort tranchant et un effort normal. On
calcule chacun des systèmes fondamentaux quand ils sont
sollicités par les charges et les forces qui tiennent lieu de

la continuité. On exprime enfin qu'à l'endroit où l'on
a fait des coupures, les relations qui, dans le système
proposé, lient les déformations, sont vérifiées.

Bien entendu, le nombre des systèmes fondamentaux
varie dans chaque cas. Si K est l'ordre du système
proposé, Ki celui du ime système fondamental, on aura

K ZKi + e

fau-e étant le nombre d'équations à e inconnues qu'il
dra résoudre pour effectuer le calcul.

Il est clair que la décomposition en systèmes fondamentaux

peut se faire de bien des façons différentes. Dans

chaque cas, on choisira celle qui conduit aux calculs les

plus simples et les plus rapides. Si l'on possède les volumes
2 et 3 de Kleinlogel, on s'arrangera, autant que possible, de

façon à obtenir comme systèmes fondamentaux des

systèmes calculés dans ces ouvrages. Ainsi, le champ
d'application de ces volumes, si utiles déjà, est considérablement

élargi et l'on pourra, en allant du simple au
compliqué, s'attaquer au calcul de systèmes d'ordre très élevé

et dont l'étude directe conduirait à des calculs d'une

longueur rebutante et d'une exactitude sujette à caution.

Sur le principe des turbines Kaplan.
Les turbines hydrauliques du type « hélice », à pales

fixes ou à pales pivotantes, étant en grande vogue,
M. G. Buchi caractérise donc ces machines avec beaucoup

d'à propos, dans le numéro d'octobre dernier de

UEnergia Elettrica (Milan), en une étude remarquable

par sa clarté et sa précision, comme on en jugera par le

résumé ci-dessous des chapitres exposant le principe des

turbines Kaplan.

Les constructeurs ont coutume de représenter le

comportement d'une turbine en fonction de trois
paramètres essentiels — le débit [Q), la vitesse (n), exprimée
en nombre de tours par minute, et le rendement (e) —
par une surface topographique dont Q et n sont,
respectivement, l'ordonnée et l'abscisse et e la « cote ». Afin
d'éliminer l'influence des variations de la hauteur de

chute (H) sur les variables Q et n, celles-ci sont
rapportées, à l'aide des formules bien connues, à une chute
arbitraire mais constante qui est, généralement, prise
égale à un mètre.

Pour les mêmes raisons de convenance, Q et n peuvent
être rapportés à cette chute unité et, simultanément, au
diamètre unité de la roue [n\, Q\). Ceci posé, les diagrammes

de la figure 1 se lisent immédiatement. Sur la surface

topographique [e f(Q, n)], le faisceau de lignes à peu
près rectilignes représente la variation dû débit en fonction
de la vitesse, à ouverture (o) constante du distributeur,
chacune de ces lignes correspondant à une ouverture
déterminée. Le diagramme supérieur [e /(n)0=COTWJ

représentant les variations du rendement à ouverture
constante du distributeur, en fonction de la vitesse, est la
projection sur un plan vertical et parallèle à l'axe des n
des intersections de la surface topographique par des

cylindres verticaux ayant pour directrices respectives
les lignes Q f(n)0=const • Enfin, le diagramme de droite
représente les variations du rendement en fonction du
débit, à vitesse constante, [e — f (Q)]n=Const. autrement dit,
les sections de la surface topographique par des plans
verticaux parallèles à l'axe des Q. La comparaison des
surfaces topographîques correspondant à des turbines de

ns (vitesse « caractéristique » ns n\\10Q\) différents
révèle que les ellipses (courbes de niveau) figuratives du
rendement s'aplatissent de plus en plus et que leur
grand axe s'oriente de plus en plus obliquement sur
l'axe des (Q) au fur et à mesure que nä croît. De sorte

que les courbes e f(Q)n=eomt. ou e f(P)n=«mst. (P
puissance) affectent, pour les n, élevés des turbines-hélices
à pales fixes, la forme en « crochet » (voir fig. 2), carac-
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Rendements en fonction de la charge d'une turbine Kaplan.

Courbes en « crochet » correspondant aux pales supposées fixes et
courbe-enveloppe correspondant aux pales pivotantes de la turbine.

Dislrib. distributeur. — Ruota roue.
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