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Représentation de la ligne élastique
des poutres droites au moyen des séries trigonométriques
et calcul de systémes hyperstatiques d’ordre élevé par
décomposition en systémes fondamentaux,’

par M. le DT Maurice PASCHOUD, Recteur de I'Université

de Lausanne.

Bibliographie: S. Tivosuexko, Applied Elasticity,
1re édition, 1925, p. 129-132 et p. 161-165. Cet ouvrage a
été traduit en allemand par le DT Malkin et a paru sous
le titre Festigkeitslehre, chez Springer, en 1928,

A) Emploi de Uénergie potentielle de déformation.

Considérons d’abord le cas d’une poutre & deux appuis
simples, sollicitée par une charge concentrée P (figure 1).

P
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Fig. 1.

On peut dans ce cas prendre pour équation de I’élastique
une expression de la forme

x .3
(1) y = ulsinn_;v + azsillz—T;l + agsin %v == e

z est Pabscisse d'un point de I’élastique, y son ordonnée
et les a; sont des coeflicients que nous allons déterminer.

La signification géométrique de (1) est évidente.

M étant le moment fléchissant dans une section de la
poutre de moment d’inertie I et de coeflicient d’élasticité
E, on a la relation classique
d*y

2) M= —EI

[énergie potentielle de déformation de la poulre a

pour expression

= g
2
0

| %‘ M2dx
El

! Lecon faite au Cours théorique et pratique de héton armeé, organisé
par la Société suisse des ingénieurs et des architectes, a4 Lausanne, du 8 au
12 octobre dernier. (Voir Buletin technigue du 16 novembre 1929, page 269.)

qui devient, en tenant compte de (2)

__ EI(t/d%\?
3) U_2_S<d_x2> du

0
Calculons d2y/da?® au movyen de ’expression (1) et rem-
Y hi 1
placons cette dérivée seconde par son expression dans (3).
11 vient, en tenant compte des relations bien connues
: 4

1

. o NTXT l
g sin2 —— dx =

.

y
. nma . ommw
el S sin Tsm dz = 0

2 l
0 0
. Emmt , - EIt* & , .
(4) U=—g (18] +2%a; +..) = = N nda;.
n=1

Cette expression obtenue, remarquons que lorsqu’un
systéme élastique subit, & partir d’une position d’équilibre,
une petite déformation, ’accroissement de son énergie
potentielle est égal au travail effectué par les forces exté-
rieures pendant la déformation.

Supposons que, seul, le coefficient a, varie de day, ; le

. nmx . . nmw )
terme a, sin —— variera de da, sin —— et le travail effec-

l l

tué par la force P, d’abscisse ¢, sera

nme p

l

) da, sin

[’énergic potentielle de déformation, elle, varie de

) 7 It
o 0, _ En

== 4a,d
=—— nta,da,.
day 23

En égalant (5) et (6), on obtient

2PPB sin il
- l
= TR
d’ou finalement
ome . T . 2me . 2mx
i o pp sin — sin == sin —— sin ——
7)Y = Fim mo T :

qui est I’équation cherchée, sous forme complétement

explicite. On en déduit, si on fait @ = 5 = ¢, pour la

O] o~
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fleche au m'lieu de la poutre, quand la force P agit au
milieu de celle-ci, 'expression

2PB (/1 1 1
f=ﬁﬁﬁ+?+?+m>

En se bornant au premier terme, on a déja une expres-
sion trés approchée

-~ 2PB PR
1= Fim = 781
de cette fleche, alors que la valeur exacte est, comme on
i) PB
e

De I'expression (7) relative au cas d’une charge con-
centrée, on déduit tout de suite les équations de 1’élas-
tique de la poutre & deux appuis simples sollicitée par des
charges verticales quelconques.

Par exemple, si la charge est une charge uniformément
répartie de p par métre courant, il suffit de remplacer dans
(7) P par p.dcet d’intégrer de ¢ = 0 a ¢ = I. Il vient

. omx . 3max
4pls sin7-  sin—-

Y= Em\"1 T 3 T

Pour le cas d’un couple de moment M appliqué sur
Pappui A, on fait tendre P vers I'infini, ¢ vers zéro, de
fagcon que le produit Pectende vers M et il vient

. T . 2mx
2 ﬂ/[lz sin T S11 _l
YR\ T T T

+

Dans le premier cas, quand on se borne au premier ter-
me, Uerreur sur la fleche au milieu est de 0,25 %, et I’on
obtient

4 R 4

foo & PE g

— 305 EI 384 E1

Pour le cas du couple, en se bornant toujours au pre-

au lieu de la valeur exacte f =

mier terme, on trouve

ff\’gﬂl—z au lieu de f=ﬁ
— 31 EI 16E1°

Il est nécessaire de remarquer que si les séries obtenues
pour y sont trés convergentes, il n’en est plus de méme
pour celles que I'on obtiendrait en dérivant ces séries ter-
me a terme el qui serviraient a calculer la pente de 1’élas-
tique ou sa courbure. (’est 1a un fait qui n’a pas d’impor-
tance pour les applications que nous indiquerons ici, mais
qui, par conlre, dans d’autres questions, présente de
graves inconvénients. Nous y reviendrons plus loin.

Pour le moment, remarquons encore que I’expression
(1) convenait trés bien pour le cas de la poutre a deux
appuis simples par la raison que chacun des termes de
cette série s’annule pour 2 = 0 et pour @ = [, de sorte
que les conditions aux extrémités de la poulre sont sa-
tisfaites & 'avance.

S5i Pon avait affaire & une poutre encastrée aux deux
bouts, il faudrait partir, au lieu de (1), de Pexpression
suivante :

2nz bra 6ma
y=a1<1—cos—l ) —i—a2<1—cos —l> +a3<1—cos—l> ...
Les conditions aux limites sont bien satisfaites car y
s’annule pour 2 = 0 et pour = [ et en outre, comme il
le faut,

dy 2n . 2ma 4t . ma
%_a1751n7+02751 _l+

s’annule également pour @ = 0 et pour z = L

Nous laissons au lecteur, a titre d’exercice, le soin d’ef-
fectuer sur la derniére expression d’y des calculs tout
semblables & ceux du début de cette lecon. Il trouvera
ainsi des expressions de I’élastique d’une poutre encastrée
a ses deux extrémités, sous forme de séries trés conver-
gentes et qui, méme en se bornant 4 un seul terme, don-
neront une bonne approximation pour les fleches de cette
poutre.

Enfin, toujours a titre d’exercice, nous laisserons au
lecteur le soin de choisir la forme de la série qui convien-
drait au cas de la poutre encastrée & un bout et libre &
I’autre bout.

Le fait que la série (7) est si convergente que ’on peut,
avec une grande approximation, se borner 4 son premier
terme, montre encore ce résultat important et bien connu
d’ailleurs que, quelle que soit la position de la charge P
sur la poutre, ¢’est vers le milieu de celle-ci que se produit
la fleche maximum et I’on a, pour expression approchée
de cette fleche maximum, expression

7 o E sin =5
Ymoz = T ST

Voici maintenant deux applications des théories qui

précedent,

B) Poutre armée a deux poincons. Calcul approché de la
tension dans le tirant.

Considérons la poutre armée de la figure 2. Pour trou-
ver une expression approchée de la tension dans le tirant
CD, on peut procéder de la facon suivante, Coupons CD
en son milieu m et appliquons & chacun des troncons ob-
tenus une force de X.1 Tonne quile comprime. En sup-

P
et l
SIS N I e WLy =
Al N C D
[
X Al
bt
- X o >-C D«f— cx
Fig. 2.

posant qu’il y a des articulations en C et en 1), il se pro-
duit alors, dans chacun des poingons, une extension de

. h | )
X.1Tonne — et, d’aprés Uexpression (7) du § A on I'on
a

se borne au premier terme, I'équation approchée de
Iélastique de la poutre AB sera
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2£l XP 2k X
N sinB—{— “ sinn(l_a)sin.‘—-{—x—_—
Y= "FEr* "M I " Eln* I I

h XB Ra—ln . mz
S —— sin— ,

=R A g I

Le déplacement vertical du point N de AB, d’abscisse
¢, est alors

Y —
cos( a—Dm

= h XP sin e
21 =
D’aprés le théoréme de réciprocité de Maxwell, ce dé-
placement vertical est égal a la quantité dont s’éloignent
les extrémités m des trongons de CD quand on applique
en NV une force verticale de X .1 Tonne, descendante.
Ceci remarqué, pour trouver la quantité d dont s’éloi-
onent ces 2 extrémités m quand X = 1, il suffit d’obser-
ver que le déplacement vertical de C est le méme que
celui de €', que celui de D est le méme que celui de D’ et
que les longueurs AC et BD restent invariables. On a done

_ 4RB (2a—1Ulm . mah
b_aEIn‘*COS 97 SlllT;z_'_
4hB  (2a—1D)m .nn’(l—a) h
aBEIw 0 T aT
h% B (2a — O)m

= 8 = — cos2
° @ Elm* 21

Dans ces conditions, en négligeant les déformations
dues aux efforts normaux, la tension produite dans le
tirant par une force verticale de P tonnes appliquée au
point IV de la poutre sera

. TC
sin T P

2a — l)m
27(-(»s(t )

a 21
Si la poutre porte tne charge uniformément répartie

de p par métre courant, la tension dans le tirant sera

alp
a— D
21

T =

2
mh cos

(Cest la une expression trés simple et qui permet de
calculer, rapidement et avec une assez grande approxi-
mation, la tension dans le tirant. On pourrait du reste la
rendre tout & fait exacte en tenant compte des déforma-
tions produites par les efforts normaux. Telle qu’elle est,
il est intéressant de la comparer, pour la simplicité, avec
I'expression exacte de cette tension donnée par Miiller
Breslau dans ses « Neuere Methoden der Festigkeitslehre »,
4e édition, 1913, p. 113.

Des calculs analogues permettraient de trouver des
expressions approchées de la tension dans le tirant d’une

poutre armée a plus de 2 poingons,

C) Flambage d’une poutre & deux appuis simples solli-
citée @ la fois a la compression par des forces longitudinales
S et a la flexion par une force transversale P.

Ce probleme, dont un cas particulier est traité, suivant
la méthode habituelle, par Foppl dans sa «Festigkeitslehre»
7¢ édition, 1919, p. 373-377, montre bien 'utilité des sé-
ries trigonomeétriques pour la représentation de 1’élastique.

-
. A lde B
i, W@W‘ 5
Fig. 3

Soit la poutre représentée dans la figure 3. Dans ce cas,
on peut prendre pour équation de I’élastique la série (1)

y = a, sin T—rl‘f + aq sin 2—7;3 Lo,

On a, comme au §A,

Elnt &
= 4,2
U= B W onta.
n=1

L’accroissement de 1’énergie potentielle quand a, varie
de da, , est toujours

Elm
2B

nta, da,

et le travail de la force transversale P est encore

e

e
Pda, sin - -

Reste a calculer le travail des forces longitudinales S.
On sait, d’apres le cours d’analyse, que

e
ds:dm\/‘l - (%) g

Si les fleches sont trés petites, dy/dx est petit et 1’'on a
approximativement

- 2]

2
d’on ds — dv = l <(1‘Il> da,

2 \dzx

expression qui est trées utile en Résistance des matériaux.
Si N est la différence entre la longueur de Iélastique et
la distance AB, on aura

Dans notre cas, avec I’expression supposée pour y, on
obtient tout de suite
i
A= N,
/l[ Ld f n°*

n=1
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Quand a, varie de da, , \ varie de
I\ 2
l

doy, = —nPay, day

2

J n

et I'on a, en écrivant que la variation de I’énergie poten-
tielle est égale au travail des forces extérieures,

Eln* . nme . Sm?
4 _ 2
5P nta, da, = [ da, sin == -+ 5T n?a, da, ,
. nme
i _2pe T
o “TEm T, , 5P
nt — n?——
Eln?

Désignons par S la valeur de la charge critique de
flambage d’une poutre & deux articulations. On a

ElIn?
Scril_ = T .
S
Posons 02 =
Scril.
On peut écrire
. nme
sin —
__2PB l

=
" Elnt n* — o2n?

et I’on a finalement

. T . T . 2me . 2ma
SIN — SIT — S10 -—— 81N ——
2PB l l l l

®) v=fm| T—= PR

En comparant celte expression avec 'expression (7)
on voit que I'adjonction de la force P ne modifie pas la
valeur de la charge critique. Par contre, les forces S ont
pour effet d’augmenter les fleches dues a P.

Comme 'on peut, avec une bonne approximation, ne
conserver que le premier terme de la série précédente, on
pourra conclure que, par 'effet des forces S, les fleches
sont augmentées dans le rapport de 1 & 1 — o2.

La conclusion reste la méme si I’'on a une charge trans-
versale uniformément répartie.

Les fleches calculées, on trouve sans peine le moment
flechissant maximum dit aux forces longitudinales et 'on
peut déterminer ainsi les contraintes produites dans la
poutre.

Si les forces S, au lieu de comprimer la poutre, la ten-
daient, un calcul semblable au précédent conduirait a
remplacer dans la série (8), o? par — o2,

Le cas des poutres encastrées aux deux bouts ou en-
castrées a4 un bout el libres & 'autre se traiterait aussi
sans difficulté. Nous en laissons le soin au lecteur.

D) Les exemples qui précedent montrent bien I'intérét
des méthodes de M. T'tmoshenko. Disons encore, pour ter-
miner, que dans le caleul des plaques, on est amené¢ a se
servir aussi de séries trigonométriques. Ce ne sont plus
des séries simples, mais des séries doubles. Ces séries
conviennent trés bien pour représenter les fleches, mais
celles qui permettent le calcul des tensions et que 'on

obtient par des dérivations terme 4 terme, sont_beaucoup
moins convergentes et c’est 14 un grave inconvénient.
Bornons-nous a indiquer, & ce sujet, les recherches de
M. Courant (Géttinger Nachrichten, 1923), qui montre
comment on peut obvier & ce défaut et a signaler la thése
de S1 Luan Vei, sur la plaque rectangulaire encastrée.

(Gottingen 1925.)

(A suivre.)

Redresseurs 4 vapeur de mercure au

service de la Ville de Vienne,
par N. von KOTSCHUBEY. ingénieur.

Le développement de ’emploi du courant alternatif et
surtout du courant triphasé dans tous les domaines
d’application de I’énergie électrique n’ont pas enlevé au
courant continu toute son importance. En effet, un trés
grand nombre de consommateurs d’énergie électrique
ne se servent de celle-ci que sous la forme de courant
continu. Parmi ces derniers, on peut citer les Chemins
de fer (France, Espagne, Hollande, Angleterre, Australie,
Indes anglaises, Afrique du Sud, en partie 1'Italie, les
Etats-Unis d’Amérique du Nord, etc.), les fabriques de
produits chimiques (production électrolytique du zine,
de I'aluminium, d’hydrogéne, ce dernier étant une des
matiéres premieres les plus importantes de la fabrication
d’engrais artificiels, etc.) et enfin les réseaux de lumiére a
courant continu. C’est surtout ces derniers qui nous inté-
ressent en ce moment car nous allons passer en revue les
installations de redresseurs & vapeur de mercure alimen-
tant les réseaux de lumiére de la Ville de Vienne.

Ce n’est pas seulement & Vienne qu’on emploie le
courant continu pour les services de lumiére mais aussi
dans un trés grand nombre de villes, soit européennes
(Paris, Londres, Bruxelles, Stockholm, Munich, etec.,
notamment en Suisse, & Saint-Gall), soit des Etats-Unis
d’Amérique du Nord (New York, Chicago, etc.), ce sys-
téme est encore utilisé du moins pour une certaine partie
de leurs réseaux et surtout dans les anciens quartiers.

Les raisons qui obligent les Services d’électricité de ces
villes & maintenir le systéme & courant continu sont les
suivantes :

1o Le coit de nouvelles installations de distribution
de courant triphasé est élevé et obligerait les Services
d’électricité & immobiliser des capitaux considérables.

20 Le changement des cibles présente souvent des
difficultés insurmontables et est aussi trés cotiteux.

30 En effectuant le changement de systéme, les Ser-
vices d’électricité d’une ville seraient obligés de changer
a leur propre compte toutes les installations des consom-
mateurs.

49 Les sous-stations & courant continu n’étant souvent
pas encore amorties, il s’ensuivrait une perte des capi-
taux engagés,

Les raisons que nous avons mentionnées ci-dessus ont

amené la direction des Services d’¢lectricité de la Ville
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