Zeitschrift: Bulletin technique de la Suisse romande

Band: 55 (1929)

Heft: 14

Artikel: La cellulose de bois et ses sous-produits

Autor: [s.n.]

DOI: https://doi.org/10.5169/seals-42667

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 03.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

BULLETIN TECHNIQUE

Réd.: D' H. DEMIERRE, ing.

DE LA SUISSE ROMANDE

Paraissant tous les 15 jours

ORGANE DE PUBLICATION DE LA COMMISSION CENTRALE POUR LA NAVIGATION DU RHIN ORGANE DE L'ASSOCIATION SUISSE D'HYGIÈNE ET DE TECHNIQUE URBAINES ORGANE EN LANGUE FRANÇAISE DE LA SOCIÉTÉ SUISSE DES INGÉNIEURS ET DES ARCHITECTES

SOMMAIRE: La cellulose de bois et ses sous-produits. — Sur l'économie d'une usine hydroélectrique à accumulation, par M. le Dr Rob. Haas, directeur des « Krastübertragungswerke Rheinselden » et M. C. T. Kromer, ingénieur. — Concours d'idées pour la construction d'une Grande Salle, à La Tour de Peils. — L'enlèvement et le traitement des ordures ménagères, par M. L. Archinard, Ingénieur en chef du Service des travaux de la ville de Genève (suite et sin). — Le 70° anniversaire de M. le professeur Dr A. Stodola. — Divers: Cours sur le béton armé, organisé par la Société suisse des ingénieurs et des architectes, à Lausanne, du 8 au 12 octobre 1929. — Société suisse des ingénieurs et des architectes. — Emplois vacants, en Grèce. — Service de placement.

La cellulose de bois et ses sous-produits.

C'est en 1881 que le *D*^r *B. Sieber* créa, à Attisholz, près de Soleure, la première fabrique suisse de cellulose de bois,

d'après le procédé inventé par le chimiste Mitscherlich, en 1874. Grâce aux remarquables aptitudes techniques et commerciales et, surtout, à l'admirable ténacité de son fondateur, cette entreprise 1 qui, au début, occupait seulement 10 ouvriers et disposait d'un unique « cuiseur », a pris un développement, qui, attesté par une production annuelle de 9,5 millions de kilos de cellulose, en 1908, à la mort du Dr Sieber, s'est accéléré, sous la direction de son fils, M. Hermann Sieber, au point d'atteindre, en 1928, une production de 27 000 tonnes de cellulose et 800 000 kg d'alcool industriel, correspondant à une consommation de 180 000 stères de bois, de 15 000 tonnes de charbon, de 5000 tonnes de pyrites (nous verrons tout à l'heure à quoi sert ce minerai), de

25 millions de kWh d'énergie résiduelle pour le chauffage d'une chaudière à vapeur et de plus de 12 millions de kWh pour la commande des machines. (Fig. 1 et 2.)

Les bois fraîchement coupés étant impropres à la fabrication de la cellulose, parce qu'ils contiennent des matières résineuses acides sur lesquelles le processus chimique de nature acide aussi n'a pas de prise, l'usine d'Attisholz doit s'accommoder d'énormes stocks de bois (75 000 stères) emmagasinés sur un terrain de

6,5 hectares desservi par l'imposant pont-grue déchargeur décrit dans notre numéro du 20 avril dernier. L'écorce étant, de même, peu sensible à la morsure chimique, la première chose à faire est de l'éliminer: c'est la fonction

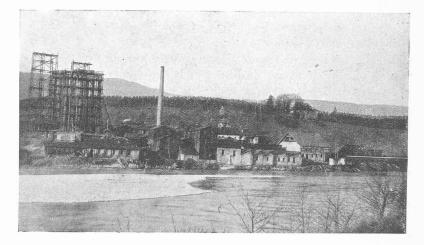


Fig. 1. — La fabrique de cellulose de bois, à Attisholz, en 1886.

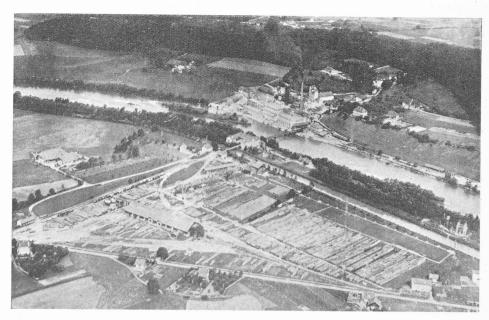


Fig. 2. — Vue récente, à vol d'oiseau, de la Fabrique de cellulose, à Attisholz, et du parc à bois (6,5 hectares).

¹ On trouvera un historique détaillé de l'évolution de la Fabrique de cellulose, à Attisholz, dans le tome IV (paru en 1927) de la «Festschrift» «Die industrielle Entwicklung des Kantons Solothurn», publiée à l'occasion du 50° annivereaire de la Société soleuroise de l'Industrie et du Commerce, (Edition Vogt-Schild, à Soleure).

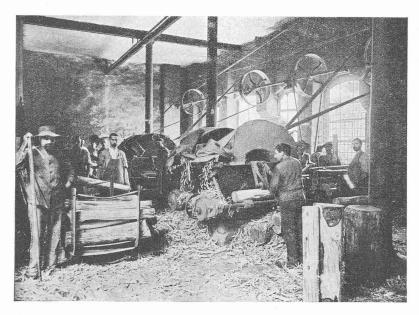


Fig. 3. — Atelier d'écorçage mécanique.

d'écorceuses mécaniques dont la figure 3 montre un atelier et dont le travail est complété à la main à l'aide de couteaux ad hoc. Les bûches écorcées sont débarrassées, par tronçonnage à la scie circulaire, de leurs extrémités frontales, généralement défectueuses, puis livrées à des machines qui les déchiquettent en petits morceaux, à l'allure de 600 stères, environ, par jour. Les produits de la déchiqueteuse, après avoir été débarrassés de la sciure sur deux tamis à secousses, sont véhiculés par des tapis roulants entre deux haies de femmes (voir figure 4) qui enlèvent, au passage, les débris et les morceaux de branches nuisibles à l'obtention d'une cellulose de première qualité.

Au sortir de cet atelier de triage, le bois, convenablement écorcé, déchiqueté et trié, est cuit dans des auto-

claves, pendant 30 à 40 heures, sous une pression de 5 atmosphères, en présence d'une solution de bisulfite de chaux qui dissout toutes les matières incrustantes du bois, laissant la cellulose. La figure 5 montre ces autoclaves dont la fabrique d'Attisholz possède une batterie de 6 éléments, hauts chacun de 14 m, de 7 m de diamètre, d'une capacité globale de 156 stères de bois déchiqueté.

La solution de bisulfite de chaux est préparée sur place, par le procédé suivant: du carbonate de chaux est soumis, dans des tours, hautes d'une trentaine de mètres, à un double courant, savoir un courant d'eau descendant et un courant ascendant de gaz sulfureux (SG²) produit par le grillage de pyrites (sulfures de fer et de cuivre) dans des fours mécaniques. La matière cellulosique, après traitement dans ces autoclaves, n'étant pas encore désagrégée, doit subir divers traitements, consommant beaucoup d'eau, qui la transforment en une masse pâteuse dont la purification est achevée par passage sur un tambour extrayant les morceaux de branches échappés au premier triage, puis par progression lente dans une large goulotte où le sable et les autres impuretés se séparent et, en outre, par classement au moyen d'une trieuse-classeuse, rotative, à tamis métalliques. (Fig. 6.)

Enfin, déshydratation de la cellulose par des presses et séchage par passage dans des sortes de laminoirs dont les cylindres sont chauffés à la vapeur et qui livrent la cellulose sous la forme de feuilles écrues ou blanchies.

La liqueur résiduelle provenant des cuiseurs-auto-claves contient, en solution, environ 50 % du bois traité dont 10 % ont été saccharifiés au cours de la cuisson, c'est-à-dire convertis en un sucre susceptible de subir la fermentation alcoolique. L'alcool produit par cette fermentation est employé à des usages industriels, mais, moyennant un traitement convenable, on peut en tirer de l'alcool presque absolu puisqu'il titre 99,8 %. En Allemagne, un mélange de cet alcool de sulfite avec de la benzine et du benzol est utilisé comme carburant, sous le nom de « Monopoline ». Nous avons relevé, au début de cette note que la Fabrique d'Attisholz a tiré, l'année dernière, 800 000 kg d'alcool de ses lessives résiduelles, mais ce n'est pas le seul sous-produit de la fabrication de la

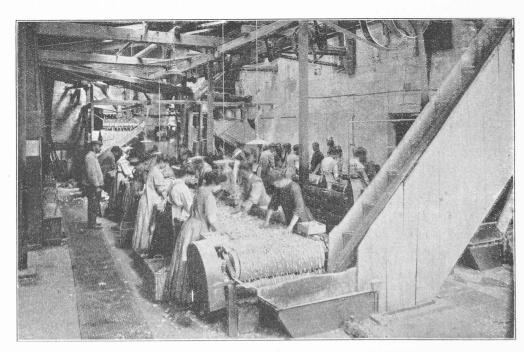


Fig. 4. — Epuration du bois déchiqueté.

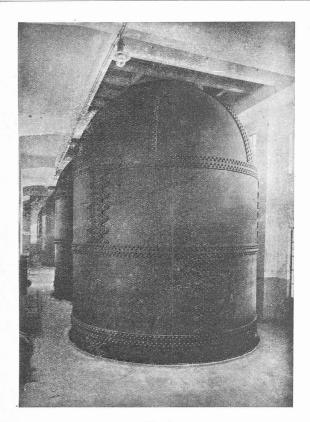


Fig. 5. Batterie d'autoclaves cuiseurs.

cellulose de bois, car les lessives elles-mêmes sont utilisées avec succès et en grandes quantités, sous forme d'arrosages, pour combattre la poussière des routes, grâce à leur précieuse propriété de se transformer, par exposition à l'air, en une masse dure, analogue à l'asphalte, adhérant fortement aux chaussées et exerçant une action antisep-

tique: c'est le «Ligno-Sulfite, » bien connu des usagers de la route, et dont le pouvoir agglomérant est utilisé aussi à la confection de briquettes en poussier de charbon, au façonnage des noyaux de fonderie, etc.

Sur l'économie d'une usine hydroélectrique à accumulation,

par M. le Dr ROB. HAAS, directeur des «Kraftübertragungswerke Rheinfelden» et M. G. T. KROMER, ingénieur. Traduction d'un article paru, sous ce titre, dans l'« Elektrotechnische Zeitschrift», Nº 47, année 1928.

Les auteurs entendent par aménagements hydrauliques à accumulation ceux dans lesquels le débit de l'eau alimentant l'usine génératrice est réglable arbitrairement par emmagasinement dans un réservoir dont la capacité utile peut être accrue soit par le moyen des affluents naturels, soit par adduction de cours d'eau n'y affluant pas naturellement, soit par pompage.

Une usine à accumulation se différencie essentiellement d'une usine au fil de l'eau en ceci que, la puissance de cette dernière est conditionnée, une fois pour toutes, par la capacité des installations supposées appropriées aussi bien que possible au régime du cours d'eau. Aussi la puissance d'une usine au fil de l'eau détermine-t-elle sa valeur technique et économique. Au contraire, une usine à accumulation est caractérisée par la quantité d'énergie emmagasinable dans le réservoir, de sorte que, théoriquement tout au moins, il est indifférent que cette énergie soit utilisée sous la forme d'une grande puissance débitée pendant une courte durée ou sous la forme d'une faible puissance pendant un long temps. L'énergie emmaga-

sinée est — dans des limites raisonnables — « soutirable » à volonté, à la façon du vin d'un tonneau. Des frais d'établissement, la part imputable aux travaux destinés à l'accumulation d'énergie est toujours bien supérieure à celle qui incombe à la production de puissance.

Si un réservoir comporte une tranche utile de Q m³ d'eau et que la chute moyenne soit de H m, l'énergie emmagasinée, mesurée en kWh (1 kWh = $366\ 000\ \text{kgm}$) est

$$A = \frac{Q \ H \ 1000 \ \eta}{366 \ 000}$$

η étant le rendement moyen des conduites, des turbines et des génératrices.

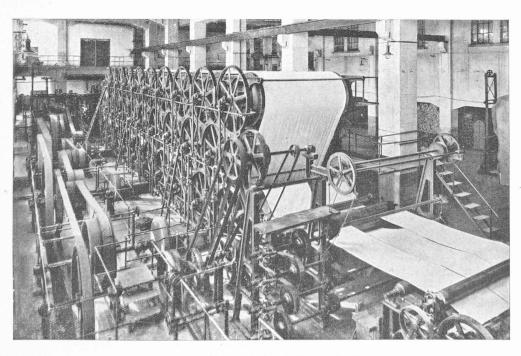


Fig. 6. — Séchage de la cellulose en feuilles.

LA CELLULOSE DE BOIS ET SES SOUS-PRODUITS

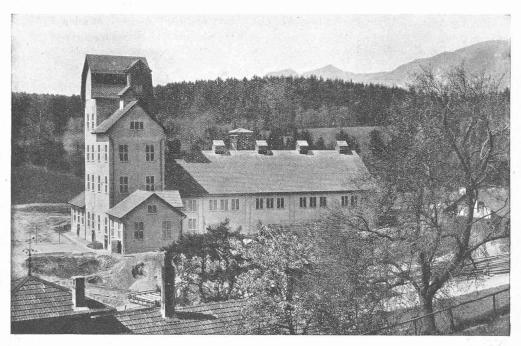


Fig. 7. — Fabrique d'alcool annexée à la Fabrique de cellulose de bois, à Attisholz,

En admettant les rendements accusés par les installations récentes, bien aménagées, et en supposant faibles les pertes d'eau par inétanchéité et par évaporation, on peut exprimer par la commode formule suivante l'énergie utile emmagasinée dans le réservoir

$$A = \frac{QH}{500} \text{ (kWh)} \tag{1}$$

Si le réservoir peut être rempli n fois par an, l'énergie disponible annuellement sera

$$A_{an} = n \, \frac{Q \, H}{500} \, (\text{kWh})$$

Ces réservoirs sont « journaliers », « hebdomadaires » ou « saisonniers ».

Réservoirs journaliers. — La provision d'énergie emmagasinée est consommée en un jour ou, au plus en quelques jours, le plus souvent au moment des pointes. Si l'utilisation moyenne, journalière, du réservoir, pour couvrir ces déficits, est de t heures, on peut évaluer à

$$h = 300 t$$

l'utilisation annuelle, compte tenu des jours fériés. Le nombre n de remplissages annuels des réservoirs « journaliers » est voisin de 365.

Réservoirs hebdomadaires. — Ces réservoirs, de capacité un peu supérieure à celle des précédents, sont d'habitude remplis une fois chaque semaine, principalement au moyen de l'eau non utilisée par l'usine, la nuit, le samedi aprèsmidi et le dimanche. Leur utilisation est vraisemblablement aussi exprimée par

$$h = 300 t$$

tandis que n est voisin de 52.

Réservoirs saisonniers. -Ils sont destinés à emmagasiner l'eau en excès pendant certains mois de l'année, pour la restituer en temps de disette. Par exemple, pour les cours d'eau alpestres, l'emmagasinement aura lieu lors de la fonte des neiges et la restitution, en hiver. Ces réservoirs-là ne «couvrent» plus seulement les pointes mais font face aussi aux fluctuations des besoins de l'industrie. Leur utilisation annuelle varie entre 1000 et 2000 heures et le nombre n de leurs remplissages annuels entre 1 et 2, mais, dans des cas particuliers, des régimes différents sont possibles.

Economie des usines à accumulation.

Ces derniers temps, la question de savoir si une usine à vapeur est préférable à une usine hydraulique à accumulation, pour couvrir les pointes, a donné lieu à de nombreuses controverses qui ont même trouvé un écho dans le public. Or, les publications de *Træger* relatives à la supercentrale « Klingenberg », à Berlin, contenant des données précises sur le bilan calorifique d'une usine à vapeur récente en fonction de son degré d'utilisation, les auteurs ont estimé être en mesure de résoudre mathématiquement le problème du choix entre centrale de pointe, à vapeur, et centrale hydraulique à accumulation.

Pour établir une comparaison judicieuse entre les deux solutions, il faut commencer par analyser soigneusement les conditions hydrologiques auxquelles le réservoir est soumis. Car, pour un régime donné du réservoir, la quantité d'énergie disponible ne peut, contrairement à ce qui se passe dans les centrales à vapeur, être augmentée par un accroissement de l'utilisation. Ici, on l'a déjà relevé plus haut, ce qui est déterminant c'est l'énergie emmagasinée et non la puissance ; la puissance peut être accrue presque arbitrairement, aux dépens de l'utilisation, sans grande augmentation des frais. En conséquence, une usine hydraulique à accumulation étant caractérisée par sa provision d'énergie emmagasinable, l'unité à envisager, du point de vue économique, sera le kilowattheure et non le kilowatt. Désignant par b les dépenses d'établissement, en pfennigs, rapportées à 1 kWh, pour une usine à accumulation, alimentée seulement par des affluents naturels et admettant que les charges annuelles d'intérêts et d'amortissement, les dépenses d'exploitation et la constitution des réserves se montent à 11 % de ces