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Recherches
sur la dynamique des courants déversants
en régime hydraulique permanent,

par Maurice GOLAZ, ingénieur a Paris, DT és sciences.

Le déversement des eaux surabondantes d’une usine
hydro-électrique s’effectue par I'intermédiaire d’ouvrages
de décharge, d’importance souvent considérable. Or, il
ne semble pas que I'on ait toujours prété attention désirée
al’étude de ce probléme qui intéresse pourtant au premier
chef T'utilisation de nos forces hydrauliques, puisque,
dans bien des exemples, les solutions proposées ne se
sont pas révélées judicieuses ou économiques.

Il convient de relever que les équations générales de
la mécanique des fluides naturels sont d’une extréme
complication ; méme dans les probléemes les plus simples
on se heurte a des difficultés d’intégration insurmonta-
bles. C’est pourquoi I’hydraulicien, appelé & des réalisa-
tions concrétes, se voit contraint d’introduire dans ses
raisonnements des hypotheses simplificatrices qui peu-
vent parfois le conduire a4 des solutions approchées.

Ainsi dans tous les cas d’écoulement ou il existe une
surface libre A, la compressibilité peul toujours étre
négligée. Il en est de meéme de la viscosité, lorsque le
«nombre de Reynolds », infini pour les liquides parfaits,
est trés grand par rapport a la valeur qui sépare le régime
turbulent du régime laminaire. Cette derniére condition
est remplie pour les liquides naturels tels que l'eau,
pourvu que la vitesse des filets soit suflisamment grande.

Les types de déversoirs de décharge utilisés dans la
pratique, et que nous étudierons dans la suite, remplissent
généralement les deux conditions suivantes :

10 La forme géométrique qui les constitue, comporle
deux plans verticaux paralléles a distance b 'un de
"autre et un radier a4 génératrices perpendiculaires i ces
plans dont la directrice 7 est une courbe continue sans
jarret ni décrochement. Une telle figure possédera done
un plan de symétrie, lequel sera choisi comme plan du
dessin,

20 Lessurfaces mouillées offrent une rugosité homogene,

Le calcul de leur débouché revient 4 déterminer la
valeur du débit Q ou dépense par seconde, du courant
qui y prend naissance en régime permanent, lorsque les
conditions extérieures ont été fixées.

Je me propose, dans les lignes qui suivent, de développer
brievement quelques considérations et suggestions rela-
tives a la résolution de ce probléme, en rappelant que
plusieurs hydrauliciens de divers pays ont déja apporté
a I’étude de cette question une large contribution.

Mais le phénomeéne du déversement présentant un
caractére de treés grande diversité, son étude est loin
d’¢tre achevée. C’est pourquoi, il est & souhaiter que les
laboratoires d’hydraulique expérimentale soient appelés
de plus en plus & venir en aide au technicien, en lui four-
nissant le complément indispensable & I’étude systéma-
tique des solutions les plus rationnelles.

Au cours de ces recherches, j’ai bénéficié des précieux
conseils de MM. le DT Stucky et Thomann, professeurs a
I’'Université de Lausanne; je tiens & leur en exprimer en-

core ma vive gratitude.

Etude des courants déversants dénoyés a filets sensiblement
horizontaux.

I. Définition du « paramétre d’écoulement ».

[I faut bien remarquer que le théoreme de Bernoulli,
d’un usage si fréquent en hydraulique, n’est vrai que
pour un filet liquide de dimensions transversales treés
petites ou lorsque la vitesse est constante en tous les
points d’une section (liquides parfaits).

Dans le cas d’un courant liquide naturel de dimensions
finies, 1l y a, par suite du frottement sur les parois et de la
viscosité, ralentissement des filets au voisinage des
parois el échange des particules d’un filet a autre. Il en
résulte que dans une section transversale, la vitesse peut
varier d’un point & un autre.

Dans I'expression bien connue
2 ;
ALp

7

on pourra remplacer la cote J par celle du centre de gravité

F g = Cr

o £

(i de la section transversale, la pression p ¢tant celle qui
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s’exerce en ce point. Lorsque les filets liquides sont sensi-
blement horizontaux, on sait que la pression sur une verti-
cale est donnée par la loi hydrostatique. Enfin, dans le

p2
terme —,

2g
pelant que I’énergie cinétique du courant est alors repré-
2

U

on introduira la vitesse moyenne u, en se rap-

‘)(],
“5 p
est trés voisine de unité (y 2 1,02 a 1,05 lorsque les

parois sont lisses et la section réguliere). Pour un cou-

sentée par y ot ¥ est un ceflicient dont la valeur

rant liquide de section rectangulaire, le théoréeme de

Bernoulli devra donc s’écrire

~
0

{

t
v+ 5+ y=Ce

o
o

Si I'on désigne maintenant par ¢ la charge perdue par
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unité de longueur, par suite des frottements sur les parois,

le théoreme de la conservation de I’énergie s’écrira (fig. 1)
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ou encore

Wy S’J(h- . 5 i,
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u?
t+xyg;=thtx
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0 0
en admettant que la pente J du radier soit une fonction
f(x), considérée comme positive si elle s’infléchit dans le
sens du courant.

On convient alors d’appeler hauteur de charge I, V'ex-

pression
(1)

En ad()planl cette notation, et en remarcquant que pour

2
H=t+y5.
el

de tels courants on peul toujours poser s = &, ¢est-d-dire
ds — dz, on arrive & une forme particuliere de ce théo-
reme
‘z z,
H = Hs S T =\ i
.
0

Si I’on différentie les deux membres de cette relation,

on trouve

(2) dH = (J

1) dx,

qui est Péquation différentielle des courants liquides &

filets sensiblement horizontaux.

D’autre part, si on pose u = g q étant le débit linéaire

la relation (1) peut s’écrire

&4 C

12

’

Sl )

H =

s
122

Xq2

dans laquelle C = est une constante toujours posi-

<8
tive. Cette relation exprime la dépendance de la charge H
vis-a-vis de ¢. On sait que cette fonction passe par un

minimum pour la valeur du tirant critique

lequel définit I’écoulement critique régime particulier
départageant les régimes tranquille (t > tx) et torrentiel
(o << i <ler) (fig. 2). La formule (4), résolue par rap-

port & ¢ devient

3 o
(4 bis) q=t\/=
7.
Considérons maintenant la dérivée
’ dH 2C.
5 TR e g P
() dt 3

ue I’on peut écrire aussi, en vertu de ce qui précede
q , {

I:‘

cr
(6) '=1— B

Cette fonction secondaire, comme on le voit tout de
suite, est négative pour toute valeur o <1t < ler, posi-
tive lorsque ¢ > f, et nulle pour ¢ = f,. On en conclut
que le signe qui précéde I' caractérise sans ambiguité la
nature de ’écoulement d’un courant liquide.

Au point de vue géométrique, cette dérivée est repré-
sentée par une hyperbole du troisieme degré a deux

asymptotes t = o et I' = -+ 1; elle peut prendre les

valeurs particuliéres suivantes

t=o0 '=—om
t— e T =10
t= + ® r=+1.

On peut montrer encore que si la dérivée I” est connue
en grandeur et en signe dans une section quelconque Q;
d’un courant en meéme temps que la charge H;, il est
possible de retrouver la valeur du débit @ de ce courant,
el par suite la nature de son écoulement.

A cet effet, considérons un courant liquide. Par défi-

nition, on aura done dans la section considérée Q;

([LI = I avee —oo<<Ihi<<+4+ L
At |,
Les équations (3) et (4) permettent d’écrire
A e
S
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En combinant les deux relations précédentes, on trouve

2H;
) t=3—T;

Enfin, une nouvelle transformation donne

(8) O=2\/ Lt

m b. H?\/Zg,

_ 1
c=4

Q = ¢q.b. La relation ci-dessus fournit I’expression du

en se rappelant que ’on a, par ailleurs, et
I . )

débit Q en régime permanent. Le signe algébrique indi-

+H

Ecoulement | Ecoulement tranguille
+T [ torrentiel < ¢ ﬂix
it " 2g

/Q’

H.F

b
// X r-|
/ Ecoul. tranquille
0| tep /chr =0 +1

E

9

8

-

@

£

3 9

T T.F(t) g
-H wl

quant la nature de [’écoulement, le courant se trouve
donc bien déterminé au point de vue hydraulique.

Il ressort nettement de ces considérations que la
quantité I' va jouer un certain role dans la théorie des
courants liquides a filets sensiblement horizontaux ; par
suite, je conviendrai de la désigner par module ou para-
métre d’écoulement, puisque ses dimensions sont celles
d’un nombre.

Il est aisé de voir que dans un courant a parametre
positif, un accroissement de la charge entraine un
accroissement du tirant ou, réciproquement, 4 une dimi-
nution de la charge correspond une diminution du tirant,
(’est I'inverse qu’on observe dans un courant & para-
métre négatif ot un accroissement de la charge entraine
une diminution du tirant. Le mouvement de ce courant
est graduellement varié si le parametre varie d’une maniere
continue, et alors il est ou retardé ou accélére.

Si I'on désigne maintenant par j la pente longitudinale
de la ligne d’eau, un coup d’ceil sur la fig. 1 montre que

I’on peut écrire encore

to + Rde =1+ gzjdx.
0 @

En différentiant les deux membres de cette relation,
on trouve, aprés une transformation élémentaire,

: dt
j=J== =
que I'on peut mettre sous la forme
. JI =1+
9 oy ot SRR S
(9) J P :

Cette derniére équation se préte a une discussion générale
de I’allure de la ligne d’eau pour tous les courants dont
le parameétre I" =% 0. Les résultats auxquels elle conduit,
ont été groupés sous forme du tableau récapitulatif
ci-apres.

J i >0 <o
J <0 {0 >0 i< 0
=0 >0 ;>0 ] <<0
o<<I<i >0 7 =10 doute
. . I’ o) 1 <<0 .
J > > 0 T 14 i~0 1>0
J <0 it =20 ;>0 ] <<0
J >0 1 =0 << ]>0
J=10 [ t=10 j=0 ; 2§

Ces considérations peuvent étre utilisées avantageu-
sement dans la résolution de nombreux problemes d’hy-
draulique.

Probléeme: On se propose de rechercher la condition
que doit remplir la directrice 7 d’un bief pour que la
ligne d’eau A reste horizontale.

11 suffit de revenir a I’équation (9) en posant j = 0. Il
vient

et 1'on remarque que la pente J sera toujours positive,
indépendamment de la valeur de I'(— o0 <<I"<< + 1).
En utilisant la relation (5), on a
i
L 3
J = - gt

%4

ou encore, en se rappelant que la pente ¢ de la ligne de
charge est donnée par la formule de Chézy

b+ 2t . . @%b
p— —L ou K= &_ .
K g
| s oy ¢ T
En posant J - I Iéquation différentielle s’écrira
ax
> di
K —— = dx.
b+ 2t
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Le tracé de la directrice s’obtiendra le mieux graphique-
ment en posant dt = At et do = Az car le coeflicient ¢
est, comme on le sait, fonction irrationnelle de ¢.

2. Méthode générale de calcul d’un déversoir dénoyé.

Considérons un canal dont la directrice = soit telle que
I’on puisse poser ds = da en tous points. Admettons de
plus que sa pente longitudinale J, d’abord négative puis
nulle devienne ensuite positive (fig. 3).

Imaginons maintenant que I’on applique a l'origine Q
de ce canal une charge dynamique H, invariable. On se
propose de déterminer le débit Q du courant qui s’éta-
blira en régime permanent dans ce canal, en admettant
que le paramétre de ce courant soit > 0 au passage de
Q,. On supposera de plus que le courant ne rencontre

Ecoulement tranquille Ecoulement
| ) . torrentiel
Lerader =
h L
\\
Ho HminsHy Hcr:Hmin=%tc.-\4
| Fe bl
J.o J/Jcr = Ler
o LT777
Jeo )'E)Zbo]l i¢J>0 777777777.](
l Al
?-o Sllv Sl)-cr 1)
T,>0 Ter =0
Fig. 3.

pas d’autre obstacle que celui créé par le frottement
des filets liquides sur les parois et le fond du canal.

On dit alors qu’un tel courant n’est assujetti & aucune
liaison hydraulique et, par suite, qu’il s’écoule d’une
maniére parfaite.

Admettons pour un instant que ’on néglige la rugosité
des parois ; la ligne de charge L' restera par suite hori-
zontale sur toute la longueur du trongon considéré. On
observe alors qu’en partant de lorigine, la hauteur de
charge I diminue lorsqu’on se déplace de la gauche vers
la droite, passe par un minimum [, = H, en Q, pour
J = 0 puis augmente 4 nouveau indéfiniment.

Si Ion tient compte maintenant de 'influence de la
rugosité, laquelle se traduit toujours par une perte d’éner-
gie, la ligne de charge s’abaisse et viendra en L dans une
position qui différe en pratique trés peu de L', 1l s’ensuit
que la position de la section qui correspond & [y se
trouve reportée vers aval d’une quantité qui dépend
uniquement de cette rugosité. On  conviendra alors
d’appeler section critique Q. la section du canal dans
laquelle la charge [1 passe par un minimum.

Il résulte de ces considérations que la charge I, envi-
sagée comme fonction de [’abscisse @, passe par un
minimum au droit de la section critique. Par suite on

peut écrire

dH -
de |Qo

Mais la relation (2) fait voir immédiatement que la
L., dH ! -
dérivée — ne peut s’annuler que si 'on a
dx
Jcr = ler -

Il est alors évident que dans la section ou la charge /1
est minima, la ligne de charge L est parallele a la ligne
du radier .

On démontre aisément que si le courant est tranquille
(' = >'0) au passage de la section initiale Q,, il conser-
vera ce caractére sur toute la portion du bief située en
amont de la section critique Q. Comme il a été supposé,
d’autre part, que le courant n’était assujetti & aucune
liaison, on démontre aussi qu’en aval de cette méme sec-
tion, Pécoulement devient torrentiel (I'<C 0). Enfin, la
directrice 7 ne présentant aucune discontinuité, le para-
metre ne peut varier que d’une maniére continue sur
toute la longueur du bief. Sa valeur doit forcément s’an-
nuler au passage de la section critique Q, ce qui permet
d’écrire
(10) '.,=0.

On peut alors dire qu’un courant non assujetti a des
liaisons est tel que son parametre I' s’annule toujours
dans la section ou la charge est minima.

Dans ces conditions, la relation (8) s’écrira

2 1

:_—_})}Iér Z_g
(14) =37 v

et le probléme posé se trouve entiérement résolu deés que
I’on connait la charge critique. D’ailleurs, on établit faci-
lement que cette expression correspond au débit maximum
que 'on peut faire passer sous la charge f1.

La loi qui régit le mécanisme d’écoulement des courants
non assujettis & des liaisons peut étre exprimée alors de
la facon suivante :

Le régime permanent est celui qui correspond au plus
grand débit susceptible de passer sous la charge minima.

[’écoulement prend alors dans ce cas le nom particu-
lier de déversement. Le courant qui lui correspond sera
appelé courant déversant dénoyé. La forme géométrique
parcourue par un tel courant sera dite déversour dénoyé a
lame adhérente.

L’é¢tude des courants déversants dénoyés ne différe
de celle des courants liquides en général que du fait que
le parametre I s’annule dans la section critique ou la
charge est minima. Cette condition, exprimée par (10),
enlraine évidemment aussi (4 bis), laquelle, remarquons-
le en passant, est équivalente & (11), puisque les quan-
tités He el te sont liées par la relation auxiliaive

(7 bus) for = 3

qui découle de (7).

H.
Reprenons I'équation (2) et transformons-la a ['aide

de (5). Il vient
. 2€ .
(2 bis) <| - [—‘> dt = (J—i)d=.




BULLETIN TECHNIQUE

DE LA SUISSE ROMANDE 249

Lorsque le courant est déversant dénoyé, on aura, en
vertu de (6)

: ter ,
(12) <l. — 3 dt = (J — 1) d=.

D’autre part, la pente piézométrique ¢ d’un courant
liquide s’exprime par la relation bien connue

QP

l—?—z@;

(13)

laquelle dérive directement de celle de Chézy. Dans
cette relation, P désigne le périmétre mouillé et o un
coeflicient, d’expression empirique, qui dépend de la
rugosité des parois et du rayon
hydraulique R. Cette derniére
relation, combinée avec (4bis)
devient alors l

pbr?
[

déré en un certain nombre d’intervalles Az suffisamment
petits pour qu’on puisse considérer la pente J et le
coeflicient A comme constants.

Supposons alors que I'on fixe d’une maniére arbitraire
la valeur du tirant ¢, = t; avec la condition

2
3 Hy << 1 << Hy .
Dans la section critique, on aura J¢ = i¢ c’est-a-dire

X?érz b

Il s’ensuit par conséquent que lorsque la quantité

Jér:

Limite extréme pour la

N

K= x9°b .
8

Enfin, si I'on tient compte It
)

avec

de (14) dans (12), on arrive a
Uéquation générale des courants
déversants

|
W) (1—F)u- U

. ter (b + 21)
__<J— T) da

Mise sous cette forme cette

équation ne conduit cepen-
dant 4 aucun résultat pratique,
car il ne faut pas perdre de vue que J est une fonc-
tion f(z), tandis que R, par suite K, est fonction irra-
tionnelle de ¢.

On devra alors avoir recours a la méthode par différences
finies en remplacant dx et dt par Az et Ar. Dans ces

conditions, I’équation (15) devient

_ JK —te(b + 2¢)
o K —t)

(16) At .
La charge H, étant donnée, il est évident que dans la
section . on peul écrire

20
(17) q=1 \/’/‘b (Hy — to)

laquelle est une transformation directe de (1). En égalant
membre & membre les deux relations (17) et (4 bis), on

trouve
(181 lcr = {/2/3(1‘[0 5 /0/‘

qui exprime la dépendance de fg et te. On observe que le
coeflicient y a disparu de cette expression, ce qui revient
4 admettre, a priori, que la répartition des vitesses obéit
4 la meéme loi dans toutes les sections Q; du bief.

Imaginons maintenant cue ’on partage le bief consi-

ET -, (Bt ﬁt . =7
|
|

détermination de Q ;
=2 i |
A ﬂ-\ | Point| de
\ concordance
H, i
t,no‘l ) ~\\\‘
be tee
Jm)ns) Jer
J-o
>77777779‘;(
Aﬂn_)ihq)
Qs D Ny N Qer
Fig. 4.

t§ a été fixée arbitrairement, on obtient du méme coup
une pente critique J{., par suite la position de la section
critique Qf et le tirant critique f; au droit de celle-ci
(formule 18). Reportons dans les sections Qg et Qg les
tirants g et t&. (g, 4).

L’application de la formule (16) au premier intervalle
. A,l'(n)(,,+1) o s ey
donnera dans chaque section la variation At, et par

Axpy, puis successivement a Azis .

conséquent le tirant, puisque tt1y) = tn + Aty
On est ainsi conduit & tracer sur I'épure une ligne
d’eau A’ et de profil en profil, on parviendra dans la sec-

tion critique admise. On constate alors que A’ intercepte

“au droit de Qf un tirant qui, en général, différe de ¢/ .

On conclura que 'hypothese concernant celui-c1 n’était
pas exacte. On se trouvera alors dans I'obligation de
recommencer le calcul en admettant une autre valeur
pour f, el cela jusqu’a concordance parfaite dans la
section critique.

Ajoutons encore qu’il n’est pas nécessaire de reporter la
ligne de charge, laquelle s’obtiendrait trés simplement &
IPaide de (1).

Lorsque la coincidence a été obtenue dans Q... la
relation (4 bis) fournit immédiatement la valeur de g

partant (. Le probleme posé se trouve ainsi résolu.
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Enfin, la recherche de la ligne d’eau A dans le troncon
aval ne présente aucune difficulté. Il suflira de revenir a
Péquation (2 bis) car C est alors connu. On aura

9 2 2
(2 ter) (1—£> dt = <J—M+—“"> da

3 (%2 bt3

et I'on procédera également par différences finies.
Lorsque la directrice présente, en aval de Q,, un
coursier horizontal de longueur A, suivi d’un troncon i
pente J> 0, I’équation (15) peut é&tre intégrée ! en
admettant que le coeflicient A conserve une valeur
constante Ag. Si Pon suppose encore que la section
critique est confondue avec la section aval Q, du cour-

sier, on arrive au résultat final

2 !

cr

[2t(4z2 BBy w] T 3(18 480 [Lg(b + 2tv]

l
I 48;§,A
Yo

(19) “

=10 .

Cette relation, jointe & (18) permet de résoudre le
probleme, puisqu’on dispose de deux relations entre les
inconnues ty et fo.

Enfin, lorsqu’on peut négliger la rugosité, et ce sera

la plupart du temps le cas pour de tels déver-

soirs, la condition I';; = 0 conduit a la relation

(11). La quantité H, devient égale a4 la hauteur

de charge en créte [/, = [l et 'on trouve
(11 bis) o=2._1 g
J s = = - = z\/4
3 \/.‘3’7, s

formule qui, au coeflicient » preés, coincide avec
celle proposée par Bélanger pour le déversoir a
coursier horizontal ot I'on néglige les frottements.
Le coeflicient de dépense p, d’un tel déversoir

est done faible 2, puisque, lorsque la directrice est

curviligne, celui-ci peut atteindre des valeurs

pouvant dépasser 0,80,
Il résulte de ce fait, que les déversoirs caractérisés

I
par une directrice 7 o Uon peut poser ds = dx en
tous les points résentent un mausals rendement

/ y

hydraulique. Dans les applications de la pratique
courante, ils sont donc a rejeter car leur emploi

conduit @ des solutions qui ne sont pas économiques.
(A suivre.)

' Voir Bulletin technique de la Suisse romande, N° du 6 novembre 1926,

* Lorsque la lame tombe librement 4 P'extrémité du coursier ou lorsque
celui-ci est prolongé par yne doucine, le coeflicient de dépense peut atteindre
une valeur supérieure i o suivant la valeur relative de H et A. Dans ce
cas, les filets liquides sont déjia curvilignes dans le voisinage de la surlace
libre; on ne peut done plus appliquer les développements précédents. 11 ne
s'agit plus, & proprement parler, d'un déversoir 4 coursier horizontal,
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IVe prix : projet « Volta », de M. Daniel Ledermann, architecte, a Vevey.

Concours d’idées pour le
nouvel immeuble de la Société Romande
d’Electricité, a Vevey.
(Suite et fint.)

Projet NO 8: Volta 11. — Projet intéressant. Locaux réser-
vés a la Société Romande d’Electricité bien compris. Lesca-
lier réservé aux locataires est mesquin, sans possibilité d’y
placer un ascenseur. Appartements médiocrement distribués
et les toilettes manquent pour les locaux prévus comme bu-
reaux. Facades correctes.

' Voir Bulletin technique du 5 octobre 1928, page 241.
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