**Zeitschrift:** Bulletin technique de la Suisse romande

**Band:** 51 (1925)

Heft: 7

Wettbewerbe

#### Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

#### **Conditions d'utilisation**

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

#### Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

**Download PDF: 28.11.2025** 

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

notre canal des mesures hydrométriques, telles par exemple que celles exécutées par la Commission de la Société suisse des ingénieurs et des architectes. Eh bien! nous constaterons ici comme on l'a constaté dans des mesures semblables, des différences pouvant aller jusqu'à 10% et que nous prendrions au premier abord pour des erreurs de mesure. Cependant, malgré tout le soin que nous pourrons apporter à nos observations, toujours ces différences apparaîtront. Messieurs, mon avis est que ces inexactitudes cachent une loi naturelle encore inconnue, et qui ne serait autre que la loi de pulsation déjà présentée à l'état d'hypothèse dans l'ouvrage du Dr Rümmelin «De quelle façon se meut l'eau courante? ». Cet auteur, se basant sur des essais exécutés sur un canal où il avait constaté ce même phénomène, expose dans son ouvrage toute une théorie où il tente d'expliquer comment peut se mouvoir l'eau que nous voyons tous les jours couler sous nos yeux sans que nous ayons réussi, jusqu'ici, à en apprendre beaucoup plus qu'au temps de Pythagore.

Si le frottement n'existait pas l'eau prendrait simplement un mouvement qui serait uniformément accéléré pour un profil et une pente constants et qui, de toute façon, serait aisé à calculer à l'aide de la *ligne d'énergie*: celle-ci restant horizontale, sa position serait exactement connue dans chaque section.

De même, s'il se formait le long des parois et du fond une couche d'eau immobile sur laquelle glisserait sans frottement la masse d'eau, ainsi que le supposaient les premiers hydrauliciens, le phénomène serait aussi très simple. Mais ce n'est pas le cas, en dehors du frottement entre l'eau et les parois existent encore les frottements entre les particules d'eau; ce sont ces actions tangentielles qui déterminent la formation de tourbillons et jouent un rôle prépondérant dans le mode d'écoulement.

Passons à un autre ordre de considérations. Si l'on observe la chute d'une lame d'eau par-dessus un barrage, on peut voir se former quatre sortes de tourbillons. Immédiatement au-dessous de la lame d'eau se trouve un tourbillon horizontal qui se meut dans le sens du mouvement du jet. Sur la lame elle-même s'en forme un deuxième, tournant en sens inverse. En aval du jet, à l'endroit où la lame d'eau quitte le seuil du barrage, on peut constater un troisième tourbillon se mouvant dans le sens de l'eau. Enfin, on peut apercevoir plus loin un mouvement ascendant de l'eau du fond vers la surface.

Ces tourbillons obéissent naturellement à des lois précises dont la connaissance nous permettrait de déterminer exactement le mouvement de l'eau. Mais elles nous sont précisément encore inconnues et leur étude forme un des buts proposés à l'hydraulicien. On a fait toutefois jusqu'ici quelques observations intéressantes : on a constaté par exemple que le tourbillon supérieur qui se meut en sens inverse de l'eau surcharge la lame déversante et fait office de frein. En donnant au barrage

une forme convenablement choisie on peut arriver ainsi à détruire la plus grande partie de la force vive du jet.

En ce qui concerne le tourbillon inférieur on a observé qu'il avait une grandeur limite qui n'est jamais dépassée. Supposons qu'à l'extrémité du radier se treuve un trou très profond auquel fait suite la rivière. On constate que dans ces conditions le tourbillon aval prend une grandeur parfaitement déterminée.

Reprenons notre canal en bois et donnons-lui une inclinaison de 35° sur l'horizontale; nous verrons que malgré cette très forte pente la vitesse de l'eau reste à peu près constante, même si l'on augmente le débit. L'eau entraîne avec elle une certaine quantité d'air qui peut aller jusqu'à tripler son volume primitif.

Pour terminer ces considérations théoriques, envisageons à présent l'écoulement non plus dans un canal ou une rivière, mais à travers un matériel poreux. Si nous supposons qu'une masse de sable ou de gravier, par exemple, soit soumise en deux sections déterminées à des pressions hydrostatiques différentes il s'établira entre ces deux sections, à travers les pores de la matière, un courant. La pente hydraulique, ou si l'on veut la pente de la surface de la nappe souterraine prend en une section quelconque une valeur proportionnelle à la vitesse dans ladite section. Le cœfficient de proportionnalité est appelé facteur de percolation.

(A suivre.)

## Concours d'architecture relatif à l'aménagement du quartier de Villamont et de la Place du Faucon.

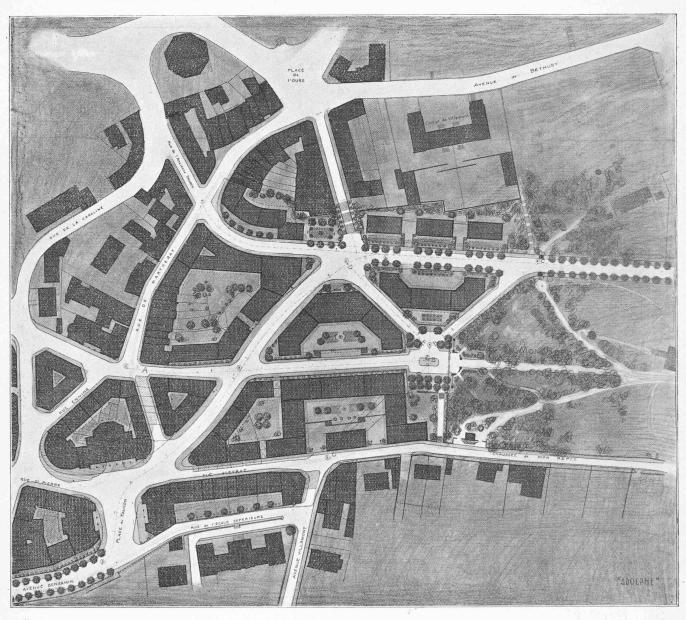
Extrait du rapport du jury 1.

Le jury s'est réuni lundi 1<sup>er</sup> décembre, à 9 h. 30, au Casino de Monthenon où les projets étaient exposés.

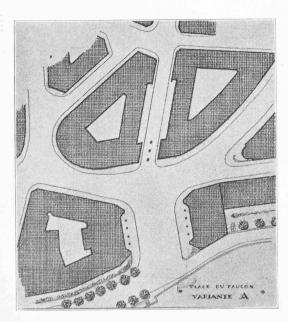
Etaient présents : MM. Boiceau, directeur des Travaux ; Camille Martin et Braillard, architectes à Genève ; Rochat-Mercier, ingénieur en chef de la Ville.

M. Daxelhoffer, architecte, empêché d'assister à la séance, est remplacé par M. Burnat, architecte à Vevey, suppléant.

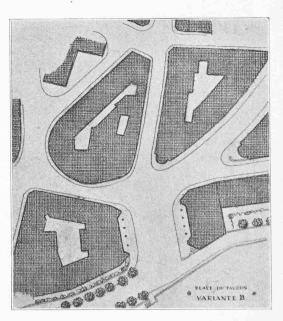
M. Boiceau est nommé président du jury.


Pour faciliter la discussion et laisser pleine liberté d'esprit aux membres du jury, un secrétaire est nommé en la personne de l'architecte-adjoint du Plan d'Extension.

M. le président du jury lit en premier lieu le programme du concours et constate que huit projets ont été remis en temps voulu au Service technique de la direction des Travaux.


Ce sont les projets : « Faucon » ; « Unité » ; « Repos » ; « La Percée » ; « Saint-Pierre » ; « Adolphe » ; « Pour être vu en perspective » ; « Simple ».

Après une vérification rapide, le jury constate que les projets remplissent les conditions du programme et peuvent être admis à l'exception du projet « La Percée », dont l'auteur a fermé l'enveloppe qui contient probablement le mémoire demandé et laissé ouverte celle qui renfermait son nom ; un membre du jury a été ainsi amené à prendre connaissance du nom de l'auteur ; en outre, une des deux perspectives demandées au programme pour la place du Faucon, manque.


<sup>&</sup>lt;sup>1</sup> Voir Bulletin technique du 16 mars 1925, page 71.



Echelle 1: 3000.

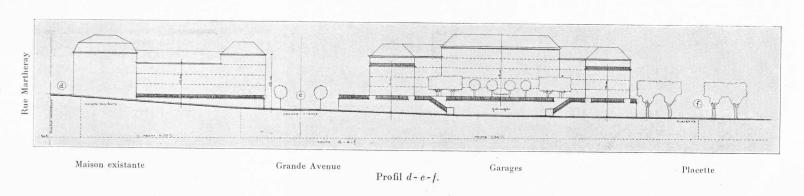


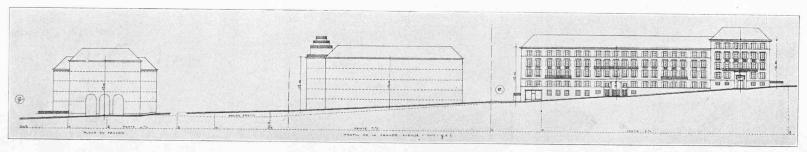
Echelle 1: 2000.



Echelle 1: 2000.

Plans de situation. — IIIe prix : projet «Adolphe» de M. A. Laverrière, architecte, à Lausanne.


# CONCOURS POUR L'AMÉNAGEMENT DE LA PLACE DU FAUCON, ETC., A LAUSANNE



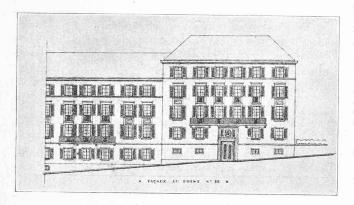

Prolongement rue Ancienne Douane

Square Escalier

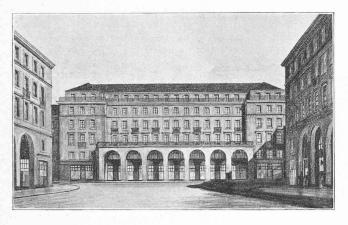
Profil a - b - c.






Place du Faucon

Profil de la grande avenue ( g - e - i ).


Echelle 1:1200.

IIIe prix : projet « Adolphe » de M. A. Laverrière, architecte, à Lausanne.

## CONCOURS POUR L'AMÉNAGEMENT DE LA PLACE DU FAUCON, ETC., A LAUSANNE



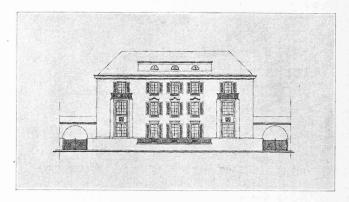
Façade au point no III.



Place du Faucon.

Le jury, à l'unanimité, décide de ne pas prendre le projet « La Percée » en considération.

Le jury procède immédiatement à une analyse des projets et note les points suivants :


Saint-Pierre. — L'aménagement en plan n'est pas suffisamment étudié, surtout sur la partie comprise entre l'avenue principale, Etraz et le Parc. L'avenue principale est coupée malencontreusement par une place inutile. Le carrefour du Faucon est bien aménagé au point de vue de la circulation, mais la solution proposée pour le bâtiment à l'est de la Place est inadmissible en raison de la mauvaise utilisation du terrain; le plan d'ensemble prévoit une juxtaposition fâcheuse de groupements en contiguité et de villas.

L'architecture des bâtiments est heureuse et s'adapterait facilement au quartier; toutefois, l'étude des groupes sur les rues en pente n'est pas au point; en outre, la division en plan ne correspond pas aux élévations fournies.

Les principales planches de ce projet ont été reproduites dans notre dernier numéro. Réd.

Adolphe. — Plan intéressant utilisant largement pour la construction, les surfaces disponibles et donnant aux différentes avenues projetées des valeurs respectives bien établies.

La place prévue devant l'escalier de Villamont manque de composition; par contre, la placette de l'entrée de Mon-Repos est intéressante. L'auteur a supprimé la diagonale sur Etraz, ce qui lui permet de faire en bordure de cette rue un groupe de constructions bien équilibré. L'aménagement de la Place du Faucon, par contre, n'est pas heureux et masque l'entrée de



Façade au point nº IV.

III<sup>e</sup> prix : projet «Adolphe», de M. A. Laverrière, architecte, à Lausanne.

l'avenue principale. La suppression du bas de Martheray est inadmissible.

L'architecture des façades a un certain caractère d'une sobriété peut-être exagérée. Il est regrettable que l'auteur n'ait pas précisé mieux ses propositions relatives aux groupements des façades sur les rues et particulièrement sur les rues en pente. Les schémas fournis n'indiquent aucune solution pour le raccordement des rez-de-chaussées et les arrangements des toitures laissent à désirer.

(A suivre.)

# Cavitation et corrosion dans les turbines hydrauliques

Du fait de la différence des pressions qui agissent sur la face amont, d'une part, et sur la face aval, d'autre part, des aubes, celles-ci sont soumises à des sollicitations mécaniques qui se traduisent par une «fatigue» ou «pression spécifique» par cm² de surface d'aube. Cette fatigue étant directement proportionnelle à la hauteur de la chute, M. Schilhansl, dans une étude publiée au Nº du 15 février dernier de Die Wasserkraft (Munich), propose de dénommer «pression spécifique unitaire» la fatigue rapportée, pour une turbine donnée, à une chute d'un mètre.

La grandeur de cette pression spécifique est fonction de la dépression qui se manifeste au voisinage de la face aval de l'aube et qui peut atteindre une valeur telle que la pression absolue s'y abaisse jusqu'à la valeur de la tension de la vapeur d'eau pour la température correspondante. Et cette éventualité ne laisse pas d'être inquiétante car la formation de bulles de vapeur, phénomène qu'on a baptisé cavitation, non seulement diminue le rendement, mais encore entraîne une corrosion violente des aubes.

En vue d'étudier ces troubles auxquels les turbines modernes à grand nombre de tours spécifique sont particulièrement sujettes, le Dr Dieter Thoma a élaboré les plans d'une installation expérimentale qui, construite par la Société Fritz Neumeyer, à Munich, a'été annexée au Laboratoire hydraulique de l'Ecole polytechnique de Munich. On trouvera la description de cet ingénieux dispositif dans le numéro cité de « Die Wasserkraft ».