Zeitschrift: Bulletin technique de la Suisse romande

Band: 51 (1925)

Heft: 2

Artikel: Essais effectués sur un compresseur rotatif de 500 ch. de la Société

suisse pour la construction de locomotives et de machines, à

Winterthour

Autor: Ostertag, C.

DOI: https://doi.org/10.5169/seals-39486

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 26.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

élabora l'important projet d'assainissement du vieux quartier malsain de la Madeleine, où s'ouvrent actuellement de larges et belles rues; je passe enfin sous silence la construction de plusieurs édifices municipaux à laquelle il a participé. Mais avant de quitter le sujet des travaux entrepris par l'édilité genevoise dont il s'est occupé il est un point qui mérite d'être relevé, c'est qu'on n'a jamais pu lui faire le reproche qu'on adresse fréquemment, à tort ou à raison, aux ingénieurs, de négliger par trop le côté esthétique des questions dont ils s'occupent, car lui, qui le considérait comme essentiel, ne l'a jamais perdu de vue.

Si la carrière du défunt, qui vient d'être résumée à grands traits, fut bien et utilement remplie, c'est avant tout par ses remarquables qualités personnelles qu'il se distinguait et qu'il vivra dans le souvenir de ceux qui l'ont approché de près.

Ce qui faisait le charme de sa personnalité, c'était non seulement son affabilité, sa constante attention de ne jamais blesser personne, c'était avant tout son inépuisable serviabilité. A l'inverse de ceux qui n'ont pas d'occupations suivies et qui trouvent toujours un prétexte pour échapper aux besognes ou aux services qu'on leur demande, lui, malgré ses nombreuses occupations, avait toujours le temps de rendre service et de se charger de besognes manquant d'agrément.

Comme tout ce qu'on le priait de faire était bien fait, les solliciteurs ne lui manquèrent pas, cependant il ne savait rien leur refuser; c'est pourquoi, dans toutes les sociétés ou conseils dont il faisait partie, il en devenait tout naturellement le président qui se chargeait des convocations et de tout le reste; c'est ainsi que, pour ne citer que les exemples les plus connus des lecteurs de cette notice, il présidait le conseil d'administration du Bulletin technique, il était membre honoraire de la Société des anciens Polytechniciens (G. e. P.) et présidait encore au moment de sa mort la section de Genève de cette Société; il présida également la section de Genève de la Société suisse des Ingénieurs et des Architectes.

Ces précieuses qualités constituaient un bel exemple, quoique difficile à suivre par ceux qui ont eu le privilège de le connaître, mais tous garderont de lui un ineffaçable et affectueux souvenir.

P. P.

Essais effectués sur un compresseur rotatif de 500 ch.

de la Société suisse pour la construction de locomotives et de machines, à Winterthour

par le professeur C. OSTERTAG, ingénieur.

L'emploi toujours plus général d'air comprimé a donné au compresseur rotatif ¹ un débouché important et une expérience de plusieurs années a prouvé abondam-

¹ Voir Bulletin technique du 8 novembre 1924, page 292.

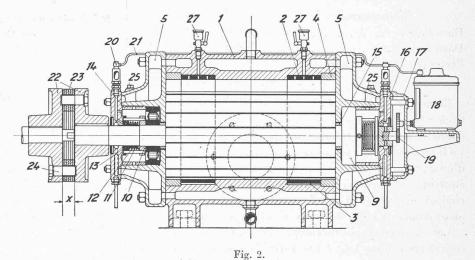
ment que ce type de compresseur a une marche tout à fait sûre pour peu qu'on apporte quelques soins à sa conduite d'ailleurs très simple. Un de ses principaux avantages réside dans son nombre de tours élevé, qui permet l'accouplement direct à un moteur électrique. On obtient par là un groupe restreint, facile à surveiller et d'un encombrement très faible.

Les fig. 1 et 2 permettent de se rendre compte de la construction et du fonctionnement de la machine. La position excentrique du rotor dans la chambre cylindrique laisse un espace en forme de croissant divisé en un certain nombre de cellules par des palettes en tôles

d'acier. Ces palettes glissent facilement dans les rainures ménagées dans le rotor et s'appuient dans toutes leurs positions sur la paroi de la chambre. La force centrifuge des palettes est contrebalancée par deux anneaux tournant avec elles. Ces anneaux mobiles ont extérieurement un jeu radial formant un espace annulaire libre divisé par de petites palettes en cellules reliées à celles de travail par des orifices ménagés dans les anneaux et servant à l'équilibrage de la pression.

Un appareil de réglage par tout ou rien (fig. 1) entre automatiquement en fonction dès que la pression désirée est dépassée. Dans ce cas l'air comprimé passant par la conduite

Fig. 1.


.1 Voir aussi Der schweizerische Maschinenbau, vol. 11, page 110. soulève le petit piston B chargé par les poids G. Le canal de dérivation C est ainsi découvert, l'air comprimé abaisse le piston D, ce qui permet au tiroir E de fermer la conduite d'aspiration. Simultanément la clapet F s'ouvre pour donner passage à l'air comprimé se trouvant encore dans la machine, air qui s'échappe par U dans la conduite d'aspiration. Par suite de la différence de pression la soupape de retenue P se ferme et le compresseur marche à vide jusqu'à ce que la pression dans la conduite de refoulement P soit suffisamment tombée pour permettre à B de redescendre et de relier le canal C à l'extérieur par l'ouverture L. L'air comprimé se trouvant au-dessus du piston D peut

alors s'échapper, le tiroir E s'ouvre sous l'effet du ressort, F se ferme et la compression de l'air recommence.

Le compresseur à une phase convient pour une pression de refoulement jusqu'à 4 atmosphères. Celui à deux phases pour des pressions supérieures. Le refroidisseur d'air entre les phases peut être logé dans la plaque de fondation (voir fig. 3).

La Société suisse pour la construction de locomotives et de machines a récemment construit des groupes de grandes dimensions. Elle a en particulier livré à des charbonnages étrangers des unités de 500 ch. chacune. L'auteur de cette note a eu l'occasion, en juin 1924, de procéder à des essais de réception précis d'un de ces compresseurs dont voici les résultats :

Essais no		I	II	III
Pression d'air à la bride de				
refoulement de la 2 ^{me} phase	atm.	7,0	6,0	5,0
Pression d'air à la bride de				
refoulement de la 1 ^{re} phase.	atm.	1,98	1,88	1,80

Légende : 1. Cylindre. — 2. Anneaux mobiles. — 3. Palettes des anneaux mobiles. — 5. Couvercles. — 9. Roulement à rouleaux. — 10, 11, 12, 13, 14. Joint de l'arbre. — 18. Pompe de graissage. — 22, 23, 24. Accouplement élastique.

Dépression à la bride d'aspira-	200	245	245
tion 1re phase mm. d'eau	308	315	317
Rapport des pressions (pres-			
sion barométrique 723 mm.)	8,38	7,34	6,29
Volume d'air aspiré m³/heure	4041	4100	4100
Nombre de tours/minute	422	422	422
Puissance (à l'accouplement). ch.	489	454	415
» isothermique »	302	289	267
Rendement isothermique 1 . %	61,8	63,6	64,4
» volumétrique 1re			
phase %	92,3	93,7	93,7
Elévation de la température			
de l'air dans le compresseur °C.	106	97	84
Elévation de la température			
de l'eau °C.	8,5	8,0	7,5
Volume d'eau de refroidisse-			
ment m^3 /heure	22,3	22,3	22,3

Le rendement isothermique est la relation entre la puissance qui théoriquement est nécessaire pour comprimer à la pression finale le volume d'air aspiré, sans augmentation de température, et la puissance effectivement absorbée par le compresseur, mesurée sur son arbre (soit Ch. is. Rendement isothermique).

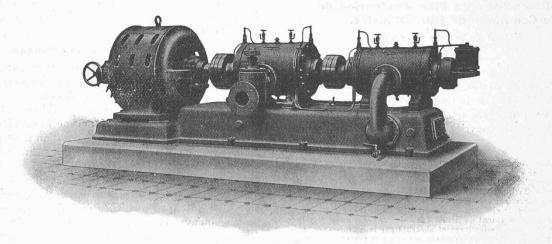


Fig. 3.

Bilan thermique 1 Dans l'air ch. 180 167 146 Dans l'eau 300 284 265 Pertes (conduite, rayonnement) 3 9 4 Total 454 489 415 ch.

Comme d'usage le volume fut mesuré au moyen d'une tuyère bien arrondie placée à l'entrée d'un tube de fort diamètre fixé sur la tubulure d'aspiration du compresseur. La force donnée au compresseur fut déterminée au moyen d'un dynamomètre à torsion Amsler, placé entre le moteur électrique et le compresseur. La mesure des quantités de chaleur emportées par l'air et par l'eau de refroidissement donna un contrôle des i ndications du dynamomètre.

Les rendements isothermiques constatés peuvent être considérés comme tout à fait satisfaisants. Ils correspondent à ceux de compresseurs à piston, à la condition que les essais sur ces derniers soient faits sur les mêmes bases et d'après les mêmes méthodes de mesure. Mais malheureusement il est rare que les rendements des compresseurs à piston soient mesurés de cette façon. Dans ces compresseurs avec pistons à mouvement de va et vient on se contente généralement de l'indicateur à diagramme. Cet appareil doit non seulement donner la force indiquée, mais aussi servir à déterminer le volume aspiré. Cette dernière méthode n'est pas précise et conduit à des résultats inexacts, car les pertes du piston font obtenir un volume plus grand, tandis qu'en réalité c'est le contraire qui est exact.

En outre il faut toujours tenir compte du côté pratique d'une installation : encombrement restreint, faibles fondations, pas de transmission par courroie, frais minimes pour l'installation, la conduite et l'entretien. Ce sont là des avantages qui contrebalancent largement même un rendement plus faible. Des conditions analogues régissent les applications de la pompe centrifuge et de la pompe à piston pour l'eau. La grande diffusion de la première ne peut pas être attribuée en première ligne à son rendement.

Concours d'idées pour l'établissement d'un Plan d'extension de la Commune de Saint-Maurice.

Extrait du rapport du Jury.
(Suite) ²

7. « Prévoir pour trente ans ». — Bon tracé des artères Est et Ouest. Certaines démolitions seraient coûteuses. Transformation de l'Avenue de la Gare n'est pas indiquée. Voies secondaires assez bien conçues. En raison du prix trop élevé du terrain, le quartier ouvrier ne se justifie pas à l'endroit indiqué.

(A suivre.)

Méthodes modernes d'épuration des eaux d'égout en Europe et en Amérique,

par le *D^r Hans Peter*, ingénieur, directeur de la Société d'entreprise de forages et de travaux, à Zurich.

(Suite ¹.)

III. La fosse septique.

Le traitement par des fosses septiques des eaux usées est une sorte de décantation, mais les boues restent des semaines et même des mois ou des années dans les bassins de sédimentation. En Angleterre le procédé est connu sous le nom de Septic Tank Treatment, il existe depuis 1895. Les décharges des fosses septiques sont toujours putrescibles, en conséquence, la fosse septique ne peut pas épurer les eaux d'égouts, comme on le croyait jadis ; il faut se souvenir seulement des fosses Mouras.

Le traitement des eaux usées par la fosse septique doit être considéré comme préparation à l'épuration biologique artificielle, ou à la desinfection, ainsi que la décantation qui ne peut non plus épurer les eaux d'égouts complètement. La fosse septique peut réaliser la séparation d'une partie des matières en suspension, il se produit en même temps une réduction de ces matières organiques par des procédés chimiques, mais il est à retenir que l'épuration biologique artificielle devient par ce traitement beaucoup plus difficile.

D'après Paetsch et Dunbar, le temps de séjour des eaux d'égouts dans les fosses septiques doit être environ de huit heures.

La réduction des boues par le procédé de la fosse septique est encore très discutée, d'après les dernières recherches cette réduction n'est que de 10 % environ.

L'effet de clarification est à peu près analogue aux effets des décanteurs, on arrive donc à retenir jusqu'à 70 % des matières en suspension, ce qui produit naturellement une grande décharge des installations pour l'épuration biologique. Il se produit également une réduction des matières organiques, cette réduction est de 30-50 %.

Les désavantages des fosses septiques vis-à vis des décanteurs sont considérables. Leurs décharges sont putrescibles, ce qui rend l'épuration biologique plus difficile.

On a également par ce procédé les inconvénients de l'emmagasinage de matières putrescibles, qui ne répond pas aux exigences de l'hygiène moderne. On est arrivé ainsi de plus en plus à abandonner les fosses septiques en faveur des décanteurs.

Des installations importantes pour fosses septiques se trouvent à Birmingham, Sulton et Enfield en Angleterre et à Unna en Allemagne, en France il en existe également un certain nombre.

IV. La précipitation chimique.

Le procédé d'épuration des eaux usées par précipitation chimique est relativement ancien, les premières installations ayant été réalisées il y a déjà cent ans.

On croyait tout d'abord que ce procédé pouvait donner de bons résultats aussi au point de vue économique, mais ici, on eut des déceptions. L'effet d'épuration n'est pas non plus satisfaisant, on arrive seulement à une réduction de 20-30 % des matières organiques.

La précipitation chimique donne seulement lieu à une clarification des eaux usées, mais les décharges restent putrescibles, en outre, les quantités de boues sont beaucoup plus grandes qu'avec la décantation et les boues ne peuvent pas être employées comme engrais.

Pour la détermination du bilan thermique on releva l'élévation de la température de l'air et son poids, pour calculer ensuite la quantité de chaleur entraînée par l'air et le nombre de chevaux équivalents. De la même façon on détermina la quantité d'eau de refroidissement et l'élévation de sa température pour calculer ensuite la quantité de chaleur entraînée par cette eau et le nombre de chevaux équivalents. Le total de ces deux quantités de chaleur, respectivement du nombre de chevaux équivalents doit être égal au nombre de chevaux effectivement absorbés par le compresseur, mesurés sur son arbre. La différence éventuelle est due aux pertes par rayonnement ou à de petites erreurs de mesurage.

² Voir Bulletin technique du 3 janvier 1925, page 6.

¹ Voir Bulletin technique du 6 décembre 1924 page 319.