**Zeitschrift:** Bulletin technique de la Suisse romande

**Band:** 51 (1925)

**Heft:** 12

Artikel: Compte rendu de la permière conférence mondiale de l'énergie à

Londres

Autor: Tissot, Ed.

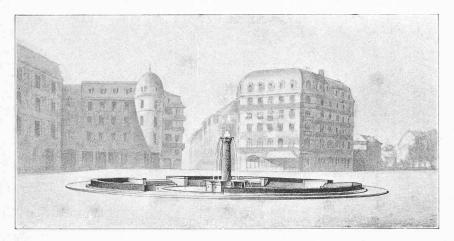
**DOI:** https://doi.org/10.5169/seals-39513

# Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

#### **Conditions d'utilisation**

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus


#### Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

**Download PDF:** 30.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

#### CONCOURS POUR UNE FONTAINE DÉCORATIVE, A VEVEY



IVe prix : projet « Pampres », de M. R. Martin, peintre, à Perroy et André frères, architectes, à Morges.

#### Compte rendu de la première conférence mondiale de l'énergie à Londres,

présenté, à Berne, le 13 décembre 1924, à l'Association Suisse des Electriciens, par M. le  $D^{r}$  Ed. Tissot, président de cette Association.

MESSIEURS ET CHERS COLLÈGUES,

Vous avez peut-être pensé que je faisais preuve de beaucoup de présomption, en provoquant une Assemblée générale extraordinaire de notre Association, pour m'entendre parler de la Première Conférence mondiale de l'Energie, qui s'est tenue à Londres du 30 juin au 12 juillet de cette année.

Si je l'ai fait, Messieurs, ce n'est pas du tout dans un but personnel, loin de là. Les motifs qui m'ont guidé dans ma détermination émanent d'un sentiment de devoir à remplir vis-àvis de notre Association et de nos industries.

J'estime en effet que lorsqu'un de nous a été désigné pour prendre part comme délégué officiel de notre Association à un congrès international, il doit informer ses collègues des décisions qui y ont été prises et leur communiquer dans la mesure du possible ce qu'il y a vu et entendu, afin qu'ils en profitent aux aussi.

Ce motif n'aurait peut-être pas suffi. Aussi y en avait-il un autre : certains industriels, fabricants de matériel mécanique et électrique des différentes nations représentées au congrès de Londres, s'en sont servis pour faire une réclame bien comprise en faveur de leurs produits. A les entendre, il semblait qu'ils avaient au point de vue technique une forte avance sur ceux des autres pays et par conséquent sur les nôtres.

J'ai donc pensé que la réunion d'aujourd'hui serait pour nos industriels une occasion bienvenue de remettre les choses au point et d'exercer une juste critique aux rapports et communications présentés par leurs concurrents étrangers.

Ma conférence sera fastidieuse et longue, et cependant, elle ne donnera qu'une très faible image de ce qui a été présenté à Londres. Je vous prie donc, Messieurs, de bien vouloir vous armer de beaucoup de patience et d'indulgence pour votre conférencier. Vous serez, d'ailleurs, récompensés par ce que vous entendrez cet après-midi.

Le but que se proposait d'atteindre la Conférence mondiale de l'Energie (W. P. C.) est indiqué dans le programme envoyé aux intéressés par le Comité d'organisation. Ce but est d'examiner comment il serait possible de régler l'utilisation des sources industrielles et scientifiques d'énergie au mieux des besoins aussi bien nationaux qu'internationaux. Ce programme ne brille pas précisément par sa clarté et son élégance; je vous le donne tel quel :

En examinant les richesses dont dispose chaque pays en force hydraulique, en huiles, combustibles et minéraux.

Par la comparaison des résultats acquis dans le perfectionnement scientifique des procédés de culture et d'irrigation, et des moyens de transport par eau, aériens et terrestres.

Par des conférences entre ingénieurs civils, électriciens, mécaniciens, de la marine et des mines, et entre experts techniques et autorités en matière de recherches scientifiques et industrielles.

En consultant les consommateurs de force motrice et les constructeurs des instruments de production.

Par des conférences sur l'enseignement technique, ayant pour objet la comparaison des méthodes d'enseignement adoptées par les divers pays et la discussion des moyens permettant d'améliorer les facilités d'étude actuelles.

Par l'étude des aspects financiers et économiques de l'industrie, au point de vue national et international.

En examinant la possibilité de créer un Bureau mondial permanent ayant pour but de réunir des données, d'établir des

inventaires des ressources du monde et d'échanger des renseignements, industriels et scientifiques, par l'intermédiaire de représentants nommés dans les divers pays.

Le travail de cette conférence mondiale a été réparti en

un certain nombre de sections qui sont :

|           |                                             | Nombre de rap-<br>ports annoncés: |
|-----------|---------------------------------------------|-----------------------------------|
| Section A | Statistique des ressources d'énergie par    |                                   |
| 7         | pays                                        | 55                                |
| » F       | B Energie hydraulique                       | 42                                |
|           | Préparation des combustibles                | 19                                |
|           | Energie thermique:                          |                                   |
|           | 1º Production de la vapeur                  | 83                                |
|           | 2º Turbines à vapeur                        | 4                                 |
|           | 3º Industrie du gaz                         | 6                                 |
| » I       | E Moteurs à combustion interne              | 9                                 |
|           | Autres sources d'énergie                    | 6                                 |
| » (       | G Transmission et distribution de l'éner-   |                                   |
|           | gie                                         | 47                                |
| » I       | Application de l'électricité à l'industrie  | 22                                |
|           | J Application de l'électricité à l'électro- |                                   |
|           | chimie et à l'électrométallurgie            | 9                                 |
| » F       | Application de l'électricité aux trans-     |                                   |
|           | ports                                       | 38                                |
| » I       | Application de l'électricité à l'éclai-     |                                   |
|           |                                             | 4                                 |
| » N       | rage                                        |                                   |
|           | lative                                      | 19                                |
| » I       | N Standardisation, formation de l'ingé-     |                                   |
|           | nieur, hygiène                              | 5                                 |
|           | Total des rapports                          | 368                               |
|           | Total des lapports                          | 0.00                              |

Le nombre des rapports présentés sur ces différents sujets a été de 323! fournis par les pays suivants :

| Grande-Bretagne       | 75 | Norvège     | ١. |   | 18 |
|-----------------------|----|-------------|----|---|----|
| Suède                 | 40 | Hollande    |    |   | 15 |
| Etats-Unis d'Amérique | 39 | Italie      |    |   | 15 |
| Allemagne             | 23 | Suisse      |    |   | 21 |
| Autriche              | 21 | Autres pays |    | , | 75 |

Les transactions de ce congrès seront réunies en un ouvrage de 4 volumes, comprenant 5500 pages, qui sera publié fin décembre de cette année, sauf retard.

Si je vous menaçais, Messieurs, de vous faire un résumé même très succint de ces 323 rapports, vou prendriez immédiatement la fuite, et d'ailleurs, en comptant seulement un quart d'heure par rapport, il faudrait 81 heures, soit environ 10 jours de travail, pour remplir cette tâche assurément très ingrate. Aussi, comme je ne dispose guère que d'une heure et demie à deux heures et que cette conférence sera complétée

<sup>&</sup>lt;sup>1</sup> En réalité 6, dont 5 condensés en 1 seul.

TECHNIQUE DE LA SUISSE ROMANDE



# Seite / page

leer / vide / blank cet après-midi par diverses communications, je me bornerai a traiter quelques sujets qui me paraissent dignes d'attirer plus spécialement votre attention. Je répartirai la matière en 5 chapitres principaux :

Chapitre I Ressources d'énergie :

a) dans le monde entier,

b) en charbon,

c) chez nos voisins.

Chapitre II Travaux de génie civil.

Chapitre III Turbines hydrauliques.

Chapitre IV Installations à vapeur à haute pression :

a) chaudières;

b) turbines à vapeur.

Chapitre V Transmission, régularisation et distribution d'énergie électrique.

#### CHAPITRE I.

# Ressources d'énergie.

#### a) Dans le monde entier.

Il s'agit ici d'une revue générale des ressources d'énergie disponibles dans les pays du monde civilisé, sous les formes les plus diverses, telles que hydraulique, charbon, huiles lourdes, tourbes, force du vent, etc.

Cette statistique générale est faite, je crois, pour la première fois et offre certainement beaucoup d'intérêt.

Il serait oiseux et d'ailleurs impossible de vous donner des chiffres sur chacun des pays qui ont participé à l'établissement de cet inventaire mondial. Aussi, ne vous parlerai-je que de deux rapports d'un intérêt général, émanant du Major Général Nash et de M. Redmayne, et de ceux présentés par les pays qui nous entourent, sauf l'Allemagne qui n'a probablement pas voulu donner de renseignements sur les ressources d'énergie dont elle dispose.

Je prends d'abord le rapport de Sir Philip A. M. Nash qui, quoique inscrit sous la section M, appartient, à mon avis, plutôt à la section A; il est intitulé: « The economics of world power ».

M. Nash dit avec raison que «l'aspect économique de la force mondiale a été jusqu'à présent relativement négligé, si on le compare à l'aspect purement technique, avec ce résultat qu'il y a disproportion considérable entre le développement des deux aspects. Au point de vue technique, la science de l'utilisation de la force a fait de très rapides progrès au cours des vingt dernières années, alors qu'au point de vue économique, elle est restée presque complètement au second plan et une étude intensive de la question sous cet aspect sera encore nécessaire avant d'atteindre un degré comparable à celui qu'occupent les aspects techniques et scientifiques ».

M. Nash reproduit d'abord un tableau dressé par le professeur Arrhenius dans une série de conférences données à Dantzig en 1922.

Tableau 1 d'après Ph. Nash (chiffres du prof. Arrhenius).

| 1º Chaleur émise par le soleil pendant l'année.       3×10°         2º Chaleur solaire transmise à la terre et à l'air qu' l'entoure.       1130°         3º Chaleur solaire transmise à la surface de la terre.       530×40°         4º Evaporation de l'eau contenue dans les mers et l'air       340×         5º Energie de l'eau contenue dans les nuages.       2800°         6º Energie contenue dans les cours d'eau       550°         7º Energie réalisable par les cours d'eau       33×40°         8º Force du vent.       33×40° |       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 1430   30 Chaleur solaire transmise à la surface de la terre.   530 × 40 Evaporation de l'eau contenue dans les mers et l'air 50 Energie de l'eau contenue dans les nuages .   2800 × 60 Energie contenue dans les cours d'eau .   55 0 Energie réalisable par les cours d'eau .   33 × 80 Force du vent .   33 × 30 × 30 × 30 × 30 × 30 × 30 × 30                                                                                                                                                                                            | 2.406 |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
| 4º Evaporation de l'eau contenue dans les mers et l'air       340 ×         5º Energie de l'eau contenue dans les nuages. , .       2800 :         6º Energie contenue dans les cours d'eau       55 0         7º Energie réalisable par les cours d'eau       4 0         8º Force du vent                                                                                                                                                                                                                                                   | C 10° |
| 5º Energie de l'eau contenue dans les nuages. ,       2800 :         6º Energie contenue dans les cours d'eau       55 0 :         7º Energie réalisable par les cours d'eau       4 0 :         8º Force du vent                                                                                                                                                                                                                                                                                                                             | 106   |
| 6º Energie_contenue dans les cours d'eau       55 0         7º Energie réalisable par les cours d'eau       4 0         8º Force du vent       33×                                                                                                                                                                                                                                                                                                                                                                                            | 106   |
| 7º Energie réalisable par les cours d'eau                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | < 106 |
| 8° Force du vent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 00    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 00    |
| 90 Energie emmensiade dess les elentes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 106   |
| 9º Energie emmagasinée dans les plantes 160 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 000   |
| 10º Energie contenue dans le charbon consommé an-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |
| nuellement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 00    |
| 11º Energie totale contenue dans e charbon fossile . $ $ 44×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 106   |
| 12º Energie totale contenue dans les gisements d'hui-<br>les lourdes                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 000   |

Seule l'énergie provenant des forces hydrauliques, du charbon, des huiles et du vent peut être considérée comme immédiatement utilisable.

Steinmetz a estimé que l'énergie consommée en 1915 aux Etats-Unis sous forme de charbon, soit 867 millions de tonnes, représentent 87 millions de kilowatts de 24 heures avec un rendement de 10 %, et que les forces hydrauliques de ce pays peuvent produire 230 millions de kilowatts avec un rendement de 60 %. Si on pouvait capter l'énergie solaire transmise à la terre, on pourrait produire 800 000 millions de kilowatts, si le développement des sciences était tel que ce but pût être jamais atteint.

En utilisant les statistiques actuelles relatives à la production mondiale en charbon et en huiles lourdes, une estimation a été faite du nombre de kilowatt-heures que ces matériaux auraient pu produire.

Tableau II d'après Ph. Nash.

Energie mondiale en 1913, 1920, 1921.

|       | Cha                      | arbon                 | Huile                      | lourde                | Force                | e hydraulique         | Total                 |
|-------|--------------------------|-----------------------|----------------------------|-----------------------|----------------------|-----------------------|-----------------------|
| Année | Millions<br>de<br>tonnes | Millions<br>de<br>kWh | Millions<br>de<br>barils*) | Miliions<br>de<br>kWh | Millions<br>de<br>HP | Millions<br>de<br>kWh | Millious<br>de<br>kWh |
| 1913  | 1 344                    | 950 000               | 383,5                      | 56 200                | 675                  | 1 260 000             | 2 266 200             |
| 1920  | 1 320                    | 932 000               | 694,4                      | 102 000               | 675                  | 1 260 000             | 2 294 000             |
| 1921  | 1 130                    | 800 000               | 765,1                      | 112 500               | 675                  | 1 260 000             | 2 192 500             |

La consommation de charbon pour produire 1 kWh a été estimée à 1,41 kg, et celle de l'huile dans les moteurs à combustion interne à 0,942 kg. Ces deux chiffres paraissent *trop* prudents.

Le tableau III donne pour 1920 la production en charbon et huile pour les six pays principaux et montre qu'en additionnant l'énergie hydraulique, on aurait pu obtenir 900 000 millions de kWh.

Tableau III d'après Ph. Nash.

Energie mondiale en 1920.

|            | Char                     | bon                   | Hu                       | Force hydraulique     |                      |                       |
|------------|--------------------------|-----------------------|--------------------------|-----------------------|----------------------|-----------------------|
| Pays       | Milliors<br>de<br>tonnes | Millions<br>de<br>kWh | Millions<br>de<br>barils | Millions<br>de<br>kWh | Millions<br>de<br>kW | Millions<br>de<br>kWh |
| Ang'eterre | 233 216                  | 165 000               | 2.9                      | 0,4                   | ?                    | ?                     |
| Etats-Unis | 597 168                  | 422 000               | 442 929,0                | 65 000,0              | 52,0                 | 97 000                |
| France     | 25 274                   | 17 850                |                          |                       | 6,5                  | 12 100                |
| Italie     | 1 811                    | 1 282                 | 34,0                     | 0,5                   | 5,0                  | 9 300                 |
| Allemagne  | 143 221                  | 101 200               | 212,0                    | 31,2                  | 6,0                  | 11 200                |
| Suisse     | 75                       | 53                    | _                        | _                     | 4,0                  | 7 460                 |
| Total      | 1 000 765                | 707 385               | 443 177.9                | 65 032.1              | 73,5                 | 137 060               |

Utilisation du kW admise à 2500 heures par an.
\*) 1 baril = 151.4 l.

Les chiffres indiqués pour la Suisse comme énergie hydraulique disponible sont très inférieurs à la réalité. En effet, l'énergie produite en 1922 a été de 2 880 000 000 kWh, et la capacité des usines existantes était de 1 490 000 ch. ou environ 1 000 000 kW. A fin 1926 la puissance atteindra environ 1 340 000 kW et la production possible 5 450 000 000 kWh. A fin 1922, la Suisse disposait encore d'environ 8 000 000 ch. pouvant produire environ 20 milliards de kWh.

Le tableau IV montre le pourcentage de la consommation actuelle en kWh de l'énergie totale réalisable d'après le tableau III.

Il démontre que la Suisse, l'Italie et la France, qui disposent de moins de charbon que les trois autres, ont poussé leur consommation de façon telle qu'elle se rapproche de l'énergie disponible. Il est en effet peu probable que la consommation puisse atteindre un chiffre de beaucoup supérieur à 60 % de l'énergie disponible.

Tableau IV d'après Ph. Nash.

Energie mondiale en 1920.

Rapport entre l'énergie consommée et l'énergie disponible.

| Pays       | Energie totale disponible<br>d'après tableau III<br>Millions de kWh | Energie consommée<br>en 1920<br>Millions de kVh | Energie consommée<br>en º/o de l'énergie<br>disponible |
|------------|---------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------|
| Angleterre | 165 000                                                             | 6 400                                           | 3,88 %                                                 |
| Etas-Unis  | 584 000                                                             | 49 802                                          | 8,4 %                                                  |
| France ,   | 29 950                                                              | 5 410                                           | 16,7 %                                                 |
| Allemagne  | 143 600                                                             | 8 600                                           | 6,0 %                                                  |
| Italie     | 10 582                                                              | 3 400                                           | 32,1 %                                                 |
| Suisse     | 7 - 13                                                              | 2 700                                           | 36.2 %                                                 |
| Total      | 909 477                                                             | 76 312                                          | 8,36 %                                                 |
|            |                                                                     |                                                 |                                                        |

Remarque: L'énergie totale disponible en Suisse étant estimée à environ 20 milliards de kWh, le pourcentage doit être ramené de 36,2 à environ 15  $^{\rm o}/_{\rm o}.$ 

Le tableau V montre la progression de la production d'énergie électrique depuis 1907 à 1922 pour les Etats-Unis, l'Angleterre et l'Italie.

Tableau V d'après Ph. Nash.

Augmentation de la production d'énergie 1907-1922.

|       | Etats-l                          | Etats-Unis A. Angleterre              |                                  |                                       |                                   | Italie                                |  |  |  |
|-------|----------------------------------|---------------------------------------|----------------------------------|---------------------------------------|-----------------------------------|---------------------------------------|--|--|--|
| Année | Production<br>Millions<br>de kWh | Augmentation<br>en °/o<br>depuis 1907 | Production<br>Millions<br>de kWh | Augmentation<br>en º/o<br>depuis 1907 | Production<br>Millions<br>de kWh. | Augmentation<br>en º/o<br>depuis 1907 |  |  |  |
| 1907  | 5 862                            |                                       | 713                              | _                                     | 1 097                             |                                       |  |  |  |
| 1912  | 11 569                           | 97                                    | 1 235                            | 71                                    | 1 961                             | 79                                    |  |  |  |
| 1917  | 25 438                           | 334                                   | $2\ 366$                         | 232                                   | 3 826                             | 250                                   |  |  |  |
| 1922  | 52 275                           | 890                                   | 3 040                            | 328                                   | 4 550                             | 314                                   |  |  |  |

#### M. Nash indique comme puissance installée :

|            |  |    | kW            | Nombre d'habitants par kW |
|------------|--|----|---------------|---------------------------|
| Etats-Unis |  |    | 14 467 000    | 7                         |
| Angleterre |  |    | 3 400 000     | 12                        |
| France     |  |    | <br>1 800 000 | 23                        |
| Italie .   |  | ٠. | 1 500 000     | 24                        |
| Suisse     |  |    | 1.016.000     | 4                         |

Notre pays est donc le plus avancé au point de vue de l'électrification.

Il ne m'est pas possible d'en dire plus sur cet intéressant travail, et je passe au second rapport d'intérêt général, celui de Sir Richard Redmayne sur The coal resources of the world (Les ressources mondiales en charbon).

#### b) Ressources mondiales en charbon.

D'après l'état actuel de nos connaissances, les mines de charbon les plus considérables se trouvent en Europe et en Amérique. Quoique l'utilisation du charbon remonte à 2000 ans, ce n'est que dans les dernières décades que son utilisation intense pour des buts industriels s'est manifestée. Sur la base de la consommation actuelle, il est probable que les réserves du monde en charbon ne dureront pas plus de 1500 à 2000 ans. D'ailleurs, les réserves en plomb, zinc, étain et cuivre s'éteindront très probablement bien avant celle du charbon ; il est donc indispensable de trouver des métaux ou autres matières pouvant les remplacer.

Après avoir donné des renseignements sur les réserves mondiales des divers continents pour les différentes catégories de charbon, l'auteur, Sir Redmayne, passe à l'étude des moyens de rendre utilisables des charbons de qualité médiocre, de l'utilisation plus économique du charbon et des moyens d'empêcher le gaspillage. Il affirme qu'en Angleterre seulement, on pourrait économiser annuellement plusieurs millions de tonnes de charbon, si l'on construisait un système étendu et rationnel de réseaux de distributions électriques, permettant de fournir l'énergie à bas prix pour l'éclairage, la force motrice et le chauffage.

La production de charbon est actuellement de 1 200 000 000 tonnes par an. En 1913, année de grande activité industrielle, la production a atteint 1 324 000 000 tonnes, se répartissant par continent de la façon suivante :

Tableau VI.
Production mondiale en charbon.

|                      | Production en 1913 | Production en 1920 |
|----------------------|--------------------|--------------------|
|                      | tonnes             | tonnes             |
| Amérique du Nord     | 531 600 000        | 601 300 000        |
| Amérique du Sud      | 1 600 000          | 1 700 000          |
| Europe               | 730 000 000        | 597 500 000        |
| Asie , , ,           | 55 000 000         | 75 000 000         |
| Afrique              | 8 300 000          | 11 800 000         |
| Océanie , .          | 15 000 000         | 11 900 000         |
| Monde entier environ | 1 342 300 000      | 1 300 000 000.     |
|                      |                    |                    |

Les Etats-Unis sont en tête, suivis de l'Angleterre et de l'Allemagne, mais ce dernier pays produit beaucoup de lignites.

Environ 90 % du charbon total provient de deux régions minières, celle des Etats-Unis et celle de l'Europe. Avant la guerre, l'Europe fournissait 50 %, les Etats-Unis 40 % de la production mondiale. La position des Etats-Unis est particulièrement intéressante ; ils ont produit en 1910 : 33,2 % de la production mondiale, en 1913 : 38,5 %, et en 1920 : 46,2 %

La guerre a naturellement contribué à l'augmentation de production en faveur des Etats-Unis et à la diminution de celle de l'Europe.

En 1913, l'Angleterre a exporté 32,84 % de sa production ; l'Allemagne a exporté 12,4 %; les Etats-Unis ont exporté 5,21 %. Ces trois pays ont participé ensemble pour 155 000,000 de tonnes ou pour 88,5 % au commerce d'exportation mondiale du charbon.

Il paraît certain que les Etats-Unis exploitent un certain nombre de mines supérieur à celui qui serait nécessaire, et que si ces mines étaient exploitées pendant toute l'année, au lieu de neuf mois environ, les Etats-Unis produiraient un surplus de 200 000 000 de tonnes par an ; il en résulte que ce pays doit tendre à élever son chiffre d'exportation, alors que l'Angleterre ne pourra maintenir sa position qu'en produisant du charbon à bon marché et l'exportant grâce à un fret réduit. Les frais d'extraction atteignent aux Etats-Unis environ un tiers de ceux constatés en Angleterre pour la même qualité de charbon et, cependant, les mineurs américains touchent des salaires plus forts que les mineurs anglais.

Que pourrait-on utiliser pour remplacer le charbon?

La production mondiale d'huile minérale ne représente qu'environ 3 % de l'énergie contenue dans la production annuelle de charbon. Même en tenant compte des gisements nouveaux et riches du Mexique, de la Mésopotamie et du Turkestan, il est probable que les sources du monde en huile lourde ne suffiront pas longtemps et l'auteur estime que dans 80 à 100 ans ces ressources seront complètement épuisées.

La tourbe. La quantité de tourbe disponible en Europe a été estimée par le professeur Gibson comme équivalant à environ 100 000 millions de tonnes de charbon, et le professeur Lupton a calculé que la réserve mondiale en tourbe représente environ 4 % de la réserve mondiale de charbon.

Les forces hydrauliques. On a estimé que l'énergie des chutes d'eau pouvant être installées économiquement, représente environ 60 % de l'énergie contenue dans le charbon exploité actuellement.

Le mouvement des *marées* pourra, probablement, être utilisé dans l'avenir comme pouvant remplacer le charbon dans une faible mesure.

Chaleur solaire. On admet comme un fait bien établi que toute l'énergie disponible est due, à l'origine, à la radiation solaire. On a estimé que cette énergie est égale à environ 70 000 fois celle que développerait tout le charbon dont nous disposons, s'il brûlait simultanément; mais une petite fraction

seulement de cette énergie pourrait être utilisée pour créer de la force, car la vie animale et végétale en absorbe une quantité très importante pour continuer à subsister. La plus grande partie pourrait être récoltée sous les tropiques. Les expériences faites en vue d'utiliser l'énergie solaire se sont restreintes à la concentration de rayons lumineux au moyen de miroirs pour produire de la vapeur. J. Ericsson prétend avoir obtenu par ce moyen 1 HP par 20 pouces carrés de miroir.

Le professeur *Schræder*, de Kiel, a estimé que l'énergie accumulée annuellement dans la vie des plantes est d'environ 22 fois celle consommée en charbon dans le même temps.

L'énergie due au vent, pendant une longue durée, serait de 5000 fois celle que produirait le charbon consommé pendant le même temps.

Voilà pour ces deux rapports d'intérêt général sur les ressources mondiales d'énergie. Voyons maintenant l'inventaire des ressources en énergie hydraulique de trois de nos voisins, l'Autriche, l'Italie et la France. (A suivre.)

# Réorganisation du laboratoire fédéral d'essai de matériaux.

M. Ros, directeur du Laboratoire fédéral d'essai des matériaux, a exposé récemment les principes qui régiront cette réorganisation.

Le 10 mai 1924, le Conseil de l'Ecole polytechnique fédérale a institué une Commission consultative dont le but est :

1º de conférer et de conserver au Laboratoire fédéral la mission, qui lui appartient, de collaborer au développement et à la prospérité de l'industrie et des arts en Suisse ;

2º d'améliorer la situation financière du Laboratoire et de viser à le mettre en état d'équilibrer son budget par ses propres moyens ou, tout au moins, à réduire considérablement le déficit actuel.

En juillet 1924, à l'instigation de ladite Commission, la direction du Laboratoire adressa aux associations professionnelles intéressées et à diverses administrations une circulaire invitant les destinataires à visiter le Laboratoire et à faire connaître leurs observations et leurs vœux concernant l'activité et le développement de cet établissement.

La première condition dont la satisfaction est nécessaire à la prospérité du Laboratoire vise l'exécution impeccable et prompte des ordres. Puis vient l'accomplissement de recherches scientifiques en vue de perfectionner la science de la résistance des matériaux et de la statique.

Pour réaliser ce programme, le Laboratoire sera doté des quatre divisions suivantes ayant chacune à leur tête un ingénieur qualifié :

I. — Métaux, fils, câbles, récipients pour gaz liquéfiés et comprimés.

 II. — Liants hydrauliques, béton, béton armé, argiles et pierres.

III. — Bois, papier, courroies et cordes.

IV. — Chimie industrielle. Analyses chimiques. Huiles, lubrifiants, caoutchouc, matières colorantes, vernis.

Une enquête ayant montré que le déficit dont souffre la trésorerie du Laboratoire est dû à l'insuffisance des tarifs et au nombre trop restreint des ordres, tous les efforts de la direction viseront à y remédier, non seulement par un relèvement des tarifs, mais, avant tout, par la rédaction de rapports d'expertise soignés, explicites, munis de conclusions précises, que les commettants n'hésiteront pas à rétribuer en proportion des services qu'ils en retireront. « La fixation amiable de la redevance, indépendamment de toute prescription réglementaire, est tout indiquée ici. » Les essais faits dans ce sens, de-

puis plus d'une année, ont d'ailleurs démontré la justesse de cette conception.

Les statuts du Laboratoire lui imposent la publication de « Communications du Laboratoire fédéral d'essais des matériaux ». Cette publication sera reprise et des séances publiques de discussion auront lieu tous les deux mois en vue de rétablir le contact entre le Laboratoire et l'industrie. Nous avons déjà parlé de ces séances ; la première a eu lieu le 2 mai dernier.

En outre, on a commencé à constituer une collection — d'ailleurs absolument indispensable — des résultats d'essais.

### Semaine Juridique de Paris.

Du 4 au 11 octobre 1925 aura lieu à Paris, à la Faculté de Droit, une série de 24 conférences sur les *Tendances nouvelles* de la Législation et de la Jurisprudence jrançaises.

Ces conférences, faites par des juristes appartenant tous à l'Université de Paris et qui s'adressent aux spécialistes — étudiants en droit, juristes français et étrangers — ont pour objet de dresser une sorte d'inventaire des principes nouveaux du droit français : Droit public, Droit privé, Droit international, Organisation économique.

D'autres séries de conférences, dans des années ultérieures, compléteront ce tableau.

Adresser toute correspondance et adhésion à M. Henri Goy, Directeur du Bureau des Renseignements Scientifiques de l'Université de Paris, Sorbonne, Paris (V<sup>e</sup>).

# NÉCROLOGIE

#### Maurice Cornaz.

Né à Montet (Vully), le 21 mars 1854, Maurice Cornaz fit ses études à Lausanne et obtint, en 1874, le diplôme de l'Ecole d'Ingénieurs de cette ville. Après avoir terminé un apprentissage de mécanicien aux usines Rietmann à Netstal (Glaris) de 1874 à 1875, il est, dès 1875, ingénieur de la Compagnie du Lausanne-Ouchy et Eaux de Bret, jusqu'en 1880.

En 1880 il s'établit à Evian avec son frère pour exploiter jusqu'en 1889 l'atelier de constructions mécaniques connu sous le nom de Cornaz et C<sup>1e</sup>.

Dès la fin de 1889 à 1893 il est ingénieur à l'atelier de constructions mécaniques Ch. Schnider, à Neuveville.

En 1893 il entre à la Compagnie Générale de Navigation sur le Lac Léman où il avait été appelé à la suite de l'explosion des chaudières du bateau *Mont-Blanc*. Deux ans plus tard il est nommé directeur technique de cette Compagnie, à la suite de la mort du directeur d'alors, M. Rodieux; il a occupé ce poste jusqu'à sa mort, soit pendant trente ans.

Durant ces trente années la Compagnie de Navigation a pris un développement considérable. Il en a complètement transformé la flotte, les anciens types de bateaux disparaissant peu à peu pour être remplacés par les bateaux-salons qui sont certainement parmi les plus beaux et les plus confortables de ceux de nos lacs suisses.

Il n'a cessé d'introduire sur les bateaux toutes les améliorations techniques à l'ordre du jour et de créer des dispositifs et constructions nouvelles dont beaucoup ont été définitivement adoptées par les Usines Sulzer Frères, à Winterthour.

Ces nombreuses années passées à la Compagnie de Navigation avaient fait de M. Cornaz un véritable spécialiste des questions navales. C'est ainsi qu'il créa une méthode pour la compensation des boussoles et pour le calcul de la stabilité