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Le centre de glissement
par Robert MAILLART, ingénieur, à Genève.

Quand il s'agit des principes fondamentaux de la

Statique, sur lesquels tous les traités sont d'accord, nous
sommes habitués à les accepter sans les soumettre à un
examen critique. Tout au moins en est-il ainsi des déductions

de caractère mathématique basées sur certaines

propriétés physiques déterminées des corps.
En Statique, la plus large place est faite à l'étude des

solides prismatiques (poutres, colonnes... sollicités

par des forces extérieures. Le problème est réduit à

la recherche des tensions maxima d'une section normale
qui équilibrent ces actions extérieures. A cet effet, on
a remplacé le système des forces extérieures par les
résultantes et les couples de forces suivants x) :

1° Une résultante F, appelée Veffort normal, dont
la direction est normale au plan de la section et qui passe

par son centre de gravité. L'effort normal fait travailler
le matériau à la compression simple ou à l'extension
simple.

2° Une résultante V, appelée l'effort tranchant, située
dans le plan de la section et passant par son centre de

gravité. L'effort tranchant fait travailler le matériau
au glissement simple.

3° Un couple X, situé dans un plan perpendiculaire
à la section transversale et contenant l'axe du prisme.
Ce couple est appelé moment fléchissant : il fait' travailler
la pièce à la flexion et tend à imprimer à la section un
mouvement de rotation autour d'un axe situé dans son

plan et passant par le centre de gravité.
4° Un couple T, situé dans le plan de la section et

appelé couple de torsion. Il fait travailler le matériau au

genre de glissement dit torsion et tend à imprimer à la
section un mouvement de rotation dans son plan.

Remarquons tout de suite, en ce qui concerne le moment
fléchissant, qu'il n'y a aucune raison d'admettre, selon

3°, qu'il « contient l'axe du prisme ». En effet la position
du plan d'un couple est toujours quelconque, et seule

l'orientation de ce plan est déterminée. Il suffit, pour
vérifier cette assertion, de se rappeler qu'un couple
peut être représenté par une force infiniment petite
agissant à l'infini et située, par conséquent, simultanément

dans un nombre infini de plans parallèles. Ainsi
donc, il serait préférahle de dire que l'orientation du
moment fléchissant doit être parallèle à l'axe du prisme.

Mais c'est à une question plus importante et
particulièrement intéressante que nous voulons nous arrêter.

Il est évident que toute théorie n'a de valeur que pour
autant qu'elle est confirmée par l'expérience. Or nous
allons décrire une épreuve qui a donné des résultats
vraiment surprenants.

Un fer en f", profil normal allemand, a été chargé
dans l'axe passant par le centre de gravité de la manière

1 Nous citons presque textuellement Résal, Résistance des matériaux,
Paris et Liège 1922, p. 207 et suivantes.

indiquée dans notre fig. 1 m Nous voyons que dans la
partie médiane B-C n'intervient ni effort normal, ni
effort tranchant, ni couple de torsion, mais uniquement
un moment fléchissant. Or, selon l'énoncé 3°, on devrait
y constater uniquement « im mouvement de rotation
de la section autour d'un axe situé dans son plan et passant
par le centre de gravité », c'est-à-dire une répartition
uniforme des tensions dans une seule et même fibre
parallèle à l'axe neutre, état que nous désignerons dans
la suite par la flexion régulière.

On s'est borné à mesurer les tensions en quatre points
M1; M2, M3, M4, de la section médiane, tous distants
de 145 mm. de l'axe neutre, lequel, pour des raisons
évidentes, se ctfhfond avec l'axe de symétrie. En calculant
d'après làpihéorie usuelle, les tensions en ces points, on

V' JOOOfy V- 10OOÂg V

L-. JOOO g JOOO — sooo
1 ' —-

A
A B c O

i

>ns calculées Tensions observées Diffé ences
kg/cm» kg/cm2 en kg/cma en pour cent

—273 —518 245 89%
—273 +104 377 134 o/0

+273 +456 183 66%
+273 — 16 289 105%

Fig.1

trouve —273 kg/cm2 (en compression) aux deux points
supérieurs Mx et M2 et + 273 kg/cm2 (en extension)
aux deux points inférieurs M3 et M4.

Le tableau suivant fait ressortir les différences entre
les tensions calculées et les tensions effectives observées :

Mx
M2

M3

M.

Les diagrammes des tensions calculées et observées,
obtenus en joignant par des lignes droites les ordonnées

respectives aux deux points extrêmes de chaque aile
sont reportés dans la fig. 2. L'aire ombrée représente
les différences.

Nous voyons que ces différences sont fondamentales
et qu'elles ne peuvent être attribuées à des inexactitudes

d'observations. Force nous est donc d'admettre
une divergence essentielle entre la théorie et l'expérience.
En vérité, il n'y a pas de « rotation autour de l'axe hori--
zontal » et l'on chercherait en vain un autre axe -de rotation,

c'est-à-dire un autre axe neutre correspondant aux
tensions observées.

L'auteur de ces essais, le professeur Bach, en tire la
conclusion que toute la théorie de la flexion, même celle
de la flexion simple, n'est applicable qu'aux poutres à
section symétrique et chargées dans un plan de symétrie.
Les profils asymétriques sont donc mis à l'index. Mais
cette mesure est-«lle justifiée et la pratique doit-elle se

contenter de cette conclusion Les fers en IT, par exemple,

1 C. Bach, Elastizität und Fettigkeit, 8* édition 1920, p. 267 et suivantes.
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sont d'un emploi fréquent et commode, et leur suppression
rendrait difficiles nombre de solutions pratiques.

Cette question a donc non seulement un grand intérêt
théorique, mais elle touche aussi à la pratique courante
des constructions métalliques. Nous avons donc pensé

qu'il serait intéressant de rechercher les causes des grandes
divergences constatées entre la théorie consacrée et cette
expérience.

En observant les diagrammes des tensions, il appert que
les deux ailes sont sollicitées d'une manière tout à fait
excentrique. A la flexion régulière vient se superposer
un fléchissement latéral et de sens contraire dans chaque
aile.

Ce fléchissement est plus intense dans l'aile supérieure,
ce qui conduit à admettre un léger déplacement général
vers la gauche, imputable à une composante horizontale
de la charge. Ainsi donc, la direction de V, qui était au
début de l'essai parallèle à l'âme, est devenue oblique ;

autrement dit, la section s'est déversée à gauche. Cette
constatation nous porte à croire que nous sommes en
présence d'un phénomène de torsion, bien que la poutre soit
chargée dans un plan contenant le centre de gravité.

Devant l'incompatibilité manifeste entre la théorie
exprimée par l'énoncé 2° et l'expérience SB Bach, on peut
se demander si la conception, selon laquelle il y a glissement

simple quand la résultante des actions tangentielles
passe par le centre de gravité de la section, est bien fondée,

en d'autres termes, si la résultante des efforts
tranchants, en cas d'absence de torsion, contient le
centre de gravité. En cherchant des éclaircissements
dans les traités, on ne trouve rien de précis à ce sujet. La

preuve donnée par Résal (p. 255 de l'ouvrage cité) n'est
pas faite, parce que la conclusion que T — o ne se vérifie

pas, en général. Il semble bien, qu'en conférant au
centre de gravité un rôle important quant à l'équilibre
des efforts tranchants, on ait procédé en quelque sorte

par analogie avec l'alinéa 1°, qui a trait aux actions
normales. Ceci serait justifié, si l'on pouvait attribuer à

chaque élément de la section une part de l'effort tranchant
proportionnelle à l'aire de l'élément et dirigée parallèlement

à cet effort. Or, si cette répartition a lieu pour
l'effort normal agissant au centre de gravité, cela n'est
pas, en général, le cas pour l'effort tranchant.

Nous n'avons pas à nous occuper ici du cisaillement,
qui rentre dans l'étude des phénomènes dus à l'action
locale de forces extérieures. La théorie de la flexion se

borne à étudier l'état des choses en dehors de la zone de

perturbation causée par l'action directe des charges. Il
faut bien se rendre compte que, si les efforts tranchants
font travailler le corps « au glissement », celui-ci n'a rien
de commun avec le cisaillement, et qu'en somme « la
tension de glissement » n'est autre chose que la composante

tangentielle de la tension maximum, tension qui
a généralement une direction oblique.

Aussi M. Résal dit-il très clairement :l
« Un corps ne saurait travailler à l'effort tranchant que
1 Page 257 de l'ouvrage cité.

s'il travaille en même temps à la flexion », car « le
moment fléchissant ne peut être nul en deux sections successives

sans que l'effort tranchant soit également nul. »

En effet, même si par hasard le moment fléchissant — qui
est absolument indépendant de l'effort tranchant V —
était nul dans la section considérée, nous aurions toujours
dans une section voisine distante de dx un moment
fléchissant

dM Vdx

provoquant un changement des tensions normales. C'est
cette considération seule qui permet de se rendre compte

Z/3

5*5

Lâ£
w*

'-1

O

HM* M3

+ 456

*-273

R* 2

de la distribution des efforts tranchants dans la section.
A cette fin on fait une coupe parallèlement à l'axe du
prisme et on envisage 1'equüibre de l'une des deux parties

de la tranche du prisme limitée par les deux sections
successives.

Cette étude n'est faite généralement que pour des profils

symétriques, en se bornant à des coupes parallèles
à l'axe neutre. Il va de soi que la résultante des tensions
tangentielles se trouve alors dans l'axe de symétrie et
qu'elle contient par conséquent le centre de gravité.

Mais nous pouvons appliquer la même méthode à des
sections de forme quelconque, et admettre des directions
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obliques du plan de séparation des deux parties de la
tranche.

La résolution générale de ce- genre de problème est
certainement très ardue. Par contre, certaines formes de
sections usuelles peuvent être traitées assez aisément.
Dans le cas notamment où la section est composée de

rectangles ou de trapèzes minces, il est possible de résoudre
assez exactement le problème qui s'énonce ainsi :

Quelle est la position du point ¦ d'application G, de V,
telle que le moment fléchissant dM Vdx ne soit accompagné

d'aucun phénomène de torsion
Considérons par exemple (fig. 2) la section d'un fer

en U soumis à un effort tranchant vertical. Il y aura
absence de torsion — ceci pour des raisons de symétrie —
si les résultantes des efforts tranchants des trois
rectangles composant la section, contiennent les centres
respectifs. Les actions tangentielles étant parallèles à la
périphérie, à proximité de celle-ci, on conçoit que pour
un rectangle mince leur résultante sera dirigée à peu près
dans le sens de la longueur du rectangle. Dans l'âme, les
tensions transversales sont donc dirigées verticalement
et leur résultante V est verticale aussi. Dans les ailes,

par contre, les tensions ont une direction sensiblement
horizontale et leurs résultantes sont deux forces H de
même grandeur. Pour déterminer la force H, agissant
dans l'aile séparée de l'âme par une coupe oblique o-o,
il suffit de constater que le moment fléchissant

dM — Vdx

engendre dans l'aile un effort normal moyen

VdxdM
J • y>

où y est la dis tance entre le centre de gravité C de l'aile
et l'axe de symétrie, et J le moment d'inertie total de
la section par rapport au même axe.

L'effort normal dans l'aile de surface A

A J Vdx
AA ¦ des —j- • A ' y

doit être équilibré par une force égale mais de signe
contraire appliquée en o-o, soit à la distance s, et par
un couple

H. dx A da s,

ce qui nous donne

H
V A-s ¦ y.

En établissant maintenant les conditions d'équilibre
par rapport au centre de l'âme, nous obtenons

2H.y>=¥-.A.s.y.y'V
J

et
2A

T y-y •

La position de V excluant toute torsion est
déterminée, si outre A, J et y nous connaissons s et y Ces deux
valeurs dépendent de la réparti!mu des tensions dan's la

section o-o, répartition qui n'est guère uniforme. Les.
tensions sont certainement plus grandes à la face
intérieure, ce qui semble indiquer une direction de H
correspondant plutôt à la diagonale qu'à la ligne médiane de
l'aile. Mais, en tous cas, ^inexactitude qui pourrait
résulter de cette évaluation n'influencera pas le résultat
d'une manière essentielle.

Ces vues ayant été exposées par l'auteur dans quelques
notes antérieures 1, la commisÄn technique de
l'Association des constructeurs suisses de ponts et charpentes
métalliques a fait procéder à un essai 2 qui a pleinement
confirmé ce qui précède. En effet, en chargeant un fer en
U de 20 cm. de hauteur en deux points symétriques par
rapport aux appuis, les anomalies que présentait l'essai
de Bach disparaissaient complètement lorsqu'on appli-
pliquait la charge en dehors du profil, à une
distance e 22 mm. du centre de l'âme.

Si l'effort tranchant V a une direction oblique, il devra
toujours, pour que le moment de torsion soit nul, passer
par le point G, situé sur l'axe de symétrie et distant de e.

Car nous pouvons décomposer l'effort oblique V en deux
composantes, l'une verticale, l'autre située dans l'axe
de symétrie.

Cette dernière composante ne produira certainement
aucune torsion, et pour qu'il en soit de même de la force
oblique, il faut que la composante verticale agisse à une
distance e de l'âme.

Il en découle que le point Gv est unpoint fixe, dépendant
uniquement de la forme de la section. Ce point a une
certaine analogie avec le cenftiîe de gravité ou « centre
des tensions normales uniformément réparties » Gn ; nous
l'appellerons le centre de glissement. Quelle que soit la
direction de l'effort tranchant et à la condition qu'il
contienne le « centre de glissement », le matériau, abstraction

faite de la flexion régulière, ne travaillera qu'au
glissement simple. Si, par contre, la distance de ce centre
à l'effort tranchant V, au lieu d'être nulle, accuse une
valeur a, il faudra tenir compte, en outre, du moment
de torsion T V • a.

Il est évident que toute aire plane, régulière ou irré-
gulière, possède un tel point fixe. La détermination de

ce point est plus ou moins aisée. On pourra avoir recours
à l'expérimentation. A cet effet on fera agir V successivement

dans une série de plans parallèles jusqu'à ce que
l'on constate l'absence de torsion. En répétant l'expérience

pour une autre direction quelconque de V, le
point G9 se trouvera déterminé par l'intersection de
ces deux plans. En admettant une troisième direction, on
tombera nécessairement sur la même ligne d'intersection.

L'énoncé 2°, qui se trouve dans tous les traites, est donc
inexact et doit être corrigé de la manière suivante :

« 2° Une résultante V, située dans le plan de la section

et passant par le centre de glissement. L'effort tranchant
fait travailler le matériau au glissement simple. »

L'énoncé ainsi corrige étant valable pour des sections

1 Revu» polytechnique euiese des 30 avril 1921, 9 avril 1921, 20 mai 1922.
2 Revue polytechnique suisse du 5 mars 1924.
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de forme quelconque,
on pourra donc,
contrairement à l'opinion
de Bach, appliquer aux
profils asymétriques les

règles générales de la
théorie de la flexion.
Ainsi, par exemple, la
loi de la corrélation entre

l'orientation du
moment fléchissant et la
direction de l'axe neutre

reste pleinement
valable.

Mais un point important

reste à élucider.
Nous avons constaté

qu'il se manifeste de la
torsion quand l'effort
tranchant est appliqué
au centre de gravité de

la section d'un profil
en jjjj. Si l'énoncé 4°
était valable sans
restrictions, aucune
altération de la « flexion régulière » ne serai t possible. Il ne
se produirait donc pas d'autres tensions normales,
mais uniquement un « genre de glissement » dit toraBps^
Ce genre de glissement se distingue du glissement
simple en ce que le sens des tensions tangentielles sur les

deux faces est opposé, tandis qu'il est le même dans le

cas du glissement simple. Mais il s'agit là de tensions

tangentielles, tandis que l'essai de Bach dénote la
présence de tensions normales élevées, étrangères à la flexion
régulière. D'où proviennent ces tensions supplémentaires

Rappelons-nous que la théorie de la torsion se borne

généralement à traiter le cas le plus simple, où deux
moments de torsion de sens inverse agissent aux deux
extrémités d'un prisme. Mais c'est là un cas spécial qui
ne se rencontre guère en pratique, car en général le couple
de torsion n'a pas la même valeur dans toutes les parties
du prisme considéré. On paraît admettre qu'il suffit de

considérer indépendamment chaque partie à couple
constant. Pour démontrer l'inexactitude de cette conception,
nous avons représenté (fig. 3 et 4) deux prismes dont les

deux moitiés sont sollicitées à la torsion, en sens inverse
l'une de l'autre. Nous avons indiqué, en les exagérant, les

déformations que subiraient les deux moitiés supposées
séparées. Ces dernières sont soumises chacune à la torsion
simple, sans sollicitation normale, puisque les sections
successives subissent des déformations uniformes. Mais les

sections médianes m-m et m*-m1 ne concordent pas du tout,
et le fait qu'elles doivent être identiques implique
nécessairement la présence d'efforts normaux, dont le sens et
l'intensité peuvent être appréciés à vue d'œil. Il s'agit
d'un fléchissement latéral (fig. 4) des ailes semblable à celui

que nous venons de constater dans l'expérience de Bach.

m m

S^^S
m'mFig.4-

Psîlllnoncé 4° doit-il donc être modifié à son tour
Afin de ne pas être conduit à envisager cette nécessité

on peut avancer qu'il s'agit là d'efforts locaux et évoquer
le principe de St.-Venant, suivant lequel ces efforts ne
sauraient influencer la poutre sur toute son étendue.
En effet, l'application du principe de St-Venant semble
bien être permise, puisque la cause des perturbations
réside dans deux couples qui agissent dans la même
section et s'y équilibrent. Mais si le principe est applicable
à une poutre à section pleine, l'essai de Bach montre qu'il
n'en est plus ainsi quand les deux zones de la section, sur
lesquelles agissent les deux couples, ne sont que faiblement

reliées entre elles et, jpar conséquent, presque
complètement indépendantes l'une de l'autre quant aux
déformations latérales. Dans l'essai de Bach, la source des

perturbations est située aux points B et C, où un segment
déformé de la poutre se trouve juxtaposé à un segment
exempt de torsion. Or les tensions normales ont été mesurées

au milieu de la poutre, c'est-à-dire, à une grande
distance de ces points. Puisque ces tensions sont très élevées,

on est forcé d'admettre qu'elles ne disparaîtraient pas
entièrement, même en allongeant la partie B C de la

poutre.
Il est donc certain qu'en pareils cas l'énoncé 4° n'est

plus valable. Pour tenir compte des perturbations ayant
pour origines B et C, il ne suffit pas de prévoir des

renforcements à proximité de ces points seulement, car
l'effet de ces perturbations s'étend sur toute la longueur
de la poutre. Remarquons encore que le moment
fléchissant était de 1000 kilogrammes-mètres contre 65 kgm.
seulement pour le couple de torsion. Or les tensions
normales provoquées par ce dernier dépassent sensiblement
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celles dues au moment fléchissant pourtant quinze fois

plus grand Il semble donc désirable d'être à même de

déterminer les tensions normales supplémentaires dues

au couple de torsion.
La solution générale demanderait des recherches

mathématiques et expérimentales peu aisées. Cependant

pour certains profils simples on peut employer la methjjffiR
suivante, basée sur les formules usuelles de la déformation
angulaire en cas de torsion simple.

Considérons, par exemple, la fig. 1 en admettant que
deux couples de torsion T de même sens agissent en i? et

C, ce qui a lieu quand le plan de la charge V ne contient

pas le centre de glissement. Deux couples de sens inverse

agissant en A et D devront rétablir l'équilibre. Quelles
sont les tensions normales dans les différents points M

Admettons pour un instant que le prisme ne soit pas
à même de supporter des tensions longitudinales, ou, ce

qui revient au 'même, que son module d'élasticité soit
nul, "tandis que le module de glissement subsiste. Le

prisme se déformera alors comme s'il était sampé en B
et C, et l'on pourra calculer le déplacement horizontal /j
des points M au moyen des formules usuelles pour la
détermination de l'angle de torsion simple.

Supposons ensuite que le matéBau constituant le

prisme n'offre aucune résistance au glissemenjp mais
résiste uniquement aux efforts longitudinaux — hypothèse

généralement admise pour le calcul des déformations
en cas de flexion ¦—¦ et déterminons de nouveau le
déplacement /a des quatre points M, après avoir décomposé
le couple en deux forces horizontales, égales et de sens

contraire, agissant l'une sur la moitié supérieure et l'autre
sur la moitié inférieure de la poutre. Cette opération
présente une certaine complication du fait que les deux
ailes ne peuvent fléchir librement en sens inverse l'une
de l'autre, reliées qu'elles sont par l'âme. Néanmoins on
arrivera assez facilement à un résultat satisfaisant1.

Mais puisque le matériau résiste aussi bien aux actions
moléculaires normales qu'aux actions transversales, il
s'ensuivra une inflexion horizontale / déterminée par la
relation

1 A A
/ I 1 + I

L'inflexion / étant déterminée, on pourra en déduire
la valeur des tensions normales supplémentaires.

Cette méthode quelque peu primitive, appliquée à

l'essai de Bach \ a donné de bons résultats. On obtient
naturellement les mêmes valeurs pour Mx et Mt, que pour
Ma et M4, tandis qu'en réalité ces valeurs diffèrent quelque

peu pour l'essai, vu que, par l'effet de la torsion, la
direction n'est plus strictement parallèle à l'âme. Il en

résulte une composante agissant dans l'axe de symétrie
et tendant à un fléchissement général uniforme de la
section vers la gauche. Une fois les déplacements des

points M calculés, nous connaissons le degré d'inclinaison
de V et dès lors la grandeur de la composante horizontale.

1 Revue polytechnique suisse du 30 avril 1921, p. 196.

En ajoutant aux tensions antérieurement calculées celles
dues à cette force, les écarts entre le calcul et l'expérience
se réduisent à moins de 5%, résultat qui peut être considéré

comme une approximation remarquable. Cependant
cet essai unique ne nous autorise pas à en tirer des
conclusions générales.

En partant du même principe, nous pourrons • aussi
déterminer les tensions tangentielles dues au couple de
torsion. Ce couple sera équilibré d'une part par des
tensions de glissement simple et de l'autre par des tensions
de glissement de torsion. Cela revient à dire que d'abord
les deux forces H de la figure 2 et les tensions de glissement

simple, dont elles sont les résultantes, prendront
une nouvelle valeur correspondant à la modification des
tensions normales de la flexion régulière, et qu'ensuite
ces forces H, ainsi que V, se déplaceront latéralement,
ce qui provoquera du glissement de torsion. Pour évaluer
ces torsions, nous partirons de la courbe d'inflexion
latérale f=F (x) dont la dérivée nous fournit immédiatement

l'angle de torsion dans chaque section, ce qui nous
permettra de calculer les tensions tangentielles selon les
formules usuelles.

Une fois les tensions normales et tangentielles ainsi
déterminées, on pourra en déduire les tensions maxima.

Il est clair que la pratique ne peut pas s'accommoder
de ce genre de calculs. D'abord ce serait trop compliqué
et ensuite il n'est pas possible, en général, de fixer exactement

la position du plan d'application des charges. Si la

poutre porte un dallage, par exemple, ce plan se déplacera
latéralement suivant que la charge accidentelle se trouvera

plutôt d'un côté que de l'autre. Des tensions
longitudinales supplémentaires seront donc toujours à craindre
dans le cas d'une poutre isolée. Par contre, en présence
d'une série de poutres parallèles, nous n'aurons, pour
éviter un surcroît notable de tensions, qu'à les entretoiser
convenablement. L'angle *de torsion ne pourra alors
dépasser une certaine valeur en rapport avec la rigidité
des entretoises. Le dallage seul pourra y suppléer s'il est
convenablement fixé sur la poutre et en même temps
assez rigide, ce qui est souvent le cas pour les solives en
béton armé, toujours solidaires avec la dalle.

Comme conclusion pratique, on peut dire qu'il faut
éviter d'employer des poutres isolées, sauf à réduire
considérablement le travail admissible, afin de conserver une

marge suffisante en vue des effets de la torsion. Cette
réserve concerne indistinctement les profils symétriques
ou asymétriques. Considérons, par exemple, un profil
à T; il est évident qu'ensuite d'une répartition inégale
des surcharges, le plan des charges se déplacera vers
l'extrémité de l'aile et alors on y constatera des tensions
supplémentaires du même ordre de grandeur que celles
trouvées dans l'essai décrit plus haut sur un profil en ~|-

Nous devons conclure encore de ce qui précède, que
l'entretoisement, considéré souvent comme mesure d'ordre

purement pratique, est parfaitement justifié au point
de vue théorique, si l'on veut réaliser le degré de sécurité

que le calcul ordinaire est censé nous garantir.
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