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Le centre de glissement
par Robert MAILLART, ingénieur, a Genéve.

Quand 1l s’agit des principes fondamentaux de la
Statique, sur lesquels tous les traités sont d’accord, nous
sommes habitués & les accepter sans les soumettre & un
examen critique. Tout au moins en est-1l ainsi des déduc-
tions de caractére mathématique basées sur certaines
propriétés physiques déterminées des corps.

En Statique, la plus large place est faite & I’étude des
solides prismatiques (poutres, colonnes...) sollicités
par des forces extérieures. Le probleme est réduit a
la recherche des tensions maxima d’une section normale
qui équilibrent ces actions extérieures. A cet effet, on
a remplacé le systéme des forces extérieures par les résul-
tantes et les couples de forces suivants?) :

10 Une résultante F, appelée leffort normal, dont
la direction est normale au plan de la section et qui passe
par son centre de gravité. L’effort normal fait travailler
le matériau & la compression simple ou a I’extension
simple. )

20 Une résultante V, appelée Ueffort tranchant, située
dans le plan de la section et passant par son cenire de
gravité. L’effort tranchant fait travailler le matériau
au glissement simple.

3% Un couple X, situé dans un plan perpendiculaire
a la section transversale et contenant 1’axe du prisme.
Ce couple est appelé moment fléchissant : il fait travailler
la piece a la flexion et tend & imprimer a la section un
mouvement de rotation autour d’un axe situé dans son
plan et passant par le centre de gravité.

4% Un couple 7, situé dans le plan de la section et
appelé couple de torsion. 1l fait travailler le matériau au
genre de glissement dit torsion et tend & imprimer & la
section un mouvement de rotation dans son plan.

Remarquons tout de suite, en ce qui concerne le moment
fléchissant, qu’il n’y a aucune raison d’admettre, selon
39, qu’il « contient I’axe du prisme ». En effet la position
du plan d’un couple est toujours quelconque, et seule
Porientation de ce plan est déterminée. Il suffit, pour
vérifier cette assertion, de se rappeler qu’un couple
peut &tre représenté par une force infiniment petite,
agissant a4 l'infini et située, par conséquent, simultané-
ment dans un nombre infini de plans paralleles. Ainsi
done, il serait préférable de dire que 'orientation du mo-
ment fléchissant doit étre paralléle a Uaze du prisme.

Mais c¢’est & une question plus importante et particu-
lierement intéressante que nous voulons nous arréter.

Il est évident que toute théorie n’a de valeur que pour
autant qu’elle est confirmée par I'expérience. Or nous
allons décrire une épreuve qui a donné des résultats
vraiment surprenants.

Un fer en |2, profil normal allemand, a été chargé
dans I'axe passant par le centre de gravité de la maniére

! Nous citons presque textucliement Résal, Résistance des matériauz,
Paris et Li¢ge 1922, p. 207 et suivantes.

indiquée dans notre fig. 11. Nous voyons que dans la
partie médiane B-C n’intervient ni effort normal, ni
effort tranchant, ni couple de torsion, mais uniquement
un moment fléchissant. Or, selon I’énoncé 3°, on devrait
y constater uniquement «un mouvement de rotation
delasection autour d’un axe situé dans son plan et passant
par le centre de gravité», c’est-a-dire une répartition
uniforme des tensions dans une seule et méme fibre
paralléle & I'axe neutre, état que nous désignerons dans
la suite par la flexion réguliére.

On s’est borné a mesurer les tensions en quatre points
My, My, M,, M,, de la section médiane, tous distants
de 145 mm. de I’axe neutre, lequel, pour des raisons
évidentes, se confond avec I’axe de symétrie. En calculant
d’aprés la théorie usuelle, les tensions en ces points, on

V= 100049 V- 700049 v

Fig.1

trouve —273 kg/em? (en compression) aux deux points
supérieurs M; et M, et + 273 kg/em? (en extension)
aux deux points inférieurs My et M,.

Le tableau suivant fait ressortir les différences entre
les tensions calculées et les tensions effectives observées :

Tensions calculées  Tensions observées Différences
kg/em?® kg/cm? en kg/cm? en pour cent
M, —273 — 518 245 899/,
M, —273 +104 377 1349/,
M, 1273 1-456 183 669/,
M, 4273 — 16 289 1059/,

Les diagrammes des tensions calculées et observées,
obtenus en joignant par des lignes droites les ordonnées
respectives aux deux points extrémes de chaque aile,
sont reportés dans la fig. 2. L’aire ombrée représente
les différences.

Nous voyons que ces différences sont fondamentales
et qu’elles ne peuvent é&tre attribuées a des inexacti-
tudes d’observations. Force nous est donc d’admettre
une divergence essentielle entre la théorie et I’expérience.
En vérité, il n’y a pas de « rotation autour de ’axe hori--
zontal » et 'on chercherait en vain un autre axe.de rota-
tion, c¢’est-a-dire un autre axe neutre correspondant aux
tensions observées.

L’auteur de ces essais, le professeur Bach, en tire la
conclusion que toute la théorie de la flexion, méme celle
de la flexion simple, n’est applicable qu’aux poutres a
seclion symétrique et chargées dans un plan de symétrie.
Les profils asymétriques sont donc mis & l'index. Mais
cette mesure est-elle justifiée et la pratique doit-elle se
contenter de cette conclusion ? Les fers en [, par exemple,

' C. Bach, Elastizitdt und Festigkeit, 8¢ ¢dition 1920, p. 267 et suivantes,
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sont d’un emploi fréquent et commode, et leur suppression
rendrait difficiles nombre de solutions pratiques.

Cette question a donc non seulement un grand intérét
théorique, mais elle touche aussi & la pratique courante
des constructions métalliques. Nous avons donc pensé
qu’il serait intéressant de rechercher les causes des grandes
divergences constatées entre la théorie consacrée et cette
expérience.

En observant les diagrammes des tensions, il appert que
les deux ailes sont sollicitées d’une maniére tout a fait
excentrique. A la flexion réguliére vient se superposer
un fléchissement latéral et de sens contraire dans chaque
aile.

Ce fléchissement est plus intense dans 1'aile supérieure,
ce qui conduit & admettre un léger déplacement général
vers la gauche, imputable & une composante horizontale
de la charge. Ainsi donc, la direction de V, qui était au
début de I'essai parallele a I'ame, est devenue oblique ;
autrement dit, la section s’est déversée a gauche. Cette
constatation nous porte a croire que nous sommes en pré-
sence d'un phénomene de torsion, bien que la poutre soit
chargée dans un plan contenant le centre de graguté.

Devant l'incompatibilité manifeste entre la théorie
exprimée par I’énoncé 29 et 'expérience de Bach, on peut
se demander si la conception, selon laquelle il y a glisse-
ment simple quand la résultante des actions tangentielles
passe par le centre de gravité de la section, est bien fon-
dée, en d’autres termes, si la résultante des efforts
tranchants, en cas d’absence de torsion, contient le
centre de gravité. En cherchant des éclaircissements
dans les traités, on ne trouve rien de précis a ce sujet. La
preuve donnée par Résal (p. 255 de l'ouvrage cité) n’est
pas faite, parce que la conclusion que 7' = o ne se véri-
fie pas, en général. Il semble bien, qu'en conférant au
centre de gravité un rdle important quant a I’équilibre
des efforts tranchants, on ait procédé en quelque sorte
par analogie avec l'alinéa 1°, qui a trait aux actions
normales. Ceci serait justifié, si I'on pouvait attribuer &
chaque élément de la section une part de ’effort tranchant
proportionnelle a I'aire de ’élément et dirigée paralléle-
ment a cet effort. Or, si cette répartition a lieu pour
Peffort normal agissant au centre de gravité, cela n’est
pas, en général, le cas pour Ieffort tranchant.

Nous n’avons pas & nous occuper ici du cisaillement,
qui rentre dans I’é¢tude des phénomeénes dus a l'action
locale de forces extérieures. La théorie de la flexion se
borne & étudier 1’état des choses en dehors de la zone de
perturbation causée par l'action directe des charges. Il
faut bien se rendre compte que, si les efforts tranchants
font travailler le corps «au glissement », celui-ci n’a rien
de commun avec le cisaillement, et qu’en somme «la
tension de glissement » n’est autre chose que la compo-
sante tangentielle de la tension maximum, tension qui
a généralement une direction oblique.

Aussi M. Résal dit-il trés clairement : 1

« Un corps ne saurait travailler a U'effort tranchant que

! Page 257 de l'ouvrage cité.

s’ll travaille en méme temps & la flexion», car «le mo-
ment fléchissant ne peut étre nul en deux sections succes-
sives sans que leffort tranchant soit également nul.»
En effet, méme si par hasard le moment fléchissant — qui
est absolument indépendant de l'effort tranchant V —
était nul dans la section considérée, nous aurions toujours
dans une section voisine distante de dz un moment flé-
chissant ’
dM = Vdzx

provoquant un changement des tensions normales. C’est
cette considération seule qui permet de se rendre compte
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Fig.2

de la distribution des efforts tranchants dans la section.
A cette fin on fait une coupe parallelement a axe du
prisme et on envisage I’équilibre de I'une des deux par-
ties de la tranche du prisme limitée par les deux sections
successives.

Cette étude n’est faite généralement que pour des pro-
fils symétriques, en se bornant & des coupes paralléles
a I'axe neutre. Il va de soi que la résultante des tensions
tangentielles se trouve alors dans I'axe de symétrie et
qu’elle contient par conséquent le centre de gravité.

Mais nous pouvons appliquer la méme méthode & des
sections de forme quelconque, et admettre des directions
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obliques du plan de séparation des deux parties de la
tranche.

La résolution générale de ce genre de probleme est
certainement trés ardue. Par contre, certaines formes de
sections usuelles peuvent étre traitées assez aisément.
Dans le cas notamment ot la section est composée de
rectangles ou de trapézes minces, il est possible de résoudre
assez exactement le probleme qui s’énonce ainsi :

Quelle est la position du point-d application G, de V,
telle que le moment fléchissant dM = Vdz ne soit accom-
pagné d’aucun phénoméne de torsion ?

Considérons par exemple (fig. 2) la section d’un fer
en U soumis a4 un effort tranchant vertical. Il y aura
absence de torsion — ceci pour des raisons de symétrie —
si les résultantes des efforts tranchants des trois rec-
tangles composant la section, contiennent les centres
respectifs. Les actions tangentielles étant paralléles a la
périphérie, 4 proximité de celle-ci, on congoit que pour
un rectangle mince leur résultante sera dirigée & peu prés
dans le sens de la longueur du rectangle. Dans ’ame, les
tensions transversales sont donc dirigées verticalement
et leur résultante V' est verticale aussi. Dans les ailes,
par contre, les tensions ont une direction sensiblement
horizontale et leurs résultantes sont deux forces H de
méme grandeur. Pour déterminer la force H, agissant
dans l'aile séparée de I’ame par une coupe oblique o-o,
il suffit de constater que le moment f{léchissant

dM = Vdx
engendre dans l'aile un effort normal moyen

do = ﬂ Yy = EL‘ -y
J J ’
ou y est la distance entre le centre de gravité C de 'aile
et 'axe de symétrie, et J le moment d’inertie total de
la section par rapport au méme axe.

L’effort normal dans l’aile de surface A

doit étre équilibré par une force égale mais de signe
contraire appliquée en 0-0, soit 4 la distance s, et par
un couple

Hedo=A .do s

ce qui nous donne
H=_—_—.A:s5.y9.

En établissant maintenant les conditions d’équilibre
par rapport au centre de I’Ame, nous obtenons

Vv e=21’1-y’=¥-A s.y-y'
24 ;
et e:T-S-y-y.

La position de V excluant toute torsion est déter-
minée, si outre A,.J et y nous connaissons s et y'. Ces deux

valeurs dépendent de la répartition des tensions dans la

section 0-0, répartition qui n’est guére uniforme. Les
tensions sont certainement plus grandes a la face inté-
rieure, ce qui semble indiquer une direction de H corres-
pondant plutot & la diagonale qu’a la ligne médiane de
laile. Mais, en tous cas, l'inexactitude qui pourrait
résulter de cette évaluation n’influencera pas le résultat
d’une maniére essentielle.

Ces vues ayant été exposées par 'auteur dans quelques
notes antérieures !, la commission technique de 1’Asso-
ciation des constructeurs suisses de ponts et charpentes
métalliques a fait procéder & un essai 2 qui a pleinement
confirmé ce qui précede. En effet, en chargeant un fer en
U de 20 cm. de hauteur en deux points symétriques par
rapport aux appuis, les anomalies que présentait I'essai
de Bach disparaissaient complétement lorsqu’on appli-
pliquait la charge en dehors du profil, 4 une dis-
tance ¢ = 22 mm. du centre de I’Ame.

Si Peffort tranchant V' a une direction oblique, il devra
toujours, pour que le moment de torsion soit nul, passer
par le point G, situé sur ’axe de symétrie et distant de e.
Car nous pouvons décomposer 'effort oblique V en deux
composantes, l'une verticale, l'autre située dans l’axe
de symeétrie.

Cette derniére composante ne produira certainement
aucune torsion, et pour qu’il en soit de méme de la force
oblique, 1l faut que la composante verticale agisse & une
distance e de I'ame.

Il en découle que le point G, est unpointfixe, dépendant
uniquement de la forme de la section. Ce point a une cer-
taine analogie avec le centre de gravité ou «centre
des tensions normales uniformément réparties » G, ; nous
Iappellerons le centre de glissement. Quelle que soit la
direction de I'effort tranchant et a la condition qu’il con-
tienne le «centre de glissement », le matériau, abstrac-
tion faite de la flexion réguliére, ne travaillera qu’au
glissement simple. Si, par contre, la distance de ce centre
a leffort tranchant V, au lieu d’étre nulle. accuse une
valeur @, il faudra tenir compte, en outre, du moment
de torsion 7' = V - a.

Il est évident que toute aire plane, réguliére ou irré-
guliére, posséde un tel point fixe. La détermination de
ce point est plus ou moins aisée. On pourra avoir recours
a expérimentation. A cet effet on fera agir V successive-
ment dans une série de plans paralleles jusqu’a ce que
I'on constate I'absence de torsion. En répétant Iexpé-
rience pour une autre direction quelconque de V, le
point G, se trouvera déterminé par l'intersection de
ces deux plans. En admettant une troisitme direction, on
tombera nécessairement sur la méme ligne d’intersection.

L’énoncé 2°, qui se trouve dans tous les traités, est donc
inexact et doit &tre corrigé de la maniére suivante :

«2° Une résultante V, située dans le plan de la section
et passant par le centre de glissement. L’effort tranchant
fait travailler le matériau au glissement simple. »

[’énoncé ainsi corrigé étant valable pour des sections

Y Repue polytechnique suisse des 30 avvil 1921, 9 avril 1921, 20 mai 1922,
* Revue polytechnique suisse du 5 mars 1924,
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de forme quelconque,
on pourra done, con-

trairement a ’opinion
de Bach, appliquer aux
profils asymétriques les
réegles générales de la
théorte de la flexion.
Ainsi, par exemple, la
loi de la corrélation en-

tre ’orientation du mo-
ment fléchissant et la
direction de ’axe neu-
tre reste pleinement va-
lable.

Mais un point impor-
tant reste a élucider.
Nous avons constaté

qu’ll se manifeste de la
torsion quand D’effort
tranchant est appliqué
au centre de gravité de

la section d’un profil
en _|. Si I’énoncé 4°
était valable sans res-
trictions, aucune alté-
ration de la «flexion réguliere » ne serait possible. Il ne
se produirait donc pas d’autres tensions normales,
mais uniquement un « genre de glissement » dit torsion.
Ce genre de glissement se distingue du glissement
simple en ce que le sens des tensions tangentielles sur les
deux faces est opposé, tandis qu’il est le méme dans le
cas du glissement simple. Mais il s’agit la de tensions
tangentielles, tandis que I’essai de Bach dénote la pré-
sence de tensions normales élevées, étrangeéres a la flexion
réguliére. D’ot proviennent ces tensions supplémentaires ?

Rappelons-nous que la théorie de la torsion se borne
généralement a traiter le cas le plus simple, ou deux
moments de torsion de sens inverse agissent aux deuz
extrémités d’un prisme. Mais c’est la un cas spécial qui
ne se rencontre guére en pratique, car en général le couple
de torsion n’a pas la méme valeur dans toutes les parties
du prisme considéré. On parait admettre qu’il suflit de
considérer indépendamment chaque partie 4 couple con-
stant. Pour démontrer I'inexactitude de cette conception,
nous avons représenté (fig. 3 et 4) deux prismes dont les
deux moitiés sont sollicitées a la torsion, en sens inverse
I'une de 'autre. Nous avons indiqué, en les exagérant, les
déformations que subiraient les deux moitiés supposées sé-
parées. Ces derniéres sont soumises chacune a la torsion
simple, sans sollicitation normale, puisque les sections suc-
cessives subissent des déformations uniformes. Mais les
sections médianes m-m et m’-m' ne concordent pas du tout,
et le fait qu’elles doivent étre identiques implique néces-
sairement la présence d’efforts normaux, dont le sens et
I'intensité peuvent étre appréciés & vue d’eeil. 11 s’agit
d’un fléchissement latéral (fig. 4) des ailes semblable a celui
que nous venons de constater dans I'expérience de Bach,

L’énoncé 4° doit-il donc étre modifié & son tour ?

Afin de ne pas étre conduit & envisager cette nécessité
on peut avancer qu’il s’agit la d’efforts locaux et évoquer
le principe de St.-Venant, suivant lequel ces efforts ne
sauraient influencer la poutre sur toute son étendue.
En effet, 'application du principe de St-Venant semble
bien é&tre permise, puisque la cause des perturbations
réside dans deux couples qui agissent dans la méme
section et s’y équilibrent. Mais si le principe est applicable
4 une poutre & section pleine, I’essai de Bach montre qu’il
n’en est plus ainsi quand les deux zones de la section, sur
lesquelles agissent les deux couples, ne sont que faible-
ment reliées entre elles et, par conséquent, presque com-
pléetement indépendantes I'une de I'autre quant aux défor-
mations latérales. Dans I'essai de Bach, la source des
perturbations est située aux points B et C, o un segment
déformé de la poutre se trouve juxtaposé & un segment
exempt de torsion. Or les tensions normales ont été mesu-
rées au milieu de la poutre, c¢’est-a-dire, & une grande dis-
tance de ces points. Puisque ces tensions sont trés élevées,
on est forcé d’admettre qu’elles ne disparaitraient pas
entiecrement, méme en allongeant la partie B C de la
poutre.

Il est donc certain qu’en pareils cas 'énoncé 4° n’est
plus valable. Pour tenir compte des perturbations ayant
pour origines B et C, il ne suflit pas de prévoir des ren-
forcements & proximité de ces points seulement, car
I'effet de ces perturbations s’étend sur toute la longueur
de la poutre. Remarquons encore que le moment flé-
chissant était de 1000 kilogrammes-métres contre 65 kgm.
seulement pour le couple de torsion. Or les tensions nor-
males provoquées par ce dernier dépassent sensiblement
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celles dues au moment fléchissant pourtant quinze fois
plus grand! Il semble donc désirable d’étre & méme de
déterminer les tensions normales supplémentaires dues
au couple de torsion.

La solution générale demanderait des recherches
mathématiques et experimentales peu aisées. Cependant
pour certains profils simples on peut employer la méthode
sutvante, basée sur les formules usuelles de la déformation
angulaire en cas de torsion simple.

Considérons, par exemple, la fig. 1 en admettant que
deux couples de torsion 7" de méme sens agissent en B et
C, ce qui a lieu quand le plan de la charge V ne contient
pas le centre de glissement. Deux couples de sens inverse
agissant en A et D devront rétablir I'équilibre. Quelles
sont les tensions normales dans les différents points M ?

Admettons pour un instant que le prisme ne soit pas
a méme de supporter des tensions longitudinales, ou, ce
qui revient au méme, que son module d’élasticité soit
nul, tandis que le module de glissement subsiste. Le
prisme se déformera alors comme s’il était coupé en B
et C, et 'on pourra calculer le déplacement horizontal f,
des points M au moyen des formules usuelles pour la
détermination de I'angle de torsion simple.

Supposons ensuite que le matériau constituant le
prisme n’offre aucune résistance au glissement, mais
résiste uniquement aux efforts longitudinaux — hypo-
these généralement admise pour le caleul des déformations
en cas de flexion — et déterminons de nouveau le dé-
placement f, des quatre points M, aprées avoir décomposé
le couple en deux forces horizontales, égales et de sens
contraire, agissant 'une sur la moitié supérieure et 'autre
sur la moitié inférieure de la poutre. Cette opération
présente une certaine complication du fait que les deux
ailes ne peuvent fléchir librement en sens inverse 'une
de Pautre, reliées qu’elles sont par ’dme. Néanmoins on
arrivera assez facilement a4 un résultat satisfaisant .

Mais puisque le matériau résiste aussi bien aux actions
moléculaires normales qu’aux actions transversales, il
s’ensuivra une inflexion horizontale / déterminée par la
relation

1 1 1
=L

L’inflexion f étant déterminée, on pourra en déduire
la valeur des tensions normales supplémentaires.

Cette méthode quelque peu primitive, appliquée a
I’essai de Bach !, a donné de bons résultats. On obtient
naturellement les mémes valeurs pour M, et Mg, que pour
M, et M,, tandis qu’en réalité ces valeurs différent quel-
que peu pour I'essai, vu que, par Ieffet de la torsion, la
direction n’est plus strictement parallele & 'ame. 11 en
résulte une ecomposante agissant dans axe de symétrie
et tendant a un fléchissement général uniforme de la
section vers la gauche. Une fois les déplacements des
points M calculés, nous connaissons le degré d’inclinaison
de V et des lors la grandeur de la composante horizontale.

1 Repue polytechnique suisse du 30 avril 1921, p. 196.

En ajoutant aux tensions antérieurement calculées celles
dues & cette force, les écarts entre le calcul et 'expérience
se réduisent & moins de 59, résultat qui peut étre consi-
déré comme une approximation remarquable. Cependant
cel essal unique ne nous autorise pas & en tirer des
conclusions générales.

En partant du méme principe, nous pourrons-aussi
déterminer les tensions tangentielles dues au couple de
torsion. Ce couple sera équilibré d’une part par des ten-
sions de glissement simple et de l’autre par des tensions
de glissement de torsion. Cela revient a dire que d’abord
les deux forces /1 de la figure 2 et les tensions de glisse-
ment simple, dont elles sont les résultantes, prendront
une nouvelle valeur correspondant & la modification des
tensions normales de la flexion réguliere, et qu’ensuite
ces forces H, ainsi que V', se déplaceront latéralement,
ce qui provoquera du glissement de torsion. Pour évaluer
ces torsions, nous partirons de la courbe d’inflexion
latérale f=1I" () dont la dérivée nous fournit immédiate-
ment ’angle de torsion dans chaque section, ce qui nous
permettra de calculer les tensions tangentielles selon les
formules usuelles.

Une fois les tensions normales et tangentielles ainsi
déterminées, on pourra en déduire les tensions maxima.
- Il est clair que la pratique ne peut pas s’accommoder
de ce genre de calculs. D’abord ce serait trop compliqué
et ensuite 1l n’est pas possible, en général, de fixer exacte-
ment la position du plan d’application des charges. Si la
poutre porte un dallage, par exemple, ce plan se déplacera
latéralement suivant que la charge accidentelle se trou-
vera plutdt d’un coté que de 'autre. Des tensions longi-
tudinales supplémentaires seront donc toujours a craindre
dans le cas d’une poutre isolée. Par contre, en présence
d’une série de poutres paralléles, nous n’aurons, pour
éviter un surcroit notable de tensions, qu’a les entretoiser
convenablement. L’angle “de torsion ne pourra alors
dépasser une certaine valeur en rapport avec la rigidité
des entretoises. Le dallage seul pourra y suppléer s’il est
convenablement fixé sur la poutre et en méme temps
assez rigide, ce qui est souvent le cas pour les solives en
béton armé, toujours solidaires avec la dalle.

Comme conclusion pratique, on peut dire qu’il faut
éviter d’employer des poutres isolées, sauf a réduire con-
sidérablement le travail admissible, afin de conserver une
marge sullisante en vue des eflets de la torsion. Cette
réserve concerne indistinctement les profils symétriques
ou asymétriques. Considérons, par exemple, un profil
a T; 1l est évident qu’ensuite d’une répartition inégale
des surcharges, le plan des charges se déplacera vers
I’extrémité de Paile et alors on y constatera des tensions
supplémentaires du méme ordre de grandeur que celles
trouvées dans Pessai décrit plus haut sur un profil en ZJ.

Nous devons conclure encore de ce qui précéde, que
I’entretoisement, considéré souvent comme mesure d’or-
dre purement pratique, est parfaitement justifié au point
de vue théorique, si 'on veut réaliser le degré de sécurité
que le calcul ordinaire est censé nous garantir.
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