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QUELQUES INSTALLATIONS MODERNES DE TURBINES HYDRAULIQUES

Fig. 4. — Salle des alternateurs de l'usine de Mauzac.

Cours de la Société suisse

des ingénieurs et des architectes,
a Zurich, du 1° au 6 octobre 1923.
(Suite et fin.)*

Exposé de certains progrés récents de la
théorie de I'élasticité.

M. le Docteur Meissner, professeur & 1’Ecole polytech-
nique fédérale, a consacré les quatre heures de son cours
a lexposé de certains progrés récents, aw point de vue
technique, de la théorie de élasticité.

Y Voir Bulletin technique du 27 octobre 1923, page 270.

Avant de parler de ces perfectionnements récents qui
concernent spécialement la théorie de la torsion et celle
des plaques planes et courbes (nous traduisons dans ce
qui suit : Platte par-plaque plane, Schale par plaque
courbe et Schetbe par disque), M. Meissner fait une large
esquisse du développement de la théorie mathématique
de Pélasticité, en rappelant ses progres essentiels et son but
qui, au point de vue technique, est de pouvoir répondre
aux questions que pose la pratique. Ces problemes dont la
technique réclame impérieusement une solution ne se rap-
portent plus seulement & des corps & une seule dimension,
comme les tiges, mais ils concernent des corps & deux di-

mensions, comme les plaques, et méme a trois dimensions.
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La théorie pure ne fournit des solutions de ces proble-
mes que dans des cas trés particuliers et encore les solu-
tions rigoureuses qu’elle donne dans ces cas sont si com-
pliquées que la pratique ne peut les utiliser telles quelles.

Galilée, sans étre en possession de la loi fondamentale
de Délasticité, cherche 4 déterminer la résistance d’une
poutre encastrée & un bout et libre & Iautre. Hooke et
Mariotte donnent la loi expérimentale qui lie les efforts
aux déformations. Ce dernier applique la loi de Hooke
pour répondre & la question posée par Galilée. Euler et
les Bernoulli étudient le probleme de la ligne élastique.
Le méme Euler et Lagrange créent la théorie du flam-
bage. Coulomb reprend le calcul de la poutre a la flexion
simple et montre 'existence de la couche neutre. Il donne
aussi une théorie de la torsion, théorie inexacte du reste,
sauf pour les tiges 4 section circulaire, mais dont on fera
usage jusqu’a de Saint-Venant. Young définit son module
d’élasticité. Enfin Navier établit les équations fondamen-
tales de I'¢lasticité. Cauchy retrouve ces équations en se
basant sur les théories, qu’il crée de toutes piéces, des
pressions et des déformations dans les solides. Les équa-
tions de Cauchy, qui sont celles que I'on donne actuel-
lement encore pour les solides isotropes, différent de
celles de Navier en ce qu’elles contiennent deux cons-
tantes d’élasticité au lieu d’une seule. Poisson retrouve
les équations de Cauchy par une tout autre voie, mais
surtout, il applique ces équations a une foule de pro-
blemes particuliers. Green crée la notion de potentiel
d’élasticité et la développe avec Stokes et Lord Kelvin.
Clapeyron et Lamé résolvent certains problemes d’équi-
libre élastique au moyen de la méthode des développe-
ments en série.

Puis, de Saint-Venant rattache la Résistance des Ma-
tériaux a la Théorie de I'Elasticité. Il énonce et justifie
le principe qui porte son nom, principe qui s’est toujours
vérifié jusqu’ici. Voici ce principe : « Si I'on applique sur
une région d’étendue limitée d’un corps de grandes dimen-
sions un systéme de forces extérieures en équilibre, il ne
se produit des pressions et des déformations sensibles
qu’au voisinage immédiat de la région d’application de
ces forces extérieures. Ces pressions et ces déformations
sont négligeables dans toutes les autres parties du corps
considéré ». De Saint-Venant crée aussi la théorie mo-
derne, exacte, de la torsion. Pendant un certain temps,
cette théorie correcte de la torsion passe inapergue, les
préoccupations des chercheurs vont ailleurs et se tour-
nent vers la théorie des systémes hyperstatiques, arti-
culés ou pleins, employés dans la construction et aux-
quels se rattachent les noms de Clapeyron, Maxwell,
Castigliano, Mohr, Betti et Miiller-Breslau. Ce n’est que
tout récemment qu’on s’occupe & mettre en cuvre les
bases de la théorie de la torsion posées par de Saint-
Venant.

(Le lecteur que cela intéresse trouvera une histoire du
développement de la théorie mathématique de I'élasti-
cité dans Pouvrage de Loge intitulé « Treatise on the
theory of elasticity ».)

Cet historique terminé, M. Meissner montre, & grands
traits, comment on établit les équations de I'équilibre
élastique pour les corps isotropes.

Quand un corps élastique se déforme sous 'action de
forces extérieures en équilibre qui lui sont appliquées, les
coordonnées x, y et z d’un point quelconque du corps
subissent des accroissements (positifs ou négatifs) que
nous appellerons déplacements élémentaires en ce point et
que nous représenterons par £, y, £, D’ailleurs, la théo-
rie des pressions montre qu’il faut considérer en ce point
6 composantes de la pression, 3 normales ¢ et 3 tangen-
tielles 7. (En anglais : « Stress », en allemand : « Zwang »).
De méme, la théorie des déformations ( «Strain-Drang »)
considére en chaque point 6 déformations élémentaires,
soit 3 dilatations ¢ et 3 glissements 7. La loi de Hooke
établit des relations linéaires entre les pressions g, = et
les déformations élémentaires ¢ et . D’autre part enfin,
il existe des relations, linéaires également, entre les défor-
mations élémentaires ¢, 7 et les dérivées premiéres par
rapport & 2, y, z des déplacements élémentaires £, 7, £
On peut donc exprimer les composantes des pressions
en un point en fonction linéaire des dérivées premieres
des déplacements élémentaires. Il reste a introduire ces
expressions dans les relations d’équilibre qui existent
entre les composantes des pressions en un point, rela-
tions qui contiennent les dérivées premicres des o et des
7, au 1er degré,pour aboutir a 3 équations aux dérieées
partielles du 2me ordre entre les déplacements élémen-
taires. Ce sont les équations fondamentales de I'équi-
libre élastique. On peut démontrer que ces équations, si
I'on tient en outre compte des conditions qui doivent
¢tre remplies au contour des corps élastiques dont on
étudie I'équilibre, admettent toujours une solution et une
seule.

Ce qui complique énormément la résolution analy-
tique des problemes de I'élasticité et donne une impor-
tance considérable aux méthodes expérimentales du
genre de celle de M. Mesnager, dont il a été parlé plus
haut, c’est le fait que l'on a affaire a des équations aux
dérivées partielles. De méme que par l'intégration des
équations différentielles ordinaires il s'introduit des cons-
tantes d’intégration arbitraires, dans I'intégration des
équations aux dérivées partielles, il s’introduit des fone-
tions arbitraires. Suivant la forme des corps considérés et
les conditions qui doivent étre vérifiées sur le contour de
ces corps, on a affaire & une immense variété de pr'o-
blémes. '

On dispose essentiellement de deux méthodes dis-
tinctes pour intégrer les équations de I’élasticité. L'une
est la méthode des séries, dont Fourier a fait un emploi
étendu dans sa théorie analytique de la chaleur. On
cherche des solutions particulieres, solutions simples, des
équations de I'élasticité et on affecte ces solutions de
constantes arbitraires. Comme les équations de Iélas-
ticité sont linéaires, en ajoutant un trés grand nombre
de ces solutions simples, on peut obtenir des solutions
générales en déterminant les constantes arbitraires de
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fagon a vérifier les conditions au contour. Dansla deuxiéme
méthode, on part de I'équation de Laplace, qui joue un
role essentiel dans toute la physique mathématique.
Cette deuxiéme méthode convient particuliérement pour
la résolution des problemes d’équilibre élastique de
corps sollicités par une force concentrée.

(Pour avoir d’amples détails et une foule d’exemples
de ces méthodes d’intégration des équations aux dérivées
partielles de la physique mathématique, consulter le
Cours d’Analyse de M. Boussinesq, Tome II, fascicule 2,
Compléments p. 374-510.)

Le nombre des probléemes d’élasticité qui sont résolus

rigoureusement est minime. L’un de ces problémes est

celui de M. Boussinesq, dont il a été parlé dans le compte
rendu des lecons de M. Mesnager. Un autre est celui de
la sphére isotrope (Lamé, Kelvin, Almansi). Un troisiéme
est celul du cylindre (Tedone).

Pour les applications pratiques, i1l n’est pas indispen-
sable de posséder des solutions rigoureuses des problémes
d’élasticité. Souvent des solutions approchées, moins
compliquées que les solutions exactes, rendent d’aussi
bons services. Une de ces méthodes approchées, qui donne
des résultats avantageux dans le calcul des déformations
est celle de Ritz. Elle est moins utile, par contre, pour
le calcul des pressions.

Théorie de la torsion.

(Barré de Saint-Venant). Les théories que Coulomb
puis Navier avaient données de la torsion se basaient
sur I’hypothése, admissible pour la flexion simple, que
les sections planes avant la torsion restaient planes
encore aprés celle-ci. De Saint-Venant a montré que ce
n’est vrai que dans le seul cas de la tige & section circu-
laire. Pour toutes les autre formes de section, c’est
inexact. Actuellement, la solution rigoureuse du pro-
bléeme de la torsion a été donnée pour une foule de formes
de la section, le cercle, 'anneau circulaire, ellipse, le
triangle équilatéral, le rectangle, plein ou creux, etc.,
ete.

Un moyen trés utile de résoudre rigoureusement ou
d’une fagon approchée certains problémes de physique
mathématique est de ramener la solution de ceux-ci a
celle de problemes déja résolus dans d’autres parties de
la physique mathématique. Il existe pour le probleme
de la torsion plusieurs analogies de cette espéce. Voici
les deux les plus intéressantes: analogie de la membrane
(Prandtl, Phys. Zeitschrift, Vol. 4, 1903) et 'analogie
hydrodynamique (Kelvin et Tait, Traité de philosophie
naturelle, T. II).

Analogie de la membrane. Supposons un récipient fermé
4 sa partie supérieure par une téle plane mince horizon-
tale. Per¢ons dans cette tdle une ouverture ayant la
forme de la section que 'on veut étudier pour la torsion.
Fermons cette ouverture par une membrane mince, une
lame d’eau de savon par exemple et augmentons légeére-
ment la pression a 'intérieur du récipient, en y insufflant
un peu d’air. La membrane se bombe et forme ce que

Prandl appelle une colline au-dessus du plan de la téle.
On peut alors démontrer que cette colline jouit des pro-
priétés suivantes :

1° Les tangentes en chacun des points de ses courbes.
de niveau donnent en ce point la direction de la compo-
sante tangentielle de la pression.

20 L’intensité de la composante tangentielle est pro-
portionnelle & la pente de la colline au point considéré.

30 Le volume compris entre la membrane et le plan de-
la téle est proportionnel a la Constante de torsion de la
section étudiée. (Nous traduisons ici par Constante de
torsion le terme allemand de Drillungswiderstand. Voici
exactement ce que l'on entend par ce terme. Pour une
tige de section donnée, I'angle de torsion est propor-
tionnel au moment de torsion. Dans I’expression qui lie
cet angle de torsion au moment de torsion, il y a au déno-
minateur du 2M¢ membre le produit du module d’élasti-
cité transversale G par une constante, celle que nous appe-
lons la constante de torsion. Cette constante mesure en:
quelque sorte la résistance de la section a la torsion).

On voit sans peine I'importance de cette analogie pour
‘étude de la torsion. Par exemple, pour des sections for-
mées de rectangles minces et longs juxtaposés, elle montre.
immédiatement que la constante de torsion de la section:
totale est trés sensiblement égale & la somme des cons-
tantes de torsion des divers rectangles. Ceci s’applique:
entre autres a des profils Differdange en double T. De
méme, I'analogie de Prandl est trés utile pour I'étude de
la torsion des prismes & section creuse.

L’analogie hydrodynamique n’est pas moins précieuse.
Cette analogie rameéne le probleme de la torsion d’une
tige a celui du mouvement permanent plan bien continu
d’un liquide dans un récipient cylindrique fermé dont la
section est semblable & celle de la tige considérée. Alors,
la vitesse du liquide en un point de la section du récipient
a la direction de la composante tangentielle en ce point
et 1l y a proportionnalité entre les intensités de cette
vitesse et de cette composante tangentielle.

Par exemple, ’analogie hydrodynamique montre immé-
diatement le danger que présentent, dans une section,
les angles rentrants. Dans le récipient correspondant &
cette.section, les filets fluides se tassent prés du sommet
de I'angle rentrant et leur vitesse y devient trés grande.
La tension est donc trés considérable en ce sommet. De
la méme maniére, I'analogie hydrodynamique fait voir
Pinutilité d’angles saillants dans les sections sollicitées a
la torsion.

Plaques planes et plaques courbes.

La théorie de la flexion des plagues planes date de
plus d’un siécle. Mais c’est Kirchhoff, vers 1850, qui a
énoncé pour elles les hypothéses analogues a celle de
Bernoulli que I’'on prend comme base de la théorie de la
flexion simple dans les poutres. Kirchhoff a admis que
tous les points de la plaque qui avant sa déformation par
la flexion étaient situés sur une méme perpendiculaire
a son feuillet moyen restaient, aprés la déformation,
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sur une droite normale a4 ce feuillet moyen. De plus,
dans le feuillet moyen, il ne se produit ni extension ni
compression. :

Il faut d’ailleurs distinguer le cas des plaques planes
qui sont sollicitées a la flexion par les forces qui leur
sont appliquées et dont le feuillet moyen se courbe sous
Paction de ces forces, de celui des disques, ou les forces
extérieures sont contenues dans le plan du feuillet moyen
qui reste plan aprés la déformation. Signalons simplement
en passant, & propos des disques, le probléme du disque
tournant, traité par Stodola et Griibler et celui de ’éprou-
vette percée d’un trou et sollicitée & la traction, étudié
par Preuss et par Kirsch. '

Le nombre des problémes qui se posent a propos de la
flexion des plaques planes est trés considérable. Ces pla-
ques sont soit libres, soit appuyées, soit encastrées sur tout
leur contour. Les conditions d’appui peuvent du reste ne
pas étre les mémes le long de tout le contour et cela
complique beaucoup les calculs correspondants. De plus,
ces plaques ont des formes extrémement variées et pour
chaque forme particuliére, il faut une solution spéciale.

Grace a la symétrie qui simplifie les questions, la plu-
part des problemes relatifs a la plaque circulaire sont
résolus. Ceux concernant les plaques en demi-cercle sont
plus difficiles.

Navier a donné une solution rigoureuse du probléme
de la plaque rectangulaire appuyée sur tout son pourtour,
mais les séries doubles qu’il obtient sont peu maniables.
Tout récemment, Nadai et Hencky ont, pour le méme
probléme, donné des solutions approchées plus directe-
ment utilisables pour les praticiens. Il faut rappeler aussi
que Ritz a résolu rigoureusement le probleme de la pla-
que rectangulaire encastrée. Les remarques générales faites
plus haut & propos de sa méthode s’appliquent également
4 la solution qu’il a donnée dans ce cas particulier.

Enfin Galerkine s’est occupé de la plaque elliptique. 11
a montré que, pour son calcul, on pouvait utiliser avan-
tageusement les résultats obtenus pour la plaque rectan-
gulaire circonscrite a I'ellipse formée par son contour.

Une méthode toute récente de calcul des plaques planes
est celle de Marcus qui se sert d’un procédé semblable a
celui que Mohr a donné pour la construction graphique
de la ligne élastique d’une poutre. ‘

Tout ce qui précéde se rapporte aux plaques minces.
Les solutions obtenues pour ces plaques minces ne s’ap-
pliquent pas aux plaques dites trés minces, qui sont beau-
coup plus flexibles que les précédentes et ou les fleches
sont beaucoup plus grandes. Elles ne s’appliquent pas non
plus aux plaques épatsses pour lesquelles les hypotheéses
de Kirchhoff ne sont pas valables, pas plus, par exemple,
que ’hypothése de Bernouilli n’est légitime pour le calcul
des pieces a forte courbure, crochets de grue ou de
wagon.

Plagues courbes. La théorie des plaques courbes a été
faite d’abord, mais d’une maniére trés abstraite, par Love.
En 1913, Fankhauser rameéne le calcul de la plaque courbe
sphérique 4 U'intégration d’une équation différentielle du

5me ordre. H. Keller, & cause de I'importance pratique
du probleme (pour les fonds de chaudiére, par exemple)
a cherché a intégrer cette équation par la méthode des
différences. Mais les calculs que nécessite le procédé de
Keller sont d’une longueur rebutante.

Reissner, par un choix différent des variables, a ramené
le probléme & I'intégration d’une équation du 4™e ordre
seulement que Meissner a réduite, a son tour, a celle de
deux équations du 2me ordre. Bolle, un éléve de Meissner,
a consacré sa theése au calcul des plaques courbes sphé-
riques. Plus tard, d’autres éléves de Meissner, Wissler et
Dubois ont traité les plaques courbes en forme de tore
et en forme de cone a épaisseur constante. Enfin, Honeg-
ger, en utilisant une remarque faite en 1915 par Meissner
également, s’est occupé du calcul des plaques coniques a
paroi d’épaisseur variable suivant une loi linéaire.

(Sur toutes ces questions des plaques planes ou courbes,
le lecteur trouvera d’abondants renseignements dans I’ou-
vrage de Foppl intitulé « Drang und Zwang », Vol. 1,
p. 125-232 et Vol. 2, p. 1-55. Ce dernier volume, p. 55-160
contient aussi une théorie trés développée de la torsion).

Le temps nous manque pour résumer d’une fagon digne
de leur valeur les autres cours auxquels nous avons eu
le privilege d’assister. Les deux exemples qui précédent
montrent assez la variété et la richesse des aper¢us donnés
dans les cours de Zurich.

Nous n’avons eu le plaisir de pouvoir prendre part
aux excursions du Wiggital et du Gotthard, pour les-
quelles les inscriptions étaient nombreuses.

Disons simplement pour terminer que le Comité central
et la Commission des cours avaient organisé le mercredi
soir 3 octobre un diner au « Zimmerleuten » en ’honneur
des professeurs des cours. Ils ont eu 'amabilité d’y inviter
le Bulletin technique. Des paroles cordiales y furent pro-
noncées par M. Andreae et par M. Mesnager qui, avec
émotion, remercia encore la Suisse de l'accueil fait aux
blessés de la grande guerre. Ce diner a été suivi d’une
séance a la Société Zurichoise des Ingénieurs et des
Architectes, a laquelle les professeurs du cours et les
participants pouvaient assister et ou l'on discuta la
question brilante de 'exportation de I’énergie électrique
aprés un rapport intéressant du DT Ing. B. Bauer, de

Berne, sur ce sujet.
Maurice Pascuoub,

Professeur & I'Université de Lausanne.

Concours pour I’étude d’'un Musée des Beaux-Arts
a ériger a la Chaux-de-Fonds.
(Suite.)
No 4, « Lumiére ». Projet présentant de bonnes qualités dans
son ensemble. L’entrée commune au parc et au Musée est bien

étudiée, cette solution a cependant I'inconvénient d’exiger un
développement du vestibule trop important. Le plan du

Y Voir Bulletin technique du 24 novembre 1923, page 295.
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