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C'est l'équation d'une hyperbole du 3e degré qui correspond

de très près à la courbe réelle du Vortex libre.
Il est intéressant de retenir que lorsque dans un espace

de révolution comme celui de la fig. 3 la vitesse d'écoulement

comporte des composantes tangentielles, la
masse liquide en mouvement doit nécessairement être
limitée par une surface de discontinuité semblable à

celle du Vortex ci-dessus. Car si le liquide s'approchait
plus encore du centre, la vitesse tangentielle tendrait, de

par l'équation ci-dessus, vers des valeurs infinies. Lorsque

l'espace à l'intérieur de la surface de discontinuité
est occupé par du liquide, il est probable que celui-ci est

en état de remous, mais ne participe pas au déplacement
général du liquide environnant.

Tuyaux d'aspiration du type « épanouissant ».

Le principe que nous venons de voir suggère immédiatement

une façon commode de récupérer l'énergie
cinétique due à la composante tangentielle de la vitesse de
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Fig. 6.

l'eau sortant d'une roue-turbine ou d'une roue-pompe.
Si le courant est éloigné de l'axe, la vitesse tangentielle
diminue inversement à l'augmentation du rayon et la
chute-vitesse correspondante décroît inversement au
carré de ce rayon. Il suffit donc d'un éloignement de

l'axe peu considérable pour transformer en pression une

grande partie de la vitesse tangentielle. Ce principe est

appliqué dans le tuyau d'aspiration épanouissant.
La disposition de ce genre de tuyau ressort de la fig. 5

qui montre la maquette des tuyaux d'aspiration des

turbines de 30 000 HP que le gouvernement américain

installe à Muscle Shoals, Alabama.
Tout en s'inspirant de ce prinoipe, il convient de ne

pas perdre de vue les composantes méridiennes de la

vitesse, et il faut en prévoir l'amortissement graduel et

sans brusques changements de direction. Tant pour parer
aux brusques variations de grandeur et de direction des

composantes méridiennes que pour éviter la naissance

d'une surface de discontinuité entourant une zone de

remous, il est évidemment avantageux de placer un cône,

ou noyau central, dans le tuyau d'aspiration, comme c'est

le cas dans le tube aspirateur de la fig. 5.

Lorsque le tuyau d'aspiration est relativement court,
et que les dispositions générales le permettent, il peut être
utile de faire remonter l'extrémité du noyau central
jusqu'à la sortie de la roue, ce qui élimine tout courant
d'eau dans le voisinage de l'axe, où la tendance au Vortex
est grande.

Nous préconisons aussi l'emploi de surfaces de
révolution à courbure continue pour tout l'ensemble de la
turbine, ce qui évite tout changement brusque de
courbure. La fig. 6 montre le schéma d'une turbine réalisant
ces conditions. (.A suivre.)

Graphique pour l'obtention rapide
des sections de fer minima,

dans une poutre en béton armé, soumise à des

efforts composés de flexion avec

compression ou tension

par E. Gardiol, ingénieur à Grenoble.

A. Généralités.

Il est inutile d'insister sur les nombreux cas où l'ingénieur,

s'occupant de construction en béton armé, est

appelé à calculer des sections soumises à des efforts
composés de flexion avec compression ou tension, spécialement

depuis l'emploi général des cadres, dans les réservoirs,

silos, etc.
Plusieurs auteurs ont déterminé et publié des tables

permettant d'obtenir plus ou moins rapidement' les
sections de fer dans le cas considéré, mais toutes ces tables

exigent un tâtonnement pour avoir la section totale de

fer minimum. Le graphique page 117 permet de trouver
très rapidement et d'une façon très exacte la section
minimum d'acier pour une section déterminée. Il permet
de se rendre compte visuellement si la section adoptée à

priori est exacte, et dans quel sens il faut la modifier pour
se trouver dans une proportion convenable des quantités
de fer.

D'autre part, comme nous le montrerons dans le
chapitre D, ce graphique est absolument général, il est valable

pour flexion avec compression ou tension, pour flexion
simple, pour compression simple, et dans tous ces cas

avec double ou simple armature.
Nous allons considérer, pour plus de clarté, le cas de

flexion avec compression dans une section rectangulaire.
Nous montrerons au chapitre F les corrections qu'il faut

apporter pour une poutre en T.

B. Pourcentage uc et ut des armatures.

La force excentrée N de compression se trouve à une
distance c de l'armature comprimée w,. et à une distance t
de l'armature tendue w(. Nous désignons par Rb la
compression du béton et par Re et Rt les efforts dans les armatures

comprimées et tendues.
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Pour permettre le développement ci-dessous, il est nécessaire

de se fixer, en fonction de la hauteur H de la section,
la distance des armatures aux faces de la pièce. Nous

avons choisi une valeur plutôt. grande, soit a 0,08//
pour les deux armatures.

En désignant par m le rapport des coefficients d'élasti-
ß

cité du fer au béton : m — -=-^-. Nous avons d'après la
Ej,

iR*
Rt

X

h-— x
figure 1 la relation :

Posons n — d'autre part
Rb

(1) x 0,92//

h 0,92//.

n -\- m

D'après la figure 1 les conditions d'équilibre des

moments par rapport à la section de fer a>c donnent :

(2) Ne — ^ bx (J— 0,08//] + w,. 0,84//.

En introduisant dans cette équation la valeur trouvée

N
u e

-t-a.7jrjzszs. .—m s
•Vi

-Qm*
ov¥ ^-b

Fig. 1.

de x d'après la relation (1) et en posant, Ne Mc et

ü)t pibH

Mc -§ 6.0,92//
m '°'mi m

0,08// +

C,

n -j- m \ 3 n-^- m

+ p.tbH. 0,84////,.

En divisant les deux membres par bH2Ri, et en posant :

Mc
on obtient :

bH%Rb

(3) p,

C, + 0,46 T—l « [0,227m — 0,08n]
(n -j- m)£

0,84n

En procédant de la même manière par rapport à la
section de fer w, :

(4) Nt Yb-X (°>92jF/ — |) + w'fl<=• °>84#-

En introduisant les valeurs de a;, Nt Mt, wc fic6//

et r -jj- on obtient après développement :

Iii iflfitV

C — 0,46;

(5) Pc
n -f- m)!

(0,614m + 0,92n)

0,84»

C. Détermination de n pour que Wc -j- W( minimum Ss

Les armatures comprimées et tendues dans une section

rectangulaire soumise à de la flexion avec compression

peuvent varier dans leur rapport, la compression du béton
restant constante ; il existe donc dans chaque cas
particulier un rapport déterminé pour lequel la somme des

deux armatures est minimum.
Nous allons déterminer ci-dessous en fonction de

Rt •

n -=- une relation exprimant que uic -\- a>t est minimum.
Rb

Reprenons les équations d'équilibre :

Rb
(6)

M:]

(8)

Mc bx (~— a\ + M|iî«(H —2a),

R„
M, ~ b + ucRc{II — 2a),

Rt mRb
H

(9) Rc=mRb- -.x

En introduisant les relations (8) et (9) dans les équations

(6) et (7) :

wtmRi
H Rb

o

Ci)c.mRb

(H —2a) =¦ ^bx (;

(H

a) + Nc

2a) **bx(H— a-?)
En multipliant la première de ces deux relations par

(x — a) et la deuxième par (H — a — x) et en les

additionnant on obtient :

(«i -f- ouc) m
H—a-

¦(x-a)(H-2a)
] bx r (x

—a \(x—a) — H {H—a—x)\ +
N+ —[t(H — a—x) + c(x—a)].
rib

En considérant sur la figure 1 que : c t — (H — 2a),
le terme t (H — a — x) -f- c (a; — a) devient après
développement

(H — 2a) (t— {x — a))

De même le terme :

(H |][(/Z-a)-a-]
dévient après transformation

g x(H — 2a) — H (// — 2a).

En remplaçant les deux termes ci-dessus par leur
nouvelle valeur dans l'équation (10) et en remarquant que
le coefficient (//— 2a) est commun à tous les termes on
obtient finalement la relation

1 Une recherche analogue a été faite par M. Rossin (Armierter Beton,
juin 1911).
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(11) ûfc+j
¦bx ¦7)Hx+w(t+a)—^-xL lib tib

(// — x]

Nous voulons obtenir la valeur minimum de w( -f- wc.
pour cela il suffit de faire la dérivée du second membre
et de l'égaler à 0 pour avoir une relation avec x comme

variable. Le terme peut être laissé de côté. La
x — a

rr qß tjdcß xdijdérivée d'une fraction - a comme valeur d - - -——.y y y
Pour que d - — 0 il suffit que ydx — xdy 0.

m\\
\_o * nb

N N [- m] 0.- L bx* — f Ex - -~ (t -U a)
Lo L Rb Rb

En développant et en mettant Ne Mc on obtient

/ 3 3 Mx= (//-a)-i/(//-a)2-|//(//-a) + ^-
Cette équation nous donne la valeur x pour que

u>c + <t>t soit minimum. En faisant dans cette relation
m

x 0.92// ;t H
n -\- m

comme précédemment Cc

a 0,92// et en posant

M,
on obtient :

bH*Rb

n -f- m

d'où la valeur de :

(12) n

[ — 1,33 \/0,104 -f Cc

1 — 1,33 v/0,104 + Cc

L'équation (12) donne la valeur de n pour que w, -f- wc
soit minimum en fonction de Cc

D. Détermination d'un graphique.

Nous avons posé r -=- d'après les équations (8)

et (9) cette valeur devient :

mRb
x

2

mRi, a -— x

En remplaçant par sa valeur x 0,92//
n -j- m

on obtient :

(13)
0,914m — 0,087,-

Au moyen des relations (3), (5), (12) et (13) il est possible

d'éiablir un graphique extrêmement pratique pour la
détermination des quantités de fer.

L'abaque accompagnant .cet exposé a été établi pour

m — 15. Il est évident que l'on peut faire unEb
graphique semblable pour n'importe quelle valeur de m.

Les relations (3) (13) deviennent dans ce cas

6,9
Cc-h

(3')

(5')

(12'

(13')

.Ut
(n + 15)2

[3,4 — 0,08n]

0,84

Ct
6,9

(n + 15)2
[9,2 -f 0,92n]

0,84w
15

1 —

13.7

n

1,33 \/0,104 + C,

— 0,087.

-15;

R,On peut alors déterminer pour des valeurs de n
J^'6

variant de 0 à 45 les valeurs de r.
La relation (3') permet de déterminer une série de

courbes, que nous appellerons les courbes Cc ayant comme
variables ut et n, en portant sur un axe vertical les valeurs
ut et sur un axe horizontal les valeurs de n.

De même la relation (5') permet de déterminer une
série de courbes, que nous appellerons les courbes Ct,

1

ù) £
CYi

M^
N T£ ï:

Ol
^

Lût

ayant comme variables ^xe et n. Ces deux variables seront
portées sur les mêmes axes d'ordonnées.

Remarquons tout de suite que u( est fonction de Cc et
ac fonction de Ct

La relation (12) permet, elle, de déterminer pour une
valeur fixe de Cc la valeur à attribuer à n pour que
(co, + wc) soit minimum. En faisant cette opération pour
plusieurs valeurs de Cc on détermine une courbe unique
que nous appellerons « courbe des minima ».

Nous allons montrer ci-dessous que ce graphique est
général. En effet il n'est pas valable seulement pour
flexion avec compression, car les courbes Ce et Ct sont
fonction de Mc et Mt, or, l'on peut déterminer ces
moments pour tous les cas.

Considérons une section rectangulaire bH. Les distances
des armatures au centre de gravité de la section de béton,
sont d'après les valeurs choisies : 0,42//.

a) Flexion avec compression. Soient M le moment de
flexion et N la force de compression. Les moments Mc
et Mt ont alors pour valeur :

Mc — M — Q,k2H.N ; Mt N + 0,42H.N.
h) Flexion avec tension. Soit T la force de tension :

Mc M + 0,42//r ; M,= M — 0,42//r.
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c) Flexion simple. Dans ce cas nous n'avons comme force
extérieure que le moment M.

Mc Mt M. Il s'en suit que Cc= Ct.

d) Compression simple. Il n'y a plus de moment, la
force N agit seule

— Mc¦ + M,= 0,42HN ; — Cc Ct.

E. Indications pratiques pour se servir du graphique.

Supposons que l'on ait obtenu par un calcul, dans un
cas de flexion avec compression par exemple, soit les

valeurs de M et N, soit la valeur de N avec son excentricité,

on peut alors déterminer les valeurs de Cc et Ct en

choisissant une section bH, et une compression Rb du
béton que l'on ne veut pas dépasser. Il peut alors se

présenter plusieurs cas :

1° Armatures minima. Dans ce cas il suffit de chercher
l'intersection de la courbe Cc avec la courbe « section
minimum » pour déterminer la valeur de n. Les intersections

des courbes Cc et Ct avec cette verticale donnent

sur les horizontales les valeurs de ut et u.c [à remarquer
que p., f(Ct) et uc f(Cc)]. Suivant les pourcentages
obtenus il est facile de voir s'il est nécessaire de modifier
la section choisie et dans quel sens. Connaissant u, et

pc les sections de fer ont les valeurs :

w, pt • bH ; cac pc ¦ bH ;

Rb celui choisi ; Rt nRb ; Rc rRt.
Une graduation supplémentaire donne pour chaque

valeur de n directement la valeur de r. De même une
graduation indique immédiatement quelle portion du
graphique est valable pour Rb choisi de sorte que la tension
dans le fer ne dépasse pas 1200 kg/cm2.

Pour Rb s= 50 kg/cm2 par exemple n doit être plus

petit que 24 car Rt nRb 24 50 1.200 kg/cm2.
2° Armatures égales. Il suffit dans ce cas de chercher

l'intersection des 2 courbes Cc et Ct ce qui nous donne la
valeur de n et les valeurs de uc u,. On peut se rendre

compte de suite suivant la distance à laquelle on se

trouve de la courbe « section minimum » si l'on est très

éloigné de cette dernière valeur ou s'il est préférable de

prendre des armatures inégales.
3° Armatures en tension seulement. Supposons que l'on

ne veuille pas mettre d'armature en compression. Pour
cela il faut que uc 0, il suffit alors de chercher
l'intersection de la courbe Ct avec l'horizontale p. 0 ce qui
détermine n.

Il est bien entendu que ces trois cas peuvent s'appliquer
dans les cas a, b, c, d décrits précédemment.

Supposons maintenant que-l'on veuille déterminer la

compression du béton et les tensions dans les armatures
connaissant la section de la pièce, les armatures et les

efforts extérieurs. On est obligé pour cela de procéder

par un petit tâtonnement car Cc et Ct sont inconnus,

Rb étant à déterminer.

Mais £l Ml
Ce " Me P'

Sur l'horizontale p.t, qui est connue, chercher sur la
verticale d'un n quelconque la valeur de Ct. Faire cette

opération pour des valeurs de n différentes jusqu'à ce

que C, pCc. Connaissant n on a alors :

R.
Mr. Mt

bH2Cc bH2Ct

et par suite Rt nRb, Rc rR,.

Pour des armatures symétriques le tâtonnement est

plus rapide car u.c ut se trouvent sur une même
horizontale.

O

_fi_.

6JC=21.4

CJ^Ô.4

T~
d<

«i

(O
iO
en

—!\r
—-Itf

%^a£]n^

-t
Fig. 3.

Pour illustrer cet exposé nous allons donner quelques

exemples;

a) Flexion et compression.

Mc 18Tm— 0,336 20T 11^,28

Mt 18r -f 0,336 20r 24,72

En choisissant Rb 45 kg/cm2 :

1.128.000
C.

40 802 4g 0,0978

2.472.000
' 40 802. 45 '

1° Section minimum. Le graphique nous donne n 22.

u, 0,575 % uc m 0,67 %

ta, 0,575 % 40 80 ¦= 18,4 cm2

toc

Rb

0,670 % 40 80 21,4 »

total 39,8 cm2

45

R, 22.45 990 \ kg/

Rc 0,54 990 553

Une vérification exacte de cette section nous donnerait
les valeurs suivantes des efforts :

Rb 44,8 kg/cm2 Rc 526 kg/cm2 R, 987 kg/cm2.

- 2° Armatures égales. L'intersection des courbes

Cc 0,0978 et C, 0,2142 nous donne : n 21 ;

p.c p, 0,63 % ; cd0 tat 63 % 40 80 20,1 cm2 •

total 2 20,1 40,2 cm*.
On voit que dans ce cas l'armature symétrique serait

tout aussi économique que l'armature minimum, la
différence étant très faible : 40,2 — 39,8 0,4 cma.
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b) Flexion et tension. Considérons une section rectangulaire

60 30 soumise à un moment fléchissant de

M 8 Tm et à une tension T 1T.

Mc STr + 0,42 0,60 7r 9 765 Tm

Mt 8 — 0.42 0.60 7r 6 235 Tm

En choisissant Rb 40 kg/cm2

Cc
976 500

30 602. 40
0,226 G,

623 500

30 602. 40
0,144.

20,0 ci

La courbe Cc coupe la courbe « section minimum » à

droite de la limite pour Rb 40 kg/cm2, on est donc forcé

de prendre n 30 pour que la tension dans le fer ne

dépasse pas 1200 kg/cm2

n 30 p.t 0,91 % uc 0,2 %

ta, 0,91 % 60 30 16,4 cm2

Wc 0,20 % 60 30 3,6 cm2

40 kg/cm2

1200 kg/cm2

Re 0,368 1200 442 kg/cm2

Dans ce cas particulier on ne peut donc pas mettre des

armatures minima, ni des armatures égales, car l'acier
subirait des tensions supérieures à 1200 kg/cm2.

c) Flexion simple (double armature).
Considérons une section rectangulaire 40.20 soumise à

un effort de flexion simple M 3/,2. Il ne faut pas que
la compression du béton dépasse 45 kg/cm2.

320 000

Rb

Rt 30 40

r 0,368.

Cc C, - 0,222.

total 15,52 cm2

20 402 45

Pour que Rt ne dépasse pas 1200 kg/cm2, n 26,6.

Le graphique donne

I 1,02 % p., 0,92 %

Wi 1,02 % 40 20 8,17 cm2

Wc 0,92 % 40 20 7,35 cm2

Rb 45 kg/cm2

Rt 26,6 45 1200 kg/cm2

Rc 0,425 1200 510 kg/cm2

r 0,425.

F. Poutres en T«

Jusqu'à présent nous n'avons considéré que le cas de la

section rectangulaire, nous allons montrer les corrections

qu'il faut apporter pour les poutres en T, cas qui

se présente assez fréquemment en pratique.
Considérons les conditions d'équilibre des moments par

rapport aux deux armatures :

bx (x
Rb y (i ~ °'08H

(!' x — d _- Rb {o
x

b')

+ R,ù}t0,84H

i (2d + x o,08/r +

(15)

Mt Rb Ç (o,92H |

l //cw<:0,84//.

Comme dans le cas de la poutre rectangulaire nous avons
m

toujours x 0,92//

k

n-\- m

Posons encore les valeurs :

d

tat u'.bH i'bH.

H
b— b'

d kH

b—b' vb

m

k est toujours < 1

<1v »

z
n -f- m

En introduisant ces valeurs et notations dans l'équa-

-J—
1

h
:

j
i

§
et

s

1

"L f

Fig. 4.

tion 14 et en divisant tous les termes par bHzRb et en

Mc
appelant toujours „p Lc on obtient :

bH Hb

(16)

Cc + 0,14z(z — 0,261) —
(0,92z — k)2 (2k -f- 0,922

1,84 3 — 0,08

l 0,84

On obtient de la même manière au moyen de l'équation
(15) la relation :

C, — 0,14z(3 — z) +
2k + 0,92z

;i7)
g

+ ffi"-fi,0,92
0,84nr

On peut écrire ces deux formules sous la forme :

Cc + 0,14z(z — 0,261) — q(ß — 0,08)
0,84n

C, — 0,14z(3 —z) -f «(0,92-/3)
0,84nr
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Formules dans lesquelles

0,92z-
H b—b' ^ + 0,46z

n+m l,84z b 1,5

Ces formules peuvent encore s'écrire :

u't — p-, — p.', (ut et [i,. étant les pour-
(19)

p-l Pc 4- p°.
centages pour une
section rectangulaire bH)

et

(20)

F-c

«Q3 — 0,08)
0,84n

«(0,92 - ß)

0,84rer

On voit donc par ces formules (19) que les pourcentages

d'une poutre en T s'obtiennent en retranchant ou
en ajoutant aux pourcentages d'une poutre rectangulaire
bH les valeurs u" et u".

Ces valeurs p et u" ne dépendent pas des charges
• • J d

extérieures agissantes mais uniquement de n, jj et

b—b'

he pourcentage tendu d'une poutre en T sera toujours

plus petit et le % comprimé plus grand que celui de la
poutre rectangulaire correspondante.

Pratiquement, pour calculer une poutre en T, on considère

la poutre rectangulaire bH correspondante et on
détermine au moyen du graphique la valeur -de n pour
la « section minimum » et on ajoute au % obtenu les
valeurs de p." et p." déterminées par les formules (20).

Sachant que le % comprimé est augmenté on choisira
la section rectangulaire de façon que ce % soit petit, et
même il sera quelquefois nécessaire de le prendre
négatif.

La valeur de n pour « section minimum » est à peu près
la même pour la section en T que pour la section
rectangulaire, du moins au point de vue pratique cela suffit
amplement.

Il faut cependant noter que pour une section en T les
forces N ou T n'agissent plus au milieu de la section mais
au centre de gravité S de cette dernière, par conséquent
les formules des pages 8 et 9 ne sont plus valables.

Pour faciliter le calcul des sections en T nous donnons

p. pcci-dessous un petit tableau des valeurs — et — en
v v

fonction de n et de k.

î Chiffre supérieur chiffre inférieur
v

b'
k

H

|'i k
0,06 0,08 0,10 0,12 0,14 0,16 0,18 0,20 0,22 0,24 0,26 0,28 0,30

U-js-, 1,300
1,675

1,300
1,538

1,300
1,408

1,290
1,285

1,270
1,169

1,255
1,060

1,210
0,961

1,170
0,868

1,130
0,778

1,080
0,694

1,026
0,618

0,972
0,548

0,916
0,484

10
0,374
1,410

0,377
1,275

0,373
1,142

0,368
1,022

0,358
0,918

0,348
0,810

0,334
0,717

0,317
0,630

0,296
0,542

0,277
0,471

0,255
0,403

0,232
0,341

0,206
0,284

15
0,157
1,210

0,156
1,078

0,156
0,945

0,153
0,829

0,147
0,720

0,140
0,618

0,131
0,530

0,121
0,446

0,109
0,372

0,097
0,306

0,085
0,247

0,073
0,196

0,060
0,151

20
0,076
1,042

0,077
0,907

0,077
0,780

0,074
0,670

0,071
0,562

0,066
0,468

0,059
0,383

0,052
0,309

0,045
0,244

0,038
0,187

0,030
0,138

0,023
0,098

0,017
0,065

25
0,042
0,928

0,043
0,790

0,042
0,660

0,040
0,549

0,037
0,445

0,033
0,358

0,029
0,279

0,024
0,211

0,019
0,154

0,015
0,106

0,010
0,068

0,006
0,039

0,003
0,018

30
0,024
0,821

0,025
0,680

0,024
0,560

0,023
0,445

0,021

0,350
0,018
0,264

0,015
0,193

0,011
0,171

0,008
0,087

0,005
0,050

0,003
0,024

0,001
0,007

—

35
0,015
0,740

0,015
0,598

0,015
0,475

0,014
0,365

0,012
0,273

0,010
0,322

0,008
0,131

0,005
0,081

0,003
0,044

0,001
0,017 0,003 —

—i

40
0,009
0,670

0,009.
0,531

0,009
0,405

0,008
0,300

0,007
0,212

0,005
0,140

0,003
0,083

0,002
0,042

0,001
0,015

— — —
—

45
0,618 0,472 0,346 0,244 0,161 0,095 0,048 0,016 0,002 — — — —
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