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La Théorie de la Relativité

Résumé des conférences faites a 1’Université de Lausanne
par M. Epouvarp GuirLaume, docteur és sciences.

(Suite.)!

Placons-nous sur .S; et imaginons que origine O, de S
1 g g 2 2
soit un centre d’ébranlement. Posons :

dr, = ¢dt cos g, ; dzy = cydt cos o, .

La transformation de Lorentz dérivée par rapport a (
donne, si 'on tient compte de (11):

2

(15) e =cB(1 4+ acosqy) ; ¢ =c;f(l—acosqy).

Pour I'observateur entrainé avec S, , c’est-a-dire le milieu
M, , le centre O, émet des ondes sphériques concentri-
ques, se propageant avec la vitesse ¢,. Si, autour de Oy,
nous portons des vecteurs-vitesses dans toutes les direc-
tions, leurs extrémités seront sur une sphere dont I'équa-

tion en coordonnées polaires aura la forme :
(16) €3 = Co»

0, étant le pole. Comment le centre Oy va-t-il émettre
dans le milieu M, , par rapport auquel il est animé d’un
mouvement uniforme de vitesse ¢ ? D’abord, il est évi-
dent qu’une fois émise, la lumiére se propagera dans M,
avec la vitesse ¢, en vertu méme du principe de la cons-
tance de la vitesse de la lumitre. Aussi bien, ce que nous
cherchons, c’est la vitesse relative « instantanée », au
moment de I’émission. La réponse nous est donnée par la
seconde équation (15) dans laquelle nous devons tenir

compte de (16), et 'on voit que I'équation
(17) L

représente, en coordonnées polaires, un ellipsoide ayant
LN : : o i

un foyer a 'origine, soit en Oy si nous considérons I'ébran-

lement émis par O, 4 I'instant précis ot il coincide avec 0.

La figure 3 ci-contre montre cet ellipsoide des vitesses. Si

le centre O, émettait des projectiles avec la vitesse ¢,

comme dans la théorie de I’émission, au bout du temps 1

1 Voir Bulletin technique du 25 décembre 1920, page 301.

Nos nouveauxs abonnés pour 1921, qui désireraient recevoir la
premiére partie de la notice de M. Guillaume, goudront bien
en informer notre administration qui lewr enverra, gratuitement,
un exemplaire de notre numéro du 25 décembre 1920.

celles-ci formeraient une sphere dont le centre serait a la
distance 0,0, = ¢ de O;; pour S, la vitesse des parti-

cules vers l'arriére serait ¢y—¢, et vers Iavant ¢y .

On voit qu’en réalité, ces vitesses sont plus grandes ;
| elles doivent étre multipliées par le facteur 5. Il existe
deux cercles d’intersection AA’ et BB’ de Pellipsoide avec
la sphére de centre O, ; leurs points joints & O; donnent
. tous les vecteurs-vitesses identiques & ceux qui résulte-
raient de la théorie de I'émission. Les sphéres dessinées et
lellipsoide sont en aflinité, les points correspondants se
trouvant sur des paralléles & Oz. On peut donc construire

% Ve

63—7/01
| flG0) /]
\ ’

\

Fig. 3.

immeédiatement le vecteur ¢; de direction @, correspon-
dant au vecteur ¢, de direction g, dans M,. On tire, en
effet, de (15):
080y + 2
(18) COs @y == —— 11— —
i

I + o cos @,

qui exprime I'aberration lumineuse, ¢’est-a-dire la dévia-
tion que subit un rayon par suite du mouvement de I'ob-

servateur, et 'on obtient en formant 1 - cos® g, :
! sin @,
sing, = ————
‘ Bl -+ a cos @)
de sorte que
£ St 1
¢y Sin @ = o sin gy . (1)

Cherchons comment se transforment les périodes 0, et

0, du centre d’ébranlement, lorsqu’on passe du milieu A/,

! Cette démonstration trés simple m'a 6té obligeamment communiqudée par
M. Willigens.
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au milieu M, , autrement dit cherchons la formule du
phénoméne de Doppler-Fizeau. Nous l'obtiendrons faci-
lement si nous considérons un train d’ondes lumineuses
planes ; un tel train est, en effet, représenté par une sinu-
soide telle que (8) ou (9). L'on voit d’ailleurs immédiate-
ment que la seconde relation (10) est identique a (18) si
I'on pose [, = cos g; et Iy = cos g,; les deux derniéres
équations (10) donnent les relations entre les cosinus des
angles formés par la direction du train d’ondes avec les
axes Oy, , Oyyy; 01z, Oyzy respectivement. Quant a
la premiére équation (10), elle fournit les mesures de la
longueur d’onde ; en la divisant par ¢;, on obtient la rela-
tion entre les périodes, a savoir :

0,
(19 @ =2 e
\ ) 1 ﬁ(l + o COS '{/2)
Introduisons leurs inverses, les fréquences N; et N, , el
comparons a la premiére équation (15). On obtient :

1 2
relation aussi simple que remarquable. Supposons que
I'observateur ait son ceil placé sur axe O;a;, a droite
de Uellipsoide et regarde vers O, qui s’approche de lui. La
fréquence observée N sera plus forte que la fréquence N, |
et cela suivant la formule :

\ G ) T 5
j\vl s N, Cy == Vs #\Co + 9 = ‘\72 \/:7%1 &
—a

Co oy

On sait que si une source sonore s’approche d’un observa-
teur, elle semblera émettre un son plus élevé, alors méme
que son mouvement n’influe nullement sur la vitesse de
propagation du son dans I'air de la premiére onde émise
jusqu’a I'oreille de I'observateur. 1l se passe quelque chose
d’analogue ici, ot la vitesse au centre d’émission est ¢
tandis qu’elle est ¢, en dehors de ce centre. Si I'eeil de
Iobservateur se trouvait & gauche de I'ellipsoide, le centre
d’ébranlement s’éloignerait de lui, et la fréquence observée
serait :

Co = 1 4+ o

N = N5

Il est trés remarquable qu'il existe un phénomeéne de
Doppler transversal. Si, en effet, 'observateur regarde
perpendiculairement a O 2y il voit passer la source juste
devant lui, celle-ci lui semblera plus rouge qu’elle n’est,

conformément a la formule :

(21) Ny

La fig. 3 nous permet de calculer sans peine Uexpérience
de Michelson et Morley. Considérons sur S; une équerre
A0, B, dont les cotés Oy Ay et Oy By ont méme lon-
gueur d et portent en Ay et B, des petits miroirs perpen-
diculaires a leurs eotés respectifs, A, tombant sur O,y
el By sur O, a,. expérience en question consiste essen-

tiellement & comparer le temps At qu’emploie un rayon

lumineux & parcourir le chemin 0; A; 0; au temps At
qu’emploie un autre rayon a parcourir le chemin O, B; Oy,
dans I’hypothése ou ces rayons se composeraient exclu-
sivement de centres émis et émettant avee la vitesse ¢,
pour l'observateur entrainé avec S,. La figure donne
immédiatement :

1 d 2df5 2d
R T S R . ... 3.
r o OA + 0,4’ Co \/c(z) — 2
d o d d 1 1
M=o 0D TR

done At = At

Ces temps sont donc égaux, de sorte que si 'on utilise
les rayons pour produire des interférences en O;, on ne
constatera aucun déplacement de franges lorsque I'équerre
pivote autour de son sommet O;. C’est bien ce que révele
'expérience. On voit que I'égalité provient du facteur (3
au dénominateur de I'expression de A¢_. I'on comprend
dés lors que Lorentz et Fitz-Gerald aient proposé de
conserver les relations de la Cinématique classique, en
admettant en compensation que la longueur d se «con-
tracte » dans la direction du mouvement et devient
d: . On s’imaginera que S, représente I'Ether immo-
bile exercant une pression sur la Terre S; en mouvement
avec la vitesse — ¢ (de droite & gauche sur la figure 3).
Nous reviendrons plus loin sur la signification de la

« contraction ».

Abordons les phénoménes ot la matiére intervient, et
cherchons comment les milieux M se meuvent les uns
par rapport aux autres. A cet eflet, il nous faut déter-
miner la régle de composition des yitesses. Considérons le
cas simple que nous avons représenté en Mécanique par les
relations (4). Les vitesses satisfont alors & I'équation (5),
qu’on obtient en dérivant par rapport a ¢ 'une quelconque
des relations (4). La régle que nous cherchons s’obtiendra
semblablement en dérivant la transformation de Lorentz
(7). Or, celle-c1 est intimément liée a la lumiere, c’est-a-
dire 4 des phénomenes de propagation ondulatoire ; il
faut donc s’attendre & ce que tous les mouvements qui en
dérivent aient ce méme caractére et présentent des pheé-
nomenes d’aberration et de Doppler. Il ne sera done plus
possible de mettre une cloison étanche entre I'énergie
rayonnante et la matiére proprement dite. En outre, et
cest ce qu'il y a de trés curieux, nous pourrons prendre
dans chaque milieu M la vitesse de propagation de la
lumiére comme une vitesse de comparaison et «réduire »
toutes les autres a celle-ci prise comme unité. Ainsi, du
point de vue ondulatoire, peu nous importera la vitesse
réelle d’un point physique ; ce qui est nécessaire pour
I'étude des phénomenes, c’est de connaitre cette vitesse
comparativement a la vitesse de la lumiére dans le milieu
M considéré, et cette vitesse constitue, dans ce milieu,
une limite qui ne peut étre dépassée par aucune autre
vitesse, comme nous allons le voir. Pour simplifier, nous

admettrons ici que les deux dernieres relations (7) ne
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dépendent pas de t. Les deux premieres nous permettront
de former les rapports @ : w. Posons :

T ;
&7 15
=== Y135 > = Yo %= P13
iy iy
on obtient :
V12 -F Va3

(22) P13 = 7 S

On voit combien profonde est la différence entre cette
regle de composition des vitesses ct celle de la Méca-
nique (5). En particulier les extrémités de la résultante
913 ne coincident pas avec les extrémités de la somme
919+ ¢9g 3 la résultante est plus petite. Cette propriété
est spécifique de la transformation de Lorentz, comme
on peut le montrer dans le cas général.

On voit, comme nous le disions, qu'a la vitesse de la
lumieére ¢, = 1 dans S, correspond la vitesse de la
lumiere ¢ = 1 dans S;, et cette valeur 1 ne peut étre
dépassée.

4) montre comment les sys-

La figure ci-contre (fig.
temes apparaissent les uns aux autres. Alors que la regle

(5) donne une figure unique pour les trois temes a tout

instant ¢, a la regle (22) correspondent trois figures, selon
qu'on suppose l'observateur sur S;, sur S, ou sur Sj.
Comme il est impossible qu'un méme systeme soit a la
fois en deux endroits différents, 'observateur qui est sur
S;, par cl&cmple, ne voit pas S, et Sy dans leurs positions
vraies, mais dans des positions apparentes S, et S, .
Si l'on se place sur Sy, S; et S; prennent les positions
apparentes SL2 et 53,2, ete.

Remarquons d’ailleurs que si les vitesses sont faibles
comparées a celle de la lumiére, les ¢, sont voisines de
zéro, et 'on peut négliger le produit ¢,5 055 devant 'unité ;
la relation (22) devient identique a (5). Comme nous le
disions, la 7. [i. constitue une premiére approximation
de la Mécanique.

Pris deux a deux, les systémes se meuvent comme des
touts rigides indéformés, et on peut représenter leurs
mouvements par les relations :
e = Xy Tty Xyp = Xy, + oyt

= é =
"\:;.1 = 9yt

qui se substituent a (4).

Nous résumerons toutes ces propriétés remarquables en
disant que la Théorie de la relativité restreinte exprime,
physiquement, des mouyements agec ABERRATION.

On voit par la combien complexes sont les mouvements
relatifs de la matiére et de 'énergie. Pour I'instant, nous
ne savons rien du mécanisme intime de ces phénomeénes,
et nous devons nous contenter de ce que nous donne la
transformation de Lorentz. Est-il possible, cependant, de
dire quelque chose des positions et des vitesses vrates des
systémes ? On remarquera que s Q,z. le, Qza représen-
tent les vitesses réelles, chacune d’elles ne peut étre fone-

tion que de la vitesse apparente correspondante et doit

s'additionner aux deux autres suivant une relation ana-

logue a (5). On doit done avoir :

(24) Qu3(013) = Qua(912) + Qa3(v2) -

Il est trés remarquable qu’en prenant pour Q Iargu-
ment ayant ¢, pour tangente hyperbolique, on satisfait
a I’équation fonctionnelle (24). Ainsi, les points énergético-
matériels auraient pour trajectoires erates des arcs de

géodésiques de surfaces a courbure négative. A I'avenir,

“de dire si cette conséquence est acceptable.

L’illustration la plus remarquable de la regle d’addi-
tion (22) est constituée par la célebre expérience de Fizeau

Sas S

S

S Ss.2

S2s Ss

Fig. 4.

sur Pentrainement partiel de la lumiére par I'eau en mou-
vement (fontaine lumineuse). Supposons qu'un tube Sy
soit parcouru par un courant d’eau S,, dans lequel se
propage un faisceau lumineux Sg. Nous poserons, en appe-

lant n U'indice de réfraction de eau :
Vog = — 3 =1,

et la relation (22) donue :

it
..
14 n | \ / | 1
e B Tl e Lo
£, Vi n 18 ”z)
L n

'on tombe immeédiatement sur le coellicient bien connu
d’entrainement partiel de Fresnel.

Il est trés important de remarvquer que la formule (22)
s'interpréte immédiatement a Paide de Pellipsoide de la
figure 3. Observons d’abord que les quantités ¢, vog .
a1 » sont des nombres purs et qu’on ne change que I'échelle

en multipliant les deux membres de (22) par ¢,, qui est
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homogene & une vitesse. Cela dit, posons dans le cas de
I'expérience de Fizeau :

| 1+ an

T
COS @y = — d’ou cos g = ———
it ’ i n—+4 2

n
On déduit de I'équation de Dellipsoide :

V‘

r
C, =P\C T —
n

et en appelant ¢; la projection de ¢; sur 'axe Oy ay :

‘e
3(_U_|_(,

\n

91 =

Or, ce que I'on observe, ce n’est pas la vitesse ¢, elle-
méme, mais la valeur réduite cyey3 que 'on obtient en
multipliant ¢; par le nombre pur ¢, : ¢;, autrement dit en

. . ; !
la rapportant a la valeur ¢; qu’aurait pour S; la vitesse

51 S Fig. 5
2 Ly '
K v,
A AN N TR R
1 T T T T T T T =
i ! 3 4 5 8 7 i ] o T
S{ Sz__,”-
4 Y, P
0 AN, ey o B | I WA S Y 7,
1 | ' 3 4 5 6 7 ! 5 o L
Fig. 6.

de la lumiéere si le centre en mouvement O, émettail dans
le pide suivant la direction g,. Cette valeur réduite n’est
pas autre chose que la projection sur Op 2, de la partie du
vecteur ¢; comprise entre O; et le cercle ayant ce point
pour centre avec ¢y pour rayon. Toutes les vitesses satis-
faisant a (22) tombent dans ce cercle. En définitive, on
voit qu’on se trouve en présence d’une Cinématique homo-
graphique, dont les constructions résultent de la figure 3.
Tel est le sens mathématique profond de la transforma-
tion de Lorentz.

Il nous reste & parler du temps relatif d’Einstein et
de la fameuse contraction de Lorentz.

Soit ¢ un nombre fixe que nous supposerons homogéne

4 une vitesse, et posons :

(2.—)) L=z 2 - 5

Comme nous avons dit, Einstein eut I'idée d’admettre
que 7; représentait le «temps» du systeme S; et 7, le
« temps » du systeme S,. Ainsi, chaque systéme — chaque

milicu aurait son « temps» a lui. Qu’est-ce que cela
veut dire et sur quelle horloge devons-nous les lire, autre-
ment dit quelles wunités faut-il écrire apreés les 7

Finstein va lui-méme nous tirer d’embarras, il pose en

effet :
(26) 0=

cy
el comme nous avons pris ¢, 300 000 km/sec, c¢’esl

en secondes que nous devons compter les z. Pour en voir

les conséquences, nous allons nous servir d’un exemple
numérique. Supposons que ¢ = 180 000 km/sec, donc

3 . 4_5 x » e
o=z = 7 Nous appellerons événement élémentaire
B} (8

tout couple de valeurs : [(L km; 7 sec). Cela posé,
envisageons sur I'axe Oy 2y de S; les points situés a la dis-
tance a; = 200000 km et 2f = 800 000 km. de Oy, au
moment précis ot notre horloge marque 3 sec. Alors I'ori-
gine 0, de S, sera a la distance 180 000 x 3 = 540 000 km
de Oy, et si nous appliquons la premiére relation (1), nous
voyons qu’aux abscisses ] et @] correspondront respecti-
vement les abscisses x, =— 340 000 km; x; = 260 000 km.

En d’autres mots aux événements élémentaires
(200 000 kmj; 3sec);  E7(800 000 km; 3 sec)

considérés dans S; correspondront les événements élémen-
taires %

I (— 340 000 km; 3sec) ;  £,(260 000 km; 3 sec)

dans S,. lls sont I'un et lautre séparés par la méme
distance de 600 000 km.

Mais Einstein ne procéde pas comme cela. Il pose :

(27) 7 =17, = 3 sec

et utilise uniquement la transformation (7). On calcule
alors facilement qu’aux événements [ et E] correspon-
dent sur S, les événements

8! (— 425000 km; 3,25 sec); é?;(325 000 km; 1,75 sec).

Mais qu’est-ce que cela peut bien vouloir dire qu’aux
points d’abscizsses 200 000 km et 600 000 km envisagés
sur S; a linstant 3 sec, correspondent sur S, les points
d’abscisses — 425 000 km et 325 000 km considérés res-
pectivement aux instants 3,25 sec et 1,75 sec ? (Fig. 5).

Remarquons d’abord que la distance des abscisses sur
S, est de 750 000 km et non de 600 000 km, et cest ici
que lingéniosité d'Einstein se manifesta de facon vrai-
ment extraordinaire, unique dans les annales de la
Science. Supnosons, dit-il, que nous mesurions avec une
immense chaine d'arpenteur une longueur de 750 000 km
sur Sy, et que des observateurs placés sur S; déter-
minent au méme instant (3 sec) les positions des extré-
mités de cette longueur sur O;ay: en mesurant, avec
la méme chaine d’arpenteur, la distance qui sépare ces
positions, on ne trouvera cue 600000 km, autrement
dit, la longueur en question « jugée » depuis S; (von S,
aus beurteilt) paraitra plus courte (fig. 6). Ainsi, un méme
segment aura deux longueurs : une longueur géométrique,
mesurée a la chaine d’arpenteur, et une longueur cinéma-
tigue variable, déterminée en pointant au méme instant
les positions des extrémités du segment dans le systéme
par rapport auquel il est en mouvement!. Plus sa vitesse

est grande, plus le segment paraitra raccourei, el sa lon-

i La chaine d’arpenteur est introduite ici pour accroitre I'eflet paradoxal.
Par suite de nos habitudes, elle évoque I'idée d'unité de longueur immuable
et absolue. Mais, comme toute autre longueur, elle subit la «contraction »
lorsque transportée sur 8, nous la « jugeons» depuis §;, et en adoptant le
point de vue relativiste, on doit toujours s'imaginer qu'on se place sur un
systéme bien déterminé pour en «juger» un autre.
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cueur cinématique deviendrait nulle si le segment acqué-
rait la vitesse de la lumiere. Cest 1a 1" «explication » de
la «contraction» de Lorentz. S’agit-il d’une véritable
« contraction » apparente, si 'on ose s’exprimer ainsi,
comme serail celle d’une allumette regardée a travers
une lentille concave ? Nullement, car le temps vient se
méler a 'affaire. Le calcul montre, avons-nous vu, qu’aux
deux pointages faits au méme instant 3 sec dans S; cor-
respondent dans S, des instants différents 3,25 sec et
1,75 sec. On en a conclu que des événements simultanés
par rapport & un systéme n’étaient pas simultanés « jugés »
d’un systéme en mouvement. C'est cela qui constitue la
«relativité de la simultanéité ». Le temps et lespace
s’uniraient intimement pour former une entité supérieure
I'« Univers », dont le temps serait la quatricme dimension
et que I'on ne pourrait décomposer sans mutilation. Pour
concrétiser ces résultats, on admet que le « temps» de S2,
jugé de S;, parait allongé. Considérons une horloge
entrainée avec S,, ce que Einstein exprime en posant
Av, = 0; la seconde équation (7) donne :

9Q 1z
(.)b) A?l = ;J.\Tz.
. Pl -
Et comme = —, en posant Az, = 1sec, on voit que
(s 2

Azy = 4.7/, sece

Ainsi, une horloge au repos sur S, et qui bat la seconde
pour ce systéme, semblerait aller moins vite pour un obser-
vateur sur S; qui voit passer I'horloge devant lui. Le
«temps» de S, s’écoulerait plus lentement jugé depuis S; .
Bref, on est arrivé & se faire du systeme S, jugé de S;
I'image que représente la figure 6. Mais alors une ques-
tion bien naturelle se pose : est-il vraiment nécessaire de
passer par toutes ces conventions pour aboutir a cette
ligure ? Une autre convention trés simple permet de
I'obtenir immédiatement : il suflit d’admettre que les
nombres 750 000 et 600 000 représentent la méme lon-
gueur, en d’autres mots que I'on mesure cette longueur
avec des unités différentes. Semblablement, on admettra
que Az, et Az, dans (28) sont des mesures dilférentes de
la méme durée . Cette supposition s’impose du reste lors-
qu’on se souvient que Az et Az, sonl proportionnels aux
accroissements concomitants du chemin lumineux mesu-
rés respectivement dans Sy et dans S,. En conséquence,

! Si l'on itagine une montre avec laquelle on mesurerait les durées d'une
part avec la grande, d'autre part avec la petite aiguille en repérant leurs
positions sur la division du cadran en 60 parties, les nombres obtenus T et
7, pour une méme durée satisferaient évidemment 4 la relation !

’ v, =127 .
(i I

Pour une heure, par exemple, on a G 5, don T 60. D'un autre
i

coté, les durées (en secondes p. ex.) (")’_ y (')[' des révolutions de chacune
7

des aiguilles satisfont a la relation
4

120 =0,
(i P:
de sorte que :
O .7.=0.:%T.
(& [ yid P
qui signifie que lorsqu’on mesure une méme durée 4 I'aide d’horloges de
périodes différentes (")" 7 (')/. , ..., les mombres obtenus T Tpre sont
i i

en raison inverse des périodes.

nous n’écrirons pas la relation (26) pour les.deux systémes
a la fois. On conviendra, par exemple, de prendre au lieu
de (25): '

w,  wy Ui

= = (z =:*19 P
ol ¢ représente bien le méme chiffre (300 000) dans les
deux relations et posséde les dimensions d’une vitesse,
mais ou l'unité de temps n’est pas la méme dans les deux
cas. Dans la premiére ¢ et 7; seront exprimés en secondes,
tandis que dans la deuxiéme, ¢ et z, seront exprimés en
une autre unité de temps 0, telle que

(29) dsec; Az) = 1@y Ay
d’ott en tenant compte de (28):
(29" 0, — B = APy sec.

Si done on mesure le temps en secondes avec un pendule,
celui qui donnera le chiffre Az, pour une durée de Az, sec
devra avoir une durée d’oscillation de 11/, sec.

Comme, dans la 7. R., les = sont proportionnels aux
chemins u parcourus par la lumiére, et les périodes © sont
toujours celles d’ébranlements lumineux, on obtient en
multipliant (20) par Az, et en tenant compte de (25) ainsi
que du fait que les fréquences sont les inverses des
périodes, la forme remarquable :

0, Az = 0, Azy;,

qui vient justifier nos allirmations. D’ailleurs, on déduit
directement (29') de la relation Doppler-Fizeau (19).
en remarquant que poser Az, = 0 revient a poser
cos gy = 0 et que O, = 1 sec.

Nous allons quitter ces considérations purement ciné-
matiques pour jeter un coup d’e@il sur la partie dynamique
de la théorie. La place nous manque pour développer les
calculs. Nous devons nous borner & enregistrer les résul-
tats. .

Il est facile de voir que si ¢ tend vers 0, autrement dit
si S; et S, sont animés I'un par rapport a Pautre d’une
faible vitesse comparée a celle de la lumiere, on peut
négliger o2 devant I'unité et poser 3 = 1. Alors la transfor-
mation (7) devient, a la limite, identique a (1). Done, pour
les faibles vitesses, nous pourrons conserver la relation
de Newton :

masse X accélération = force.

Considérons un point matériel, qui, au repos, possede
la masse m. Si ce point est animé de la vitesse ¢ par rap-
port & un systéeme galiléen Sy, il existera toujours, &
chaque instant, un systéme galiléen instantané Sy, mo-
mentanément immobile relativement au point, et tel par
suite que la relation de Newton soit valable. L’applica-

I'On voil qu'on a ainsi un moyen simple pour exprimer avec un seul
et méme nombre les différentes grandeurs de la vitesse de la lumicre, telles
que celles représentées par V'ellipsoide de la figure 3. Au lieu de dire qu'un
train fait du 100, du 50, ete., 4 I'heure, on peut dire qu'il parcourt 100 km.
en une heure, en deux heures, ete.
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tion de la transformation de Lorentz permettra de passer
de S, a S, clest-a-dire de trouver le mouvement rap-
porté a ce dernier systeme. Le résultat du calcul montre
qu’il faut distinguer entre la masse longitudinale (corres-
pondant a I'accélération tangentielle) et la masse trans-
versale (correspondant a I'accélération normale). L’une et
Pautre de ces masses tendent vers Iinfini lorsque la
vitesse du mobile s’approche de la vitesse de la lumiére.
Cette vitesse constituerait donc une limite inaccessible a
la matiére.

Quant a Iénergie cinétique du point, elle se présente
sous la forme :

[y

e

ool W
3
h|€

1
mf3ct = me? 4 5 me? +

o

On voit que, si ¢ est faible devant ¢, I'énergie est
donnée par le second terme, et se confond avec I’énergie
cinétique newtonienne. Pour trouver la signification du
premier terme, il faut examiner de plus pres les lois que
suit I’énergie rayonnante dans le vide. On vérifie d’abord
facilement que les équations du champ électromagnétique
de Maxwell-Lorentz sont covariantes pour la transforma-
tion de Lorentz. Cela posé, imaginons qu’un corps immo-
bile sur S, absorbe la quantité £ d’énergie rayonnante ;
relativement a S;, le calcul montre que cette énergie
prend la forme (E, de sorte que l'énergie totale du

E
52
e .
2] T

0

corps devient :

f(me + E) = <m -

En comparant a la relation précédente, on voit que le
corps a méme énergie que si, animé de la vitesse o, il
E
- " .
avait la masse | m + — ). L'énergie et la masse se confon-
7

0
dent, et le terme mc2 représente I'énergie du corps avant,

I'absorption de la quantité £. Le principe de la conserva-
tion de la masse et celui de la conservation de 1’énergie
n’en forment plus qu’un seul.

On comprend micux maintenant ce que nous disions
au début et les difficultés énormes qui se présentent lors-
qu’on veut repérer les mouvements. C’est le repeére lui-
méme, la matiére, qui nous glisse entre les mains. Imagine-
t-on les difficultés si nous voulions déterminer le mouve-
ment d’un mobile en prenant, comme corps de référence,
un nuage soumis a tous les caprices des vents, et dont
certaines parties se condenseraient en pluie alors que
d’autres se formeraient ?

Aussi bien, faut-il rendre ici un éclatant hommage aux
mathématiciens, qui ont su forger d’admirables instru-
ments sans lesquels la Physique aujourd’hui serait impuis-
sante. C’est ce qu’Einstein a parfaitement compris, et
laissant de coté les représentations intuitives des phéno-

meénes, il s’est demandé comment on pourrait utiliser la

’

CI)V(II'I,'(IIN.'(‘ pour H”Zl(lll('l‘ I(ES I)ll(’:ll(bl]l(“,]l(‘.s (I(‘ gl‘llVil(lli”ll.

(A suigre.)

Concours d’idées pour 'aménagement
du terrain des Asters et de ses abords.
a Geneve.

(Suite. )

IT. N° 4, Ou a la Trinité. — Cette composition vivante bien
adaptée au terrain, offrant un lotissement organique, habile-
ment traité, dispose les différents batiments dans un ordre
dispersé sur le pourtour du terrain, en bordure des voies
publiques ; la clarté du systéme de liaison des édifices princi-
paux est réalisée par des combinaisons heureuses de construc-
tions basses (gymnastiques, préaux couverts, portiques, etc.).
Tous les angles, notamment, sont parfaitement composés.

Le centre du projet est constitué par une place publique
tranquille, de forme allongée, avec plantations, fontaine ou
monument, placée, en doublure du Chemin Hoffmann, et sur
laquelle se développent, bien en vue, les facades principales
et d’entrée de la Mairie et de la Maison Communale. Le refuge
et la circulation pour les véhicules appelés a desservir ces
batiments sont judicieusement compris. Le retrait — éven-
tuel — de I'alignement du Chemin Hoffmann, au nord-ouest,
se combinant avec la composition de la place offre une solu-
tion originale. Quant au carrefour proprement dit, il est sim-
plement et parfaitement concu et adapté aux futures maisons
urbaines.

La distribution de la Mairie (susceptible d’interversion des
locaux suivant les besoins) quoique paraissant un peu serrée,
est bonne. La Maison Communale qui forme un ensemble heu-
reux avec la Mairie renferme au rez-de-chaussée la salle de
réunion desservie par un beau vestibule & trois portes d’acces.
Les vestiaires sont amples, toutefois la buvette est mal placée
au sous-sol. Le Batiment scolaire, placé en retrait du Chemin
des Asters, avec une facade légérement incurvée, mais un peu
longue, présente une distribution judicieuse et une excellente
orientation de toutes les classes, réparties en un rez-de-
chaussée et deux étages. La distance de 25 & 26 metres prévue
entre la facade de I’école et les immeubles de la rue des Asters
assure I’éclairement et I'ensoleillement rationnel des locaux
d’enseignement. Les escaliers des écoles primaires coupent la
circulation de I'école enfantine, il y aurait lieu (sans que cette
modification apporte de changement essentiel) de placer les
escaliers sur la fagade principale, selon la disposition du pro-
jet No 5 ; I'affirmation sur la rue, du pavillon central existant
sur la cour romprait heureusement la monotonie de la face
principale. L’auteur conserve intégralement I'école actuelle,
les locaux étant allectés aux classes enfantines : bonne solu-
tion. (Fig. 6 et 7.)

La gymnastique sur le Chemin Schaub est trop étroite
(9 m. 50 au minimum sont nécessaires), mais il est facile de
remédier & ce défaut. Divisés en deux par une des salles de
gymnastique, les préaux, dune bonne configuration, sont
abrités de la bise par le préau couvert qui longe le Chemin
Schaub, toutefois, orientés au nord-ouest, leur ensoleillement
rationnel est en partie diminué par I'ombre du Batiment
scolaire. Enfin le bruit du préau de I'école enfantine risque
de troubler la tranquillité requise pour les locaux de travail
placés sur la face postérieure de la Mairie (cabinet du maire,
secrétaire, etc.).

Malgré la variété des éléments, I'architecture des édifices,
d’une grande unité de composition, est robuste, sobre et
saine. La Mairie rappelle laspect de la « Grenette» de la
Grande-Place de Vevey. Cependant, les clochetons de la

1 Voir Bulletin technique du 11 décembre 1920, page 297.




	La théorie de la relativité

