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Réd. ; Dr H. Demierre, mg.
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des chemins de fer en Suisse. — Association suisse des Electriciens. — Pro Campagna. — Mission pour Ingénieur
mécanicien agricole. — Nécrologie : Hans Mathys. — Bibliographie. — Carnet des concours.

La Théorie de la Relativité
Résumé des conférences faites à l'Université de Lausanne

par M. Edouard Guillaume, docteur es sciences.

(Suite.) j

Plaçons-nous sur Sl et imaginons que l'origine 02 de S2

soit un centre d'ébranlement. Posons :

dxx cxdt cos (Ej ; dx2 c2dt cos <p2 •

La transformation de Lorentz dérivée par rapport à t

donne, si l'on tient compte de (11) :

(15) c1 e,ß(l fi- acoscp2) ; c2 c1ß(l — acoscpj).

Pour l'observateur entraîné -avec S2 c'est-à-dire le milieu

Mz le centre 02 émet des ondes sphériques concentriques,

se propageant avec la vitesse c0. Si, autour de 02,
nous portons des vecteurs-vitesses dans toutes les

directions, leurs extrémités seront sur une sphère dont l'équation

en coordonnées polaires aura la forme :

(16) c2 c0

02 étant le pôle. Comment le centre 02 va-t-il émettre
dans le milieu Mx par rapport auquel il est animé d'un
mouvement uniforme de vitesse v D'abord, il est
évident qu'une fois émise, la lumière se propagera dans Mx
avec la vitesse c0, en vertu même du principe de la
constance de la vitesse de la lumière. Aussi bien, ce que nous

cherchons, c'est la vitesse relative « instantanée », au

moment de l'émission. La réponse nous est donnée par la

seconde équation (15) dans laquelle nous devons tenir

compte de (16), et l'on voit que l'équation

(17) 1 ß(l—acoscpj)
représente, en coordonnées polaires, un ellipsoïde ayant
un foyer à l'origine, soit en 01 si nous considérons l'ébranlement

émis par 0a à l'instant précis où il coïncide avec Ox.

La figure 3 ci-contre montre cet ellipsoïde des vitesses. Si

le centre 02 émettait des projectiles avec la vitesse c0,

comme dans la théorie de l'émission, au bout du temps 1

1 Voir Bulletin technique du 25 décembre 1920, page 301.

Nos nouveaux abonnés pour 1921, qui désireraient recevoir la

première partie de la notice de M. Guillaume, voudront bien

en informer notre administration qui leur enverra, gratuitement,

un exemplaire de notre numéro du 25 décembre 1920.

celles-ci formeraient une sphère dont le centre serait à la
distance Ox02 v de Ox ; pour S1, la vitesse des particules

vers l'arrière serait c0 — v, et vers l'avant c0-f-p.
On voit qu'en réalité, ces vitesses sont plus grandes ;

elles orovent être multipliées par le facteur ß. Il existe
deux cercles d'intersection AA' et BB' de l'ellipsoïde avec
la sphère de centre 02 ; leurs points joints à 01 donnent
tous les vecteurs-vitesses identiques à ceux qui résulteraient

de la théorie de l'émission. Les sphères dessinées et
1 ellipsoïde sont en affinité, les points correspondants se

trouvant sur des parallèles à Ox. On peut donc construire

Cl-t

ptç

B'

Fia. 3.

immédiatement le vecteur cx de direction q^ correspondant

au vectev.

effet, de (15) :

dant au vecteur c0 de direction <p2 dans-Mg. On tire, en

cos cp"Pi
cos.cpj -\- x

1 + « cos cpa

qui exprime l'aberration lumineuse, c'est-à-dire la déviation

que subit un rayon par suite du mouvement de

l'observateur, et l'on obtient en formant 1 ¦—- cos* cpi :

sin <Po

sin (Dj ß(l -(-a cos<p2)
de sorte que

c, sin if! — c0 sin <p8. (J)

Cherchons comment se transforment les périodes @j et
©« du centre d'ébranlement, lorsqu'on passe du milieu Mg

1 Cette demonstration très simple m'a été obligeamment communiquée par
M. Willigent.
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au milieu Mx, autrement dit cherchons la formule du

phénomène de Doppler-Fizeau. Nous l'obtiendrons
facilement si nous considérons un train d'ondes lumineuses

planes ; un tel train est, en effet, représenté par une
sinusoïde telle que (8) ou (9). L'on voit d'ailleurs immédiatement

que la seconde relation (10) est identique à (18) si
l'on pose L, cos a^ et l2 cos cp2 ; les deux dernières

équations (10) donnent les relations entre les cosinus des

angles formés par la direction du train d'ondes avec les

axes 01y1, 02y2 ; 01z1, 02z2 respectivement. Quant à

la première équation (10), elle fournit les mesures de la

longueur d'onde ; en la divisant par c0, on obtient la relation

entre les périodes, à savoir :

(19) ©,
0*

-f- ce cos

Introduisons leurs inverses, les fréquences Nx et N2, et

comparons à la première équation (15). On obtient :

(20) Ü1 N,

relation aussi simple que remarquable. Supposons que
l'observateur ait son œil placé sur l'axe 01x1, à droite
de l'ellipsoïde et regarde vers 02 qui s'approche de lui. La
fréquence observée Nx sera plus forte que la fréquence N2
et cela suivant la formule :

N^N.
c9

2
cn

2 V fi
On sait que si une source sonore s'approche d'un observateur,

elle semblera émettre un son plus élevé, alors même

que son mouvement n'influe nullement sur la vitesse de

propagation du son dans l'air de la première onde émise

jusqu'à l'oreille de l'observateur. Il se passe quelque chose

d'analogue ici, où la vitesse au centre d'émission est cx

tandis qu'elle est c0 en dehors de ce centre. Si l'œil de

l'observateur se trouvait à gauche de l'ellipsoïde, le centre
d'ébranlement s'éloignerait de lui, et la fréquence observée
serait :

v ß(cp— ")
NV=N{ N

¦ JîMâ
2 Vrr^

Il est très remarquable qu'il existe un phénomène de

Doppler transversal. Si, en effet, l'observateur regarde
perpendiculairement à 01x1 il voit passer la source juste
devant lui, celle-ci lui semblera plus rouge qu'elle n'est,
conformément à la formule :

(21) JV, N2
<K

N2 s/T- «*,

La fig. 3 nous permet de calculer sans peine Yexpérience
de Michelson et Morley. Considérons sur Sy une équerre
A101B1, dont les côtés OxAx et O-^B^ ont même

longueur d et portent en Ax et Bx des petits miroirs
perpendiculaires à leurs côtés respectifs, A1 tombant sur 01y1
et D-y sur Oxxx. L expérience en question consiste
essentiellement à comparer le temps At qu'emploie un rayon

lumineux à parcourir le chemin 01A101 au temps At

qu'emploie un autre rayon à parcourir le chemin 01B101,
dans l'hypothèse où ces rayons se composeraient
exclusivement de centres émis et émettant avec la vitesse c0

pour l'observateur entraîné avec S2. La figure donne
immédiatement :

At

At

d 2dß 2d

OxA ' OxA' Vfcf

OxD ' OxD'

1

donc At A«

+
2d

Sfcl-v*

Ces temps sont donc égaux, de sorte que si l'on utilise
les rayons pour produire des interférences en Ox on ne

constatera aucun déplacement de franges lorsque l'équerre
pivote autour de son sommet Ox. C'est bien ce que révèle

l'expérience. On voit que l'égalité provient du facteur ß

au dénominateur de l'expression de At L'on comprend
dès lors que Lorentz et Fitz-Gerald aient proposé de

conserver les relations de la Cinématique classique, en
admettant en compensation que la longueur d se «

contracte » dans la direction du mouvement et devient
d : ß. On s'imaginera que S2 représente l'Ether immobile

exerçant une pression sur la Terre Sx en mouvement
avec la vitesse — v (de droite à gauche sur la figure 3).
Nous reviendrons plus loin sur la signification de la
« contraction ».

Abordons les phénomènes où la matière intervient, et
cherchons comment les milieux M se meuvent les uns

par rapport aux autres. A cet effet, il nous faut déterminer

la règle de composition des vitesses. Considérons le

cas simple que nous avons représenté en Mécanique par les

relations (4). Les vitesses satisfont alors à l'équation (5),

qu'on obtient en dérivant par rapport à t l'une quelconque
des relations (4). La règle que nous cherchons s'obtiendra
semblablement en dérivant la transformation de Lorentz
(7). Or, celle-ci est intimement liée à la lumière, c'est-à-
dire à des phénomènes de propagation ondulatoire ; il
faut donc s'attendre à ce que tous les mouvements qui en

dérivent aient ce même caractère et présentent des

phénomènes d'aberration et de Doppler. Il ne sera donc plus
possible de mettre une cloison étanche entre l'énergie

rayonnante et la matière proprement dite. En outre, et
c'est ce qu'il y a de très curieux, nous pourrons prendre
dans chaque milieu M la vitesse de propagation de la
lumière comme une vitesse de comparaison et ce réduire »

toutes les autres à celle-ci prise comme unité. Ainsi, du

point de vue ondulatoire, peu nous importera la vitesse

réelle d'un point physique ; ce qui est nécessaire pour
l'étude des phénomènes, c'est de connaître cette vitesse

comparativement à la vitesse de la lumière dans le milieu
M considéré, et cette vitesse constitue, dans ce milieu,
une limite qui ne peut être dépassée par aucune autre
vitesse, comme nous allons le voir. Pour simplifier, nous
admettrons ici que les deux dernières relations (7) ne
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dépendent pas de t. Les deux premières nous permettront
de former les rapports x : ù. Posons :

on obtient :

(22) + ^12 "2i

On Voit combien profonde est la différence entre cette
règle de composition des vitesses et celle de la Mécanique

(5). En particulier les ' extrémités de la régjïltante
vla ne coïncident pas avec les extrémités de la somme

v12 fi- ^23 j 1& résultante est plus petite. Cette propriété
est spécifique de la transformation de Lorentz, comme
on peut le montrer dans le cas général.

On voit, comme nous le disions, qu'à la vitesse de la

h 1 dans S2 correspond la vitesse de la
lumière vis — 1 dans Sx et cette valeur 1 ne peut être

dépassée.
La figure ci-contre (fig. 4) montre comment les

systèmes apparaissent les uns aux autres. Alors que la règle
(5) donne une figure unique pour les trois systèmes à tout
instant t, à la règle (22) correspondent trois figures, selon

qu'on suppose l'observateur sur Sx sur S2 ou sur Ss

Comme il est impossible qu'un même système soit à la
fois en deux endroits différents, l'observateur qui est sur

5j par exemple, ne voit pas S2 et S3 dans leurs positions
vraies, mais dans des positions apparentes S et S

Si l'on se place sur S2 S± et S3 prennent les positions
apparentes Sj s et S3 etc.

Remarquons d'ailleurs que si les vitesses sont faibles

comparées à celle de la lumière, les v.. sont voisines de

zéro, et l'on peut négliger le produit v12 va devant l'unité ;

la relation (22) devient identique à (5). Comme nous le

disions, la T. R. constitue une première approximation
de la Mécanique.

Pris deux à deux, les systèmes se meuvent comme des

touts rigides indéformés, et l'on peut repiésenter leurs

mouvements par les relations :

(23)
X. ^..-¦H 12.1

X
x„ "m*

<V

qui se substituent à (4).
Nous résumerons toutes ces propriétés remarquables en

disant que la Théorie de la relativité restreinte exprime,
physiquement, des mouvements avec aberration.

On voit par là combien complexes sont les mouvements
relatifs de la matière et de l'énergie. Pour l'instant, nous
ne savons rien du mécanisme intime de ces phénomènes,
et noua devons nous contenter de ce que nous donne la
transformation de Lorentz. Est-il possible, cependant, de

dire quelque chose des positions et des vitesses vraies des

systèmes On remarquera que si £lia, û18, U23 représentent

les vitesses réelles, chacune d'elles ne peut être fonction

que de la vitesse apparente correspondante et doit

s'additionner aux deux autres suivant une relation
analogue à (Efffi On doit donc avoir :

(24) Û13K3) Q12K2) + ß23 (^23) •

Il est très remarquable qu'en prenant pour li l'argument

ayant v. pour tangente hyperbolique, on satisfait
à l'équation fonctionnelle (24). Ainsi, les points énergético-
matériels auraient pour trajectoires vraies des arcs de

géodésiques de surfaces à courbure négative. A l'avenir,
de dire si cette conséquence est acceptable.

L'illustration la plus remarquable de la règle d'addition

(22) est constituée par la célèbre expérience de Fizeau

S2, S 3,1

3.2

m

2.3

'1.3
Fie. 4.

sur l'entraînement partiel de la lumière par l'eau en

mouvement (fontaine lumineuse). Supposons qu'un tube St
soit parcouru par un courant d'eau S2, dans lequel se

propage un faisceau lumineux 53. Nous poserons, en appelant

n l'indice de réfraction de l'eau :

1

et la relation (22) donne :

c0=l

"12 + "

n
'13 r+"i«

l'on tombe immédiatement sur le coefficient bien connu
d'entraînement partiel de Fresnel.

Il est très important de remarquer que la formule (22)

s'interprète immédiatement à l'aide de l'ellipsoïde de la

figure 3. Observons d'abord que les quantités v12, v^,
Pai, sont des nombres purs et qu on ne change que 1 échelle

en multipliant les deux membres de (22) par c0, qui est
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homogène à une vitesse. Cela dit, posons dans le cas de

l'expérience de Fizeau :

cos cp,
1

•

1 + an
— d OU COS CD, :

n 1n -f- a

On déduit de l'équation de l'ellipsoïde :

*fi
P Ko Ï n

et en appelant qx la projection de c-, sur l'axe 01x1 :

Wjjjm
Or, ce que l'on observe, ce n'est pas la vitesse qx elle-

même, mais la valeur réduite c0t>jg que l'on obtient en

multipliant q1 par le nombre pur c0 : c1; autremeil| dit en
la rapportant à la valeur cx qu'aurait pour S1 la vitesse

ï. U

r.
h X,

5 m -.' 0,/ « S G

3 4 5 8 7 3 10

Fig. 6.

de la lumière si le centre en mouvement 02 émettait dans

le vide suivant la direction mx. Cette valeur réduite n'est

pas autre chose que la projection sur 01x1 de la partie du

vecteur Cj comprise entre Ox et le cercle ayant ce point
pour centre avec c0 pour rayon. Toutes les vitesses
satisfaisant à (22) tombent dans ce cercle. En définitive, on
voit qu'on se trouve en présence d'une Cinématique homo-

graphique, dont les constructions résultent de la figure 3.

Tel est le sens mathématique profond de la transformation

de Lorentz.
Il nous reste à parler du temps relatif d'Einstein et

de la fameuse contraction de Lorentz.
Soit c un nombre fixe que nous supposerons homogène

à une vitesse, et posons :

(25)
M, «2

71 T| ; 7==T2-

Comme nous l'avons dit, Einstein eut l'idée d'admettre

que ti représentait le ce temps » du système S± et r2 le

« temps » du système S2. Ainsi, chaque système —chaque
milieu — aurait son ce temps » à lui. Qu'est-ce que cela

veut dire et sur quelle horloge devons-nous les lire, autrement

dit quelles unités faut-il écrire après les r
Einstein va lui-même nous tirer d'embarras, il pose en
effet:

(26) c — c0

et comme nous avons pris c0 300 000 km/sec, c est

en secondes que nous devons compter les t. Pour en voir

les conséquences, nous allons nous servir d'un exemple
numérique. Supposons que v 180 000 km/sec, donc

o x
c/. -=; p — y Nous appellerons événement élémentaire

5 4

tout couple de valeurs : E (L km ; T sec). Cela posé,

envisageons sur l'axe 01x1 de Sx les points situés à la
distance x[ 200 000 km et 8 800 000 km. de Ox, au
moment précis où notre horloge marque 3 sec. Alors l'origine

02 de S2 sera à la distance 180 000 X 3 540 000 km
de Ox et si nous appliquons la première relation (1), nous

voyons qu'aux abscisses x1 et x" correspondront respectivement

les abscisses x' — 340 000 km ; x". 260 000 km.
En d'autres mots aux événements élémentaires

E[ (200 000 km ; 3 sec) ; 7^(800 000 km ; 3 sec)

considérés dans S1 correspondront les événements élémentaires

**'
E'2(— 340 000 km; 3 sec) £"(260 000 km; 3 sec)

dans S2. Ils sont l'un et l'autre séparés par la même

distance de 600 000 km.
Mais Einstein ne procède pas comme cela. Il pose :

(27) I SB sec

et utilise uniquement la transformation (7). On calcule

alors facilement qu'aux événements E' et Ey correspondent

sur S2 les événements

S;(—425 000 km; 3,25 sec); <Sg(325 000 km; 1,75 sec).

Mais qu'est-ce que cela peut bien vouloir dire qu'aux
points d'abscisses 200 000 km et 600 000 km envisagés

sur S1 à l'instant 3 sec, correspondent sur S2 les points
d'abscisses — 425 000 km et 325 000 km considérés

respectivement aux instants 3,25 sec et 1,75 sec (Fig. 5).

Remarquons d'abord que la distance des abscisses sur
S2 est de 750 000 km et non de 600 000 km, et c'est ici

que l'ingéniosité d'Einstein se manifesta de façon
vraiment extraordinaire, unique dans les annales de la

Science. Supposons, dit-il, que nous mesurions avec une
immense chaîne d'arpenteur une longueur de 750 000 km

sur S2, et que des observateurs placés sur Sj^

déterminent au même instant (3 sec) les positions des extrémités

de cette longueur sur 01x1 ; en mesurant, avec
la même chaîne d'arpenteur, la distance qui sépare ces

positions, on ne trouvera que 600 000 km, autrement
dit, la longueur .en question ce jugée» depuis Sx (von S1

aus beurteilt) paraîtra plus courte (fig. 6). Ainsi, un même

segment aura deux longueurs : une longueur géométrique,

mesurée à la chaîne d'arpenteur, et une longueur cinématique

variable, déterminée en pointant au même instant
les positions des extrémités du segment dans le système

par rapport auquel il est en mouvement1. Plus sa vitesse

est grande, plus le segment paraîtra raccourci, et sa lon-

1 La chaîne d'arpenteur est introduite ici pour accroître l'effet paradoxal.
Par suite de nos habitudes, elle évoque l'idée d'unité de longueur immuable
et absolue. Mais, comme toute autre longueur, elle subit la « contraction»
lorsque transportée sur S4 nous la « jugeons » depuis 5t, et en adoptant le

point de vue rolalivisto, on doit toujours a'imaginor qu'on se place sut un
système bien déterminé pour un «juger » un autre.
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gueur cinématique deviendrait nulle si le segment acquérait

la vitesse de la lumière. C'est là 1' « explication » de

la ce contraction » de Lorentz. S'agit-il d'une véritable
« contraction » apparente, si l'on ose s'exprimer ainsi,

comme serait celle d'une fipimette regardée à travers
une lentille concave Nullement, car le temps vient se

mêler à l'affaire. Le calcul montre, avons-nous vu, qu'aux
deux pointages faits au même instant 3 sec dans S1

correspondent dans S2 des instants différents 3,25 sec et
1,75 sec. On en a conclu que des événements simultanés

par rapport à un système n'étaient pas simultanés ce jugés »

d'un système en mouvement. C'est cela qui constitue la
te relativité de la simultanéité ». Le temps et l'espace
s'uniraient intimement pour former une entité supérieure
l'cc Univers », dont le temps serait la quatrième dimension

et que l'on ne pourrait décomposer sans mutilation. Pour
concrétiser ces résultats, on admet que le ce temps » de S2,

jugé de Sx, paraît allongé. Considérons une horloge
entraînée avec S2 ce que Einstein exprime en posant.
Aa;2 0 ; la seconde équation (7) donne :

(28) A. _ ß\T^¦1 — PaT2

Et comme ß j, en posant At2 1 sec, on voit que

Ati 1 1/4 sec.

Ainsi, une horloge au repos sur S2 et qui bat la seconde

pour ce système, semblerait aller moins vite pour un
observateur sur S± qui voit passer l'horloge devant lui. Le
c< temps » de S2 s'écoulerait plus lentement jugé depuis Sx.

Bref, on est arrivé à se faire du système S2 jugé de S1

l'image que représente la figure 6. Mais alors une question

bien naturelle se pose : est-il vraiment nécessaire de

passer par toutes ces conventions pour aboutir à cette

figure Une autre convention très simple permet de

l'obtenir immédiatement : il suffit d'admettre que les

nombres 750 000 et 600 000 représentent la même

longueur, en d'autres mots que l'on mesure cette longueur
avec des unités différentes. Semblablement, on admettra

que Atj et Ar2 dans (28) sont des mesures différentes de

la même durée 1. Cette supposition s'impose du reste
lorsqu'on se souvient que At, et Ar2 sont proportionnels aux
accroissements concomitants du chemin lumineux mesurés

respectivement dans Sj et dans S2. En conséquence,

I Si l'on imagine une montre avec laquelle on mesurerait les durées d'une

part avec la grande, d'autre part avec la petite aiguille en repérant leurs

positions sur la division du cadran en 60 parties, les nombres obtenus t et
T pour une même durée satisferaient évidemment à la relation

P

Pour une heure, par exemple, on a r 5 d'où t » 60. D'un autre

côté, les durées (en secondes p. ex.) 0 0 des révolutions de chacune
1 O P

des aiguilles satisfont à la relation

de sorte que :

12 0' ©_,

0„-T„ - 0„.TYO O P P

qui signifie que lorsqu'on mesure une même durée à l'aide d'horloges de

périodes différentes 0 0 les nombres obtenus t r sont

en raison inverse des périodes.

nous n'écrirons pas la relation (26) pour les.deux systèmes
à la fois. On conviendra, par exemple, de prendre au lieu
de (25) :

où c représente bien le même chiffre (300 000) dans les

deux relations et possède les dimensions d'une vitesse,
mais où l'unité de temps n'est pas la même dans les deux

cas ig Dans la première c et tx seront exprimés en secondes,

tandis que dans la deuxième, c et r2 seront exprimés en

une autre unité de temps @2 telle que

(29) lse°. Arx 62. Ar2

d'où en tenant compte de (28) :

(29') 02 ß 174sec.

Si donc on mesure le temps en secondes avec un pendule,
celui qui donnera le chiffre A?2 pour une durée de Arx sec

devra avoir une durée d'oscillation de 1 1ji sec.

Comme, dans la T. R., les r sont proportionnels aux
chemins u parcourus par la lumière, et les périodes 0 sont

toujours celles d'ébranlements lumineux, on obtient en

multipliant (20) par At, et en tenant compte de (25) ainsi

que du fait que les fréquences sont les inverses des

périodes, la forme remarquable :

e^Ar^Q^Ar,,
qui vient justifier nos affirmations. D'ailleurs, on déduit
directement (29') de la relation Doppler-Fizeau (19).

en remarquant que poser Ax2 0 revient à poser
cos cp2 0 et que 03 1 sec.

¦ Nous allons quitter ces considérations purement ciné-

matiques pour jeter un coup d'œil sur la partie dynamique
de la théorie. La place nous manque pour développer les

calculs. Nous devons nous borner à enregistrer les résultats.

Il est facile de voir que si v tend vers 0, autrement dit
si Sx et S2 sont animés l'un par rapport à l'autre d'une

faible vitesse comparée à celle de la lumière, on peut
négliger a2 devant l'unité et poser p 1. Alors la transformation

(7) devient, à la limite, identique à (1). Donc, pour
les faibles vitesses, nous pourrons conserver la relation
de Newton :

masse X accélération force.

Considérons un point matériel, qui, au repos, possède

la masse m. Si ce point est animé de la vitesse v par
rapport à un système galiléen S1, il existera toujours, à

chaque instant, un système galiléen instantané S2,
momentanément immobile relativement au point, et tel par
suite que la relation de Newton soit valable. L'applica-

' On voit qu'on a ainsi un moyen simple pour exprimer avec un seul

et mémo nombre les différentes grandeurs de la vitesse de la lumière, telles

que celles représentées par l'ellipsoïde de la figure S. Au lieu de dire qu'un
train fait du 100, du 50, etc., à l'heure, on peut dire qu'il parcourt 100 km.

en une heure, en deux heures, etc.
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tion de la transformation de Lorentz permettra de passer
de S2 à Sj c'est-à-dire de trouver le mouvement
rapporté à ce dernier système. Le résultat du calcul montre
qu'il faut distinguer entre la masse longitudinale
(correspondant à l'accélération tangentielle) et la niasse
transversale (correspondant à l'accélération normale). L'une et
l'autre de ces masses tendent vers l'infini lorsque la
vitesse du mobile s'approche de la vitesse de la lumière.
Cette vitesse constituerait donc une limite inaccessible à

la matière.
Quant à l'énergie cinétique du point, elle se présente

sous la forme :

mßc^
3 WS
8m72 +

On voit que, si v est faible devant c0, l'énergie est
donnée par le second terme, et se confond avec l'énergie
cinétique newtonienne. Pour trouver la signification du

premier terme, il faut examiner de plus près les lois que
suit l'énergie rayonnante dans le vide. On vérifie d'abord
facilement que les équations du champ électromagnétique
de Maxwell-Lorentz sont covariantes pour la transformation

de Lorentz. Cela posé, imaginons qu'un corps immobile

sur S2 absorbe la quantité E d'énergie rayonnante ;

relativement à Sj, le calcul montre que cette énergie
prend la forme ßE, de sorte que l'énergie totale du

corps devient :

ß(mcl + E)=-- (m + f^ßcl.

En comparant à la relation précédente, on voit que le

corps a même énergie que si, animé de la vitesse v, il
£>

avait la masse m -4- L'énergie et la masse se confondent,

et le terme me* représente l'énergie du corps avant
l'absorption de la quantité E. Le principe de la conservation

de la masse et celui de la conservation de l'énergie
n'en forment plus qu'un seul.

On comprend mieux maintenant ce que nous disions

au début et les difficultés énormes qui se présentent
lorsqu'on veut repérer les mouvements. C'est le repère lui-
même, la matière, qui nous glisse entre les mains. Imagine-
t-on les difficultés si nous voulions déterminer le mouvement

d'un mobile en prenant, comme corps de référence,

un nuage soumis à tous les caprices des vents, et dont
certaines parties se condenseraient en pluie alors que
d'autres se formeraient

Aussi bien, faut-il rendre ici un éclatant hommage aux
mathématiciens, qui ont su forger d'admirables instruments

sans lesquels la Physique aujourd'hui serait impuissante.

C'est ce qu'Einstein a parfaitement compris, et
laissant de côté les représentations intuitives des phénomènes,

il s'est demandé comment on pourrait utiliser la
covariance pour attaquer les phénomènes de gravitation.

(A suivre.)

Concours d'idées pour l'aménagement
du terrain des Asters et de ses abords,

à Genève.

(Suite.) i

II. N° 4, Ou à la Trinité. — Cette composition vivante bien
adaptée au terrain, offrant un lotissement organique, habilement

traité, dispose les différents bâtiments dans un ordre
dispersé sur le pourtour du terrain, en bordure des voies
publiques ; la clarté du système de liaison des édifices principaux

est réalisée par des combinaisons heureuses de constructions

basses (gymnastiques, préaux couverts, portiques, etc.).
Tous les angles, notamment, sont parfaitement composés.

Le centre du projet est constitué par une place publique
tranquille, de forme allongée, avec plantations, fontaine ou
monument, placée, en doublure du Chemin Hoffmann, et sur
laquelle se développent, bien en vue, les façades principales
et d'entrée de la Mairie et de la Maison Communale. Le refuge
et la circulation pour les véhicules appelés à desservir ces
bâtiments sont judicieusement compris. Le retrait — éventuel

— de l'alignement du Chemin Hoffmann, au nord-ouest,
se combinant avec la composition de la place offre une solution

originale. Quant au carrefour proprement dit, il est
simplement et parfaitement conçu et adapté aux futures maisons
urbaines.

La distribution de la Mairie (susceptible d'interversion des
locaux suivant les besoins) quoique paraissant un peu serrée,
est bonne. La Maison Communale qui forme un ensemble
heureux avec la Mairie renferme au rez-de-chaussée la salle de
réunion desservie par un beau vestibule à trois portes d'accès.
Les vestiaires sont amples, toutefois la buvette est mal placée
au sous-sol. Le Bâtiment scolaire, placé en retrait du Chemin
des Asters, avec une façade légèrement incurvée, mais un peu
longue, présente une distribution judicieuse et une excellente
orientation de toutes les classes, réparties en un rez-de-
chaussée et deux étages. La distance de 25 à 26 mètres prévue
entre la façade de l'école et les immeubles de la rue des Asters •

assure l'éclairement et l'ensoleillement rationnel des locaux
d'enseignement. Les escaliers des écoles primaires coupent la
circulation de l'école enfantine, il y aurait lieu (sans que cette
modification apporte de changement essentiel) de placer les
escaliers sur la façade principale, selon la disposition du projet

N° 5 ; l'affirmation sur la rue, du pavillon central existant
sur la cour romprait heureusement la monotonie de la face

principale. L'auteur conserve intégralement l'école actuelle,
les locaux étant affectés aux classes enfantines : bonne solution.

(Fig. 6 et 7.)
La gymnastique sur le Chemin Schaub est trop étroite

(9 m. 50 au minimum sont nécessaires), mais il est facile de
remédier à ce défaut. Divisés en deux par une des salles de

gymnastique, les préaux, d'une bonne configuration, sont
abrités de la bise par le préau couvert qui longe le Chemin
Schaub, toutefois, orientés au nord-ouest, leur ensoleillement
rationnel est en partie diminué par l'ombre du Bâtiment
scolaire. Enfin le bruit du préau de l'école enfa'ntine risque
de troubler la tranquillité requise pour les locaux de travail
placés sur la face postérieure de la Mairie (cabinet du maire,
secrétaire, etc.).

Malgré la variété des éléments, l'architecture des édifices,
d'une grande unité de composition, est robuste, sobre et
saine. La Mairie rappelle l'aspect de la ce Grenctte » de la
Grande-Place de Vevey. Cependant, les clochetons de la

1 Voir BulUtin technique du 11 décembre 1920, page S97.
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