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La Théorie de la Relativité
Résumé des conférences faites à l'Université de Lausanne

par M. Edouard Guillaume, docteur es sciences.

Nous reproduisons ici le résumé des conférences que
nous avons faites à l'Université de Lausanne, en juin
1920, sur la Théorie de la Relativité. Afin d'être aussi bref
que possible sans nuire à la clarté, nous avons modifié un
peu notre plan et introduit des exemples numériques, si

précieux pour fixer les idées. Nous ferons notre exposé en
conservant les notions habituelles de temps et d'espace,
et nous indiquerons, le moment venu, les bouleversements
qu'Einstein propose de faire subir à ces notions.

I. La Mécanique.

La Théorie de la Relativité (T. R.) n'est pas autre
chose que la Science des mouvements de la matière et de
l'énergie. Lorsque les mouvements sont lents, ils sont
exprimés d'une façon très satisfaisante par la Mécanique,
qui constitue, comme nous le verrons, une première
approximation de la T. R. Les mouvements de faibles vitesses

peuvent être étudiés par des dispositifs de contact (Machine
d'Atwood) ou par des méthodes optiques dans lesquelles
on néglige la vitesse de la lumière et les phénomènes connus

sous le nom d' « aberration ».

En Mécanique, tous les mouvements sont censés être
rapportés à un système de référence gigantesque, Ss, lié
aux étoiles dites fixes. Le temps est indiqué par la rotation

de la Terre relativement à S„, et l'unité en est la
« seconde », qui est la 86 400e partie du jour solaire moyen.

Nous rapporterons les mouvements à des systèmes
d'axes trirectangles S d'origine O et d'axes Ox, Oy, Oz.
Le système SB de même que tout système en mouvement
rectiligne et uniforme par rapport à Ss est appelé gali-
léen. Ainsi, le système solaire forme dans son ensemble un
système galiléen. Pendant un temps court, nous pouvons
considérer la Terre comme un système galiléen si nous lui
appliquons des axes de direction invariable par rapport
à SB.

Pour fixer les. idées, imaginons qu'un train large et très
long parcourt une voie rectiligne avec une vitesse
constante uniforme v. Lions un trièdre Sx à là voie, un trièdre
S2 au train, et admettons que les systèmes ainsi formés
soient galiléens. En choisissant convenablement la direc¬

tion des axes, on pourra passer d'un système à l'autre à
l'aide des équations

(D x» + vt Vi S'a

que nous appellerons « substitution galiléenne ». Supposons

qu'un mobile, une pierre, par exemple, soit animée
d'un mouvement accéléré quelconque, et que les composantes

de l'accélération par rapport à la voie soient
représentées par les équations

d2xx

dt2 ft):. d2yi
dt2 g(t) d\ h(t).

Pour avoir les accélérations rapportées au train, il faut
opérer un changement de variables. Il s'obtient immédiatement

en dérivant (1) deux fois, et l'on voit que

(3)
d2xx d2x2

dt2 dt2 ' Ai
dt2

<Pyz

dt2 '
d%
dt2 dt2

de sorte que les équations aux accélérations pour le sys-
'¦Éètae S2 sont :

(2')
dt2 /(*); fis* dh,

dt?=*(')
elles ont donc la même structure formelle que les
premières (2). On exprime cette propriété en disant que les
mouvements mécaniques satisfont au principe de relativité

pour tout système galiléen (relativité restreinte).
Ainsi, quant aux accélérations, les deux systèmes S, et
S2 sont parfaitement équivalents ; ils sont indiscernables.
Supposons qu'on installe une machine d'Atwood sur un
vagon en mouvement uniforme. Les opérateurs qui, dans
le wagon, étudieraient ainsi la chute des corps trouveraient

pour celle-ci les mêmes lois que dans un laboratoire

d'université.
Les mathématiciens formulent ces propriétés en disant

que les équations aux accélérations (2), (2') ou (3) sont
covariantes, pour la substitution galiléenne (1) j cela
signifie qu'elles conservent la même structure formelle
lorsqu'aux variables xx yx zx on substitue lés variables
x2 j y-i » z2 ;1 l'aide de la transformation (1).

Considérons une seconde voie parallèle à la première et
parcourue d'un mouvement uniforme -par un train,
auquel nous lierons un système 5S. Pour passer d'un
système à l'autre, nous aurons les substitutions

(4) xx xt-jr vnt : x.,- «3 + ?®p ; xi — xa + v13t
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où v. désigne d'une façon générale la vitesse relative de
St par rapport à S. En additionnant ces trois relations
membre à membre, après avoir changé les signes de la
troisième, on trouve :

(5) ^3 ^12 + ^23 •

C'est la règle d'addition des vitesses dans le cas simple
envisagé (Fig. 1). On voit que le vecteur-vitesse résul-

Sj s. ss

vl2t
V,3*>

Fig. 1.

tant vxs coïncide exactement avec la somme vX2 -f- v^
des composantes. D'une façon générale, si l'on additionne
des vitesses quelconques en Mécanique, la résultante est
le vecteur qui ferme la ligne polygonale ayant les vitesses,
données pour côtés.

Terminons par une remarque ce rapide coup d'œil jeté
sur quelques-uns des principes de la Mécanique. Nous
avons vu que le temps est indiqué par la rotation de la
Terre. Nous dirons que celle-ci est 1' « horloge-mère » des
phénomènes mécaniques. Si, dans un certain intervalle
de temps, l'élongation s d'un mobile s'accroît de As,
concomitamment la Terre tournera d'un angle Ac, et,
par définition, la vitesse mécanique du mobile sera pro-

ii As _portionnelle au quotient -r—. oervons-nous pour mesurer
r

le temps d'une horloge ayant une marche quelconque
et soit t son indication à un instant donné. La vitesse ci-

dessus sera évidemment proportionnelle à -, en désignant
o

par i et o les dérivées de s et de û par rapport à t. Ainsi,
peu importe l'horloge dont nous nous servons pourvu que
nous ramenions tous les mouvements à la rotation
terrestre, c'est-à-dire à l'horloge-mère.

II. La Théorie de la Relativité restreinte.

Lorsque les vitesses sont grandes, c'est-à-dire non négli;
geables par rapport à celle de la lumière, les équations de
la Mécanique newtonienne n'expriment plus, les faits,
Cela tient à deux raisons fondamentales.

D'abord, et comme nous le verrons, on ne peut plus,
faire de distinction essentielle entre « matière » et « éner;
gie » ; l'énergie rayonnante possède une partie des pror
piïétés de la matière ; elle est pesante. Il en résulte une
grosse difficulté : celle de ne plus savoir exactement ce.

qu il faut entendre par source lumineuse ou source d'éner,
gie rayonnante. D'après le principe d Huyghens, dans

l'ancienne théorie, toute portion d'onde peut être considérée

comme centre d'ébranlement, c'est-à-dire comme
source, et cependant la distinction entre ces centres dans
l'éther et le foyer matériel qui donne naissance aux rayons
subsiste aussi nette que la distinction entre les rides à la
surface de l'eau et les pierres qu'on y jette pour les
produire. Or, si l'énergie rayonnante ondulatoire possède par
elle-même certaines des propriétés de la matière, on voit
combien délicates et difficiles, sinon impossibles, deviennent

les distinctions commodes de la théorie classique.
La seconde raison, c'est que l'on ne peut plus négliger

les phénomènes d'aberration, qui vont s'étendre, on le
prévoit, à la matière elle-même. Il en résulte qu'il n'est
possible d'observer que des mouvements apparents. C'est
là une difficulté nouvelle.

De ce qui précède, nous concluons qu'on ne pourra plus
parler de « points matériels », comme on le fait en Mécanique

; il faudrait dire « points énergético-matériels ».
Nous dirons « point physique » ou tout simplement
« point », en entendant par là-même une portion d'onde,
ce qu'autrefois on aurait appelé « point dans l'éther ».
Nous imaginerons que l'espace contient des milieux
continus formés de tels points, ces milieux pouvant se
traverser librement les uns les autres. Cette dernière
propriété s'admettra facilement, au moins provisoirement, si
l'on se souvient que les rayons lumineux sillonnent
l'espace en se traversant mutuellement sans se contrecarrer 1.

Au reste, il ne faut pas voir là une « explication » physique
de l'espace réel, mais seulement une image pour servir de
support au raisonnement. Ces milieux ne seront pas autre
chose, en définitive, qu'une fixation un peu plus précise
des systèmes de coordonnées rectangulaires, dont nous
nous servirons. Ainsi, les points de tout milieu M. seront
repérés par un système trirectangle cartésien S. (x., y,, *.).

Considérons deux milieux Mx et M2 en mouvement
relatif, et imaginons que des observateurs entraînés avec
Mx « observent » les points de Ma. Sans préciser les opérations

physiques que de telles observations comportent,
nous admettons que si des opérateurs marquent sur les
plans coordonnés de Sx les positions des axes de «S2 révélées

par l'observation, ces positions seront apparentes
ensuite de phénomènes d'aberration que nous aurons à
étudier, et nous les nommerons trace de Sa sur Sx. Sem-
blablement, des observateurs entraînés avec S8 pourront
déterminer la trace de Sx sur Sa.

Considérons les points Px (xx yx Zj) du milieu Mx et
les points P2 (x2, y2, z2) du milieu M2, et établissons entre
ces points une correspondance représentée par i

(!') x« vt: ll-i Vi\

Alors le mouvement s'effectuera comme si ces milieux
étaient des touts rigides ordinaires en translation relative
uniforme de vitesse v le long des axes Oxxx et Ogasg

supposés coïncidents.

1 Comme on sait, celle propriété results du « principe dp. superposition ».
qui provient lui-même du fait que les mouvements lumineux sont représentés
par des équations différentielles linéaires.
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Cela posé, le premier principe que nous allons rencontrer

dans la T. R. est le célèbre principe de la constance
de la vitesse de la lumière, très facile à énoncer, très difficile
à pénétrer. Convenons d'entendre par « source » non pas
l'atome vibrant qui émet, mais tout centre d'ébranlement

— donc tout point P. d'un milieu M, — au sens

classique d'Huyghens. Nous énoncerons alors ainsi le

principe en question : « Lorsque la lumière a quitté le

point-source P., tout se passe comme si elle se propageait
en ligne droite suivant les différentes directions avec une
vitesse constante c0, dans n'importe quel milieu M en

mouvement uniforme par rapport à M. ». On peut donc

dire qu'une fois dans M la lumière se propage avec une
vitesse qui ne dépend jamais de celle du point-source P..

Supposons que le centre d'ébranlement soit à l'origine
02 de S2. A chaque instant, l'onde émise formera, pour.
o2, une sphère E2 dont nous écrirons l'équation sous la
forme suivante :

(2.) x\ + y\ + z2

où w2 le rayon de la sphère à l'instant t, est égal à c0t

par définition même. La question qui se pose maintenant
est la suivante : comment S2 apparaîtra-t-elle. à l'observateur

situé sur Sx ou, si l'on préfère, comment 02 va-
t-il émettre dans Mx Un coup de sifflet donné dans un

vagon fermé engendre une onde sphérique, ayant le sifflet

comme centre :

xl + yl vn2

(V= vitesse du son). Pour l'observateur situé sur la voie,
cette sphère sera entraînée et son équation par rapport
à la voie s'obtiendra en remplaçant x2, y%, z2 à l'aide
de (1'). Au moment où les points de l'onde atteignent les

parois du vàgon (supposées infiniment minces), chacun

d'eux devient un centre d'ébranlement pour l'air environnant

et l'application du principe d'Huyghens permettra
de connaître les ondes émises qui parviennent à l'oreille
de l'observateur immobile. Mais, on voit immédiatement

que si l'on substitue à .r2, yz, z2 dans l'équation de S2

leurs valeurs tirées de (1'), on ne tombe pas sur une équation

de même structure formelle, à savoir

x\ + y\ + z2 u2

en posant ttj cet. Autrement dit la relativité, — en

langage mathématique, la covaritmce, — n'est pas
sauvegardée si l'on applique la substitution (1) aux phénomènes

lumineux.
C*«at ici, en 1905, que se fit l'intervention extrêmement

originale et féconde d'Einstein. Il eut l'idée d'introduire

un « temps » r, propre à chaque système S., et de poser :

(o) ux c0rx ; itjj c0Tg.

L'écriture devient alors parfaitement symétrique, et il
chercha, par analogie avec (1), s'il n'existait pas une
substitution linéaire, semblable à (1), pour laquelle les deux

équations précédentes seraient covanantes, c'est-à-dire

pour laquelle on aurait [cf. éq. (3)]

(6') M? 2/
1% —r- .i":? y*

car rien ne nous empêche de conserver les variables ux et

u2 qui ne différent de rx et de t2 que par un facteur numérique

constant. Or, si l'on cherche une substitution linéaire

pour laquelle (6') est un covariant, on tombe sur une
transformation remarquable, dont la découverte est due

à l'illustre physicien hollandais H.-A. Lorentz. Voici cette

substitution, connue sous le nom de transformation de

Lorentz :

(7)
(xx=ß(x2+xu2); t,=/3(u2-|-aa:2); yx=y2;

a constante ; ß2 1 : (1 — oF).

Elle permet d'identifier les deux membres de (6'), comme

on le vérifie sans peine. On remarquera la parfaite symétrie

de ces relations, qu'on obtient résolues par rapport
à x2, z2 en permutant les indices et changeant le

signe de a, de même qu'on peut passer de (1) à (1') en

permutant les indices et changeant le signe de v. Nous

verrons un peu plus loin la signification de a.

Einstein proposa de faire de la covariance une propriété
universelle et de poser en principe (Deuxième principe de

la T. R.) que toute loi physique devait être covariante

pour la transformation de Lorentz dans un système galiléen

quelconque. Supposons, par exemple, qu'en un point
• Px (xx yx Zj) un ébranlement périodique soit représenté
pîar la sinusoïde :

2tt
(8) a r— (ux ¦

^1
lxxx — mtfj — nxzx).

Pour Einstein, ce phénomène doit donner Heu dans S2 à

un ébranlement nécessairement représenté par une
sinusoïde de même structure formelle :

(9)
2-jr

laXo "»aî/a

Cela exige qu'entre les quantités l, m, n, X, il y ait les

relations :

X»

(10

\

P(i + «y '

m2

0(1 + «k)
''

h
h + ot

1 + «v
n2

[i + «h)

comme on le vérifie facilement en substituant à x\ yx

zx, ux dans (8) leurs valeurs tirées dé (7) et en identifiant
avec (9). Nous utiliserons plus tard les formules (10).

Comme on le voit, la méthode proposée par Einstein
est purement analytique ; elle ne nous donne aucune

image des phénomènes ; elle se justifie uniquement par
son utilité mathématique, en permettant de lier entre eux
des résultats expérimentaux restés jusqu'ici étrangers les

uns aux autres.
Avant de poursuivre, il nous taut préciser la mesure

dti temps.. C'est ce que nous permettra le principe de la

Constance de la vitesse de la lumière, qui va nous fournir
Yhorloge-mère. Nous imaginerons deux miroirs parallèles
IJFig. 2) entre lesquels un rayon lumineux va et vient. En

comptant ces allées et venues, on obtient une mesure du

temps. On a ainsi une horloge très simple que peut
emporter avec lui tout observateur, et dont la marche ne
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dépend pas de l'état de mouvement de celui-ci. Nous

exprimerons les longueurs x, y, z, u en kilomètres, et nous

poserons ^ | 300 000 km./sec.

Nous définissons ainsi la « seconde-lumière », peu
différente de la « seconde terrestre ». Ce sera le temps qu'un
rayon lumineux emploie à parcourir exactement la
distance de 300 000 km. dans un milieu M quelconque.

Nous allons aborder maintenant l'étude plus précise de

la propagation lumineuse. Nous ne ferons pas usage des

i
1

i
Fig. 2.

variables t qu'Einstein introduit par les équations (6).
Nous en indiquerons plus loin le sens à l'aide d'exemples,
numériques. Nous conserverons les variables u, homogènes

à une longueur, et nous poserons dans le cas envisagé

plus haut
u2 c0t ; ux cxt

cx représentera la valeur de la vitesse de la lumière émise

par le centre 02 pour l'observateur situé sur Sx c'est-à-
dire pour lequel ce centre se meut-'avec'la vitesse v. Si un
observateur était placé sur S% et considérait l'ébraiu«-
ment émis par un point de Sx il faudrait poser :

CnL Un —— Ca Lu L.QI,

Le problème consiste donc à déterminer cx et -c2.

façon générale, nous avons par définition :

D't

(11)
dux du9

c c„.dt "*' dt

Mais, avant d'aborder l'étude des phénomènes
lumineux, nous devons montrer que le mouvement relatif
des deux milieux Mx et M2 considérés seuls, est bien

représenté par les relations (1) ou (1'), en d'autres
termes que ces relations sont compatibles avec (7). À
cet effet, il suffit d'intégrer (11) dans l'hypothèse où

cx et ca sont des constantes ; nous obtenons en désignant

par r, et r2 les constantes d'intégration à déterminer*

(12) ux cxt + rx ; u2 c2t + r2 ;

en substituant dans la seconde équation (7) et tenant,

compte de la parfaite symétrie des systèmes, nous pojfi
vons disposer des constantes pour écrire les relations (13
sonst la forme remarquable :

(13)

i i
$

i I

L'on voit immédiatement qu'en remplaçant u2 par cette
dernière valeur dans la première équation (7) on tombe
sur la première relation (1) à condition de poser :

(14) Xc0 1 v

ce qui permet de déterminer a lorsque v est donné.

(A suivre.)

Concours d'idées pour l'aménagement
du terrain des Asters et de ses abords,

à Genève.

La Commune du Petit-Saconnex, appelée à édifier par étapes
successives dans le quartier de la Servette, sur le terrain dit
des Asters, différents bâtiments municipaux, et désireuse en
outre de donner à cette parcelle un alignement plus rationnel
du côté, du Chemin Hoffmann, a ouvert entre architectes de
nationalité suisse établis dans le canton de Genève, un
concours d'idées, dans ce double but :

I. — Etudier l'aménagement du carrefour situé à l'extrémité

de l'Avenue de la Servette, à son intersection avec
l'Avenue Wendt et le Chemin Hoffmann. (Fig. 1.)

II. — Aménager la parcelle de terrain communale limitée
par l'Avenue de la Servette, la Rue des Asters, la Rue Schaub
et le Chemin Hoffmann, sur laquelle les bâtiments énumérés
au programme devront être édifiés.

L'étude de ce carrefour, qui devra rester de grandeur modérée,

comprend la rectification des tronçons de l'Avenue
Wendt et du Chemin Hoffmann, entre la Rue Liotard et la
Rue Schaub.

L'axe de l'Avenue de la Servette actuelle ne peut être
modifié. La largeur de cette artère est fixée à 20 mètres, ainsi

que celle de l'Avenue Wendt et du Chemin Hoffmann.
Le tournant du Chemin Hoffmann utilisé par la ligne du

tramway Saconnex-Champel devra être bien dégagé.
Les bâtiments à édifier sur le terrain des Asters, devront

renfermer les services suivants : a) Mairie, b) Maison Communale,

c) Services publics, d) Ecole Primaire et Enfantine.
Toute liberté était laissée aux concurrents pour grouper les

services mentionnés sous lettres a, b, et c qui peuvent être
réunis sous le même toit ou répartis entre plusieurs bâtiments.

Les .bâtiments seront disposés sur le terrain au gré des

concurrents, qui ne devaient pas perdre de vue, que le but du
concours est non seulement d'obtenir une répartition pratique
des Services Municipaux, mais, en outre, de créer un groupement

d'édifices d'un aspect harmonieux et d'un caractère
local bien déterminé.

Des espaces restés libres, seul le terrain destiné à 1 école et
à ses préaux devra être clôturé.

Toutes les anciennes constructions qui s'élèvent sur ce
terrain devront disparaître, à l'exception toutefois du bâtiment
d'école, construit à l'angle de l'Avenue de la Servette et de
la Rue des Asters, qui doit être conservé-, mais qui pourra
être -.transformé et consacré à l'usage d'autres services
précités.

La Salle de Gymnastique et les locaux attenants pourront
être supprimés dans le cas où leur conservation nuirait à

l'aménagement général-du terrain.

Extrait du rapport du Jury.

Le jury nommé pour l'examen des projets présentés au
concours d'idées pour l'étude d'un projet d'aménagement du
terrain des Asters et de ses abords, jury composé de MM. Ch.


	La théorie de la relativité

