Zeitschrift: Bulletin technique de la Suisse romande

Band: 45 (1919)

Heft: 23

Artikel: Calcul du coup de bélier dans les conduites formées de deux ou de

trois tronçons de diamètres différents

Autor: Carey, Ed.

DOI: https://doi.org/10.5169/seals-34936

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 09.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

arbre horizontal, entre lesquelles sont fixées les aubes (fig. 11).

Dans les turbines ordinaires à libre déviation, le tracé de l'aubage est fait de telle sorte que la vitesse absolue de l'eau dans la couronne mobile aille en diminuant progressivement, et qu'à la sortie de l'aubage elle ait une valeur aussi faible que possible. Dans la turbine Banki, cette condition est réalisée en 2 phases successives : après le premier passage dans la couronne d'aubes (de l'extérieur à l'intérieur) elle possède encore une vitesse absolue relativement élevée et ce n'est qu'au cours du second passage dans la couronne mobile (de l'intérieur à l'extérieur) que cette vitesse va en diminuant progressivement jusqu'au minimum possible Le tracé de l'aubage es' étudié de manière à réaliser ces deux conditions le plus favorablement possible sans chocs à l'entrée de l'aubage.

C'est là, au point de vue de la transformation de la vitesse de l'eau en énergie mécanique transmise à la roue motrice, nne idée parfaitement rationnelle et qui peut paraître séduisante au premier abord. C'est à cela que l'auteur attribue les chissres élevés de rendement mécanique auxquels il est arrivé avec une petite turbine de laboratoire.

En plus de cela, le fait que cette turbine est purement radiale, c'est-à-dire que les filets d'eau dans la roue se meuvent dans des plans perpendiculaires à l'axe de rotation, a pour conséquence que le diamètre extérieur de la roue est théoriquement indépendant de la quantité d'eau qu'il s'agit de faire passer dans la turbine. En d'autres termes, pour un débit donné et une chute donnée, on peut faire une roue d'un diamètre aussi petit que l'on veut et obtenir par conséquent un nombre de tours aussi élevé qu'on le désire. Il suffit de donner à la roue une largeur suffisante, et si, au point de vue de la résistance mécanique de la roue (arbre et aubes), on est forcément arrêté dans l'augmentation de cette largeur, il suffira de placer plusieurs roues les unes à côté des autres, avec des paliers intermédiaires entre chacune d'elles.

C'est là évidemment un second avantage intéressant qui n'est pas réalisé avec les turbines Francis et les Pelton et sur lequel se base l'auteur pour en conclure que sa turbine peut remplacer avantageusement n'importe quel moteur hydraulique rotatif, c'est-à-dire les roues à eau et les turbines de tous systèmes.

Nous allons passer en revue les différents cas qui peuvent se présenter et nous constaterons qu'en réalité, une fois qu'on examine les choses de plus près, les avantages que paraît présenter cette nouvelle turbine sont plus apparents que réels.

a wife a metal ub anob brough (A suivre).

Calcul du coup de bélier

dans les conduites formées de deux ou de trois tronçons de diamètres différents

par Ed. Carey, ingénieur à Marseille.

M. de Sparre a donné récemment les formules complètes 1 permettant de calculer le coup de bélier dans les conduites formées de deux ou de trois troncons de diamètres et épaisseurs dissérents, en admettant toujours que le coup de bélier positif maximum est inférieur ou, au plus, égal à la charge statique et que l'intensité maximum du coup bélier négatif n'atteint pas la moitié de cette charge. Malheureusement ces formules conduisent à des calculs très longs toutes les fois que les divers tronçons ont des proportions quelconques les uns par rapport aux autres. On peut cependant les simplifier en remplaçant la conduite donnée par une conduite fictive dont les tronçons sont dans des rapports déterminés ou encore, pour les manœuvres du vannage exigeant une durée de plusieurs périodes, par une conduite de diamètre et d'épaisseur constants dite conduite moyenne à laquelle on applique les formules simples des conduites à caractéristique unique.

Conduites formées de deux tronçons.

Dans les conduites formées de deux tronçons, si la période $\frac{2l'}{a'}=\theta'$ du coup de bélier dans chacun de ceux-ci n'est pas trop différente, on pourra remplacer, pour le calcul, la conduite donnée par une autre dans laquelle la période sera la même dans chacun des tronçons; si les périodes sont très différentes, on la remplacera par une conduite dont la période de l'un des tronçons est le double de celle de l'autre, mais ce cas rentra alors dans celui des conduites formées de 3 tronçons.

En admettant que la période soit la même dans les deux tronçons et en désignant par l''a' d' v' la longueur, la vitesse de propagation moyenne 2 , le diamètre intérieur et la vitesse dans le tronçon inférieur et par l'''a'' d''' v''' les valeurs correspondantes dans le tronçon supérieur, on aura :

$$\frac{l'}{a'} = \frac{l''}{a''}$$

posons aussi:

(1)
$$\alpha = \frac{a''}{a'} \left(\frac{d'}{d''}\right)^2$$
 (2) $\mu = \frac{1-\alpha}{1+\alpha}$ et $r' = \frac{a'}{2g\mathcal{Y}_0}$

$$\mathcal{Y}_0 = \text{charge statique.}$$

¹ Bulletin spécial N° ² de la Société hydrotechnique de France.

$$a' = \frac{9900}{\sqrt{48,3 + k \frac{d'}{e}}}$$

$$k = 0.5 \text{ pour le fer et l'acier.}$$

2 30%

Les valeurs de μ sont petites et voisines de 0,05 à 0,18 lorsque les deux tronçons sont de même diamètre mais d'épaisseur différente ; par contre μ augmente rapidement avec l'inégalité des diamètres et tend vers 1. Voici quelques chiffres qui fixent la valeur de cet important facteur pour divers rapports des diamètres.

En supposant a' = 1200 m/sec., a'' = 980 m/sec.,

pour
$$\frac{d'}{d''} = 1$$
: $\alpha = \frac{a''}{a'} = 0.8$ et $\mu = 0.11$

en admettant des diamètres inégaux pour les deux tronçons, le facteur µ devient :

pour
$$\frac{d'}{d''} = \frac{4}{5}$$
: $\alpha = 0.8 \frac{16}{25} = 0.51$ et $\mu = 0.325$

pour
$$\frac{d'}{d''} = \frac{2}{3}$$
: $\alpha = 0.35$. . $\mu = 0.48$

pour
$$\frac{d'}{d''} = \frac{1}{2}$$
; $\alpha = 0.20$. . . $\mu = 0.67$

Prenons les notations suivantes:

 $g = \operatorname{acc\'el\'eration\ en\ m/sec^2};$

 $y_0 = \text{pression statique};$

 ${o'_0}$ = vitesse dans le tronçon inférieur avant tout mouvement du vannage;

o' = vitesse dans le tronçon inférieur à la fin du temps

 θ' sec. (nameric \overline{a} la frestion f_{θ}) ϕ'_{2} = vitesse dans le tronçon inférieur à la fin du temps 2θ' sec. ;(d°

et ainsi de suite.

En considérant une variation linéaire de vitesse, les formules générales de M. de Sparre pour le calcul du coup de bélier, pendant les diverses périodes θ' sec., peuvent s'écrire :

Are période, $t_1 \leq \theta'$:

$$B_{1} = \frac{a'}{g} \frac{\rho'_{0} - \rho'_{1}}{1 + r'\rho'_{1}}$$

2me période, $\theta' < t_0 \leq 2\theta'$

$$B_2 = \frac{a'}{g'} \frac{v_0' - v_2'}{1 + r'v_2'} - 2\mu \frac{B_1}{1 + r'v_2'}$$

 3^{me} période, $2\theta' < t_2 \leq 3\theta'$

$$\mathbf{B_3} = \frac{a'}{g} \frac{\mathbf{e_1'} - \mathbf{e_3'}}{1 + r' \mathbf{e_2'}} - 2\mu \frac{\mathbf{B_2}}{1 + r' \mathbf{e_3'}} - \frac{1 - r' \mathbf{e_1'}}{1 + r' \mathbf{e_2'}} \mathbf{B_4}$$

 n^e période, (n-1) $\theta' < t_n \leq n\theta'$

$$\mathbf{B}_{n} = \frac{a'}{g} \, \frac{\phi_{n-2}' - \phi_{n}'}{1 + r'\phi_{n}'} - 2\mu \, \frac{\mathbf{B}_{n-1}}{1 + r'\phi_{n}'} - \frac{1 - r'\phi_{n-2}'}{1 + r'\phi_{n}'} \, \mathbf{B}_{n-2}$$

Si la fermeture a lieu à la fin de la n^e période, $v'_n = o$ et nous aurons :

$$\begin{split} \mathbf{B}_{n+1} &= \frac{a'}{g'} \ o'_{n-1} - 2\mu \mathbf{B}_n - (\mathbf{1} - r' o'_{n-1}) \ \mathbf{B}'_{n-1} \\ \text{puis}: \qquad \mathbf{B}_{n+2} &= -2\mu \mathbf{B}_{n+1} - \mathbf{B}_n \end{split}$$

et ainsi de suite.

La conduite moyenne qui peut éventuellement remplacer, pour le calcul, la conduite formée de deux tronçons, devra avoir la même longueur totale; la vitesse et le diamètre seront tels que le débit et la force vive resteront les mêmes. Les éléments L, D, a, o de la conduite moyenne seront alors, en fonction des éléments du tronçon inférieur :

(3)
$$L = l' + l''$$

$$a = \frac{L}{\frac{l'}{a'} + \frac{l''}{a''}}$$

(4)
$$D = d' \sqrt{\frac{L}{l'(1+\alpha)}} = d' \sqrt{\frac{\rho'}{\rho}}$$

(5)
$$\sigma = \frac{1}{L} \left(l' \sigma' + l'' \sigma'' \right) = \frac{\sigma'}{L} l' \left(1 + \alpha \right)$$

Examinons maintenant ce que devient le coup de bélier dans la conduite formée de deux tronçons tels que $\frac{2l'}{a'}=\frac{2l''}{a''}$ en comparant les résultats avec ceux de la conduite moyenne correspondante, même pour les petites fermetures.

1. Fermeture complète en $\frac{2 l'}{a'}$ secondes.

Si toute la conduite était de diamètre d', constant, et d'épaisseur constante, le coup de bélier maximum pour cette fermeture serait :

$$B_1 = \frac{a'}{g'} \, \sigma_0^{'}$$

Dans la conduite en deux tronçons, le coup de bélier sera aussi, au moment de la fermeture complète, au temps $\frac{2l'}{a'}$ sec. :

$$B_4 = \frac{a'}{g'} \, c_0'$$

il est complètement indépendant du deuxième tronçon que l'onde n'a pas encore atteint; puis, à la fin de la 2^{me} période, au temps $\frac{4l'}{a'}$ sec., après la fermeture com-

(6)
$$B_2 = \frac{a'}{g} \, \rho_0' - 2\mu \, B_4 = \frac{a' \rho_0'}{g} \, (1 - 2\mu)$$

les éléments du second tronçon interviennent maintenant avec le facteur µ. Puis, à la fin de la troisième

$${
m B}_3 = - \ 2\mu \ {
m B}_2 - {
m B}_4 = rac{a' {
m e}_0'}{g} \, (4 \mu^2 - 2 \mu - 4)$$
 et ainsi de suite.

L'intensité du coup de bélier en fin de période, après la fermeture, dépend donc du facteur μ , Si $\mu = 0$, comme dans les conduites à caractéristique unique, le coup de bélier reste $\frac{a'}{g}$ φ_0' ; il en est de même pour $\mu=0.5$. En dehors de ces deux valeurs, l'intensité du coup de bélier après la fermeture complète du vannage.

Ce phénomène est très curieux; il se produit sans l'aide d'aucune force extérieure; l'onde du coup de bélier parcourt la conduite et augmente rapidement d'intensité, par suite des réflexions d'ondes, mais les frottements, dont on ne tient pas compte dans les formules, finissent par amortir le coup de bélier au bout d'un temps plus ou moins long. Cette majoration a été nettement constatée dans les graphiques relevés à l'usine de Soulom par MM. Gariel, Camichel et Eydoux ¹.

La courbe donnant cette majoration f, dont l'intensité maximum se produit quelquefois après un grand nombre de périodes, est représentée (fig. 1) pour toutes les valeurs de μ des conduites formées de deux tron-

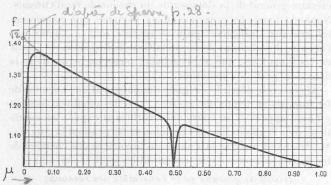


Fig. 1. — Majoration f produite après la fermeture complète en $\frac{2l'}{a'}$ sec. dans les conduites formées de deux tronçons.

çons, avet $\theta' = \theta''$. Cette courbe est très particulière; elle montre que la majoration n'est pas constante, qu'elle est maximum (38 $^0/_0$) pour μ voisin de 0,04, chiffre correspondant aux conduites de diamètre constant dont les deux tronçons ont une épaisseur différente, puis qu'elle décroît rapidement avec l'augmentation de la différence des diamètres.

Le coup de bélier maximum sera donc, pour une fermeture complète en $\frac{2l'}{a'}$ secondes :

$$B_m = \frac{a' o_0'}{g'} f$$

Si la fermeture est linéaire, à la vitesse $\frac{V'}{T}$ m. par sec., V' étant la vitesse dans le tronçon inférieur pour le distributeur ouvert en plein et T le temps de fermeture total, on aura pour la vitesse correspondante ρ_0' ramenée à zéro en θ' sec. :

$$arphi_0' = rac{\mathrm{V}'}{\mathrm{T}} \cdot rac{2l'}{a'}$$

et la formule (7) pourra s'écrire en fonction de V' et T:

(8)
$$B_m = \frac{2l'V'}{g'T} f$$

pour $T \ge \frac{2l'}{a'}$ sec.

remarquons que nous avons posé $\frac{l'}{a'}=\frac{l''}{a''}$ et comme $a'>a'',\ l'$ est >l''; il s'ensuit que $l'>\frac{L}{2}$.

M. de Sparre a donné la formule générale suivante pour la valeur maximum du coup de bélier après la fermeture :

(9)
$$B_{m} = (-1)^{n-1} \frac{a'}{g'} \rho'_{0} \frac{\cos \frac{2n-1}{2} \beta}{\cos \frac{\beta}{2}}$$

en posant

$$\cos \beta = \mu$$

Si on remplace maintenant la conduite formée de deux tronçons par une conduite moyenne à caractéristique unique, le coup de bélier sera dans cette dernière, pour une fermeture complète en θ' secondes :

$$\xi = \frac{a}{g} \, \, \mathbf{v_0}$$

ou, en fonction des données de la conduite formée de deux tronçons, tirées des formules 3 et 5 :

(10)
$$\xi = \frac{a'}{g'} \, o_0' \, \left(\frac{1+\alpha}{2}\right)$$

Comme α est compris entre 0 et 1, le coup de bélier de fermeture complète en $\frac{2l'}{a'}$ sec. calculé avec la conduite moyenne, sera toujours plus petit que le coup de bélier réel donné par la formule 7.

Inversement, le coup de bélier réel B₄, calculé avec les éléments de la conduite moyenne à caractéristique unique, sera :

(11)
$$B_1 = \frac{a}{g} \, \varphi_0 \, \frac{2}{(1+\alpha)} \cdot f.$$

Cette formule fait ressortir la majoration totale : $\frac{2f}{1+\alpha}$, après la fermeture, par rapport au coup de bélier $\frac{av_0}{g}$ de la conduite moyenne; cette majoration n'est pas constante, même pour les conduites dont l'épaisseur des deux tronçons est seule différente; elle est de

Il paraît donc préférable de calculer directement le coup de bélier exact avec les formules 7 et 8 lorsque $\frac{l'}{a'} = \frac{l''}{a''}$, que d'avoir recours à la conduite moyenne dont il faut déterminer les éléments au préalable.

Comme exemple numérique, la figure 2 donne le tracé de la courbe du coup de bélier au vannage pour une fermeture complète en θ' secondes calculée pour une conduite dont les éléments sont :

$$V' = 6^{m},50$$
 $T = 6,54$ sec. $L = 1200^{m}$ $y_0 = 510^{m}$

¹ Voir Revue générale de l'Electricité du 21 septembre 1918, page 410.

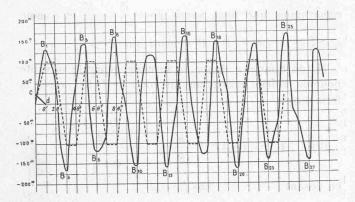


Fig. 2. — Conduite en deux tronçons. Coup de bélier au vannage pour sermeture complète cd en $\frac{2l'}{a'} = 1,09 \text{ sec.}; \ v'_0 = 1,08 \text{ m.}; \ \frac{d'}{d''} = \frac{5}{6}; \ \mu = 0,284.$ ·---- Courbe correspondante de la conduite moyenne.

1) tronçon inférieur

$$l' = 666$$
m $a' = 1220$ m/sec. $d' = 0$ m,50

2) tronçon supérieur :

$$l'' = 534$$
m $a'' = 980$ m/sec. $d'' = 0$ m,60

on aura:

$$\frac{2l'}{a'}=1{,}09$$
 seconde $lpha=0{,}558$ et $\mu=rac{1-lpha}{1+lpha}=0{,}284$

La fermeture complète en θ' seconde à l'allure $\frac{\mathrm{V}'}{\mathrm{T}}$ m. par seconde, commence à partir de:

$$\rho_0' = \frac{6.50}{6.54} \times 1.09 = 1$$
 m,08.

On obtiendra à la fin de la première période :

$$B_4 = 134^{m},46$$

$$B_3 = -167.45$$
, $B_8 = +164.50$, $B_{25} = +167.80$

soit une majoration de 24,5 % environ entre B₄ et B₂₅.

Le coefficient f de la figure 1 donne immédiatement la valeur du coup de bélier maximum avec les formules 7 ou 8.

$$B_m = \frac{a'v'_0}{g} f = 134,46 \times 1.245 = 167 \text{m},40$$

résultat obtenu à B₂₅, comme nous venons de le voir. Sur la même figure est tracée, en pointillé, la courbe du coup de bélier correspondant à une fermeture en sec. dans la conduite moyenne dont les éléments sont :

$$a = \frac{L}{\theta'} = 1100 \; ; \quad V = \frac{V'}{L} \; l' \; (1 + \alpha) = 5^{m}, 62 \; ;$$

$$T = 6.54 \; \text{sec.} \; ; \quad D = 0.50 \; \sqrt{\frac{6.50}{5.62}} = 0^{m}, 537 \; ; \; v_0 = 0.933$$

le coup de bélier sera dans cette conduite :

$$\xi = \frac{a}{g} \rho_0 = \frac{1100}{9.8} 0.933 = 104^{\text{m}}.72$$

ou, beaucoup plus simplement par la formule 13, sans déterminer les éléments de la conduite moyenne :

$$\xi = \frac{a'v'_0}{g} \cdot \frac{1+\alpha}{2} = 134,46 \quad \frac{1.558}{2} = 104^{\text{m}},74$$

La conduite en deux tronçons produit donc un coup de bélier majoré, supérieur de 60 % à celui calculé avec la conduite moyenne.

Les chemins de fer pendant la guerre.

Sous ce titre, la Revue générale des chemins de fer, dont nous sommes heureux de saluer la résurrection, publie une étude, admirablement documentée, de M. M. Peschaud, secrétaire général de la Compagnie du chemin de fer d'Orléans. Nous extrayons les renseignements suivants qui concernent les réseaux français, quitte à revenir tout à l'heure sur l'activité des chemins de fer de la Grande-Bretagne, de l'Italie et des Etats-Unis, que M. Peschaud passe en revue dans la deuxième partie de son étude.

Après avoir décrit le « régime administratif des chemins de fer français en temps de guerre », avec les modifications qui y furent apportées au cours des hostilités et exposé les conditions de « l'exploitation des chemins de fer pendant la guerre », M. Peschaud analyse la « situation financière des chemins de fer depuis la guerre » que traduisent les chiffres suivants:

Résultats globaux pour l'ensemble des réseaux, en milliers de francs.

Années	Recettes d'exploi- tation	Dépenses d'exploi- tation	Produit net	Charges du capital social et des emprunts	Résultats de l'exercice	
1913	2 015 948	1 272 060	743 888	842 600	— 63 449	
1914		1 188 009	491 989	865 874	- 340 973	
1915	1 702 173	1 208 093	504 080	908 350	- 365 175	
1916	2 123 292	1 547 882	575 410	924 937	- 344 652	
1917	2 204 473	1 798 943	405 530		- 502 726	
1918	2 539 049	2 438 352	14 697	1 002 209	- 876 870	
Total	12 264 900	9 453 300	2 735 600	different	-2 493 848	
Prévisions pour 1919	2 668 600	3 080 200	-411 600	1 060 600	-1 474 000	

N. B. — 1° Les « charges du capital social et des emprunts » comprennent les sommes nécessaires pour faire face aux charges d'intérêt et d'amortissement du capital-obligations et du capital-actions et en outre les sommes nécessaires pour payer aux actions les dividendes garantis ou réservés en vertu des conventions.

2° Les « résultats de l'exercice » comprennent quelques autres éléments que le rapprochement du produit net de l'exploitation et des charges.

Nous revenons, un peu plus loin, sur l'exactitude des « prévisions

Voici maintenant quelques chiffres particuliers aux différents réseaux.

Réseau	Augmentation des dépenses d'ex- plo tation de 1918	Augmentation des recettes d'exploi- tation 1 de 1918	Diminuti n du produit net de	Coefficient d'exploitation	
Reseau	par rapport à 1913	par rapport à 1913	1918 par rapport à 1913	1913	1918
es Ventano	0/0	0/0	0/0	0/0	0/0
Est	62	3,4	90,6	60.62	96,4
Etat	85,6	41.2	219	85.39	112,3
Midi	99.8	25,2	63,5	54.55	86,72
Nord	57.2	$-14,2^{2}$	127.8	61,3	112.5
PLM.	106,1	30,8	68.5	57	89,6
Orléans	140,2	67,4	38,5	58,67	85,76
Ensemble des ré- seaux (moyenne)	91,6	. 26	86,4	_	-

¹ Y compris les recettes militaires. — ² Diminution.