Zeitschrift: Bulletin technique de la Suisse romande

Band: 45 (1919)

Heft: 20

Artikel: Note sur le calcul du coup de bélier dans les conduites sous pression

Autor: Carey, Ed.

DOI: https://doi.org/10.5169/seals-34924

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 09.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

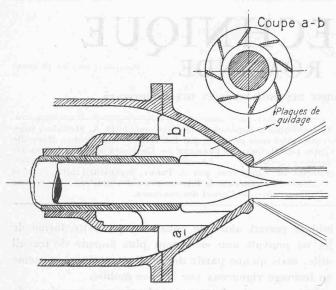


Fig. 14. — Réglage universel Seewer. Schéma du premier appareil d'essai.

permet un fonctionnement extrêmement rapide, dont l'absence totale de « chemin mort » est une des causes principales.

Note sur le calcul du coup de bélier dans les conduites sous pression

par Ed. Carey, ingénieur à Marseille.

(Suite.)

Exemple numérique (voir fig. 22).

Cas
$$\frac{av_0}{2g\mathcal{Y}_0} > 1$$
. Prenons
L = 1200 $a = 1200$ $\mathcal{Y}_0 = 120$ metres $V = 3$ metres $g = 9.8$

et limitons le coup de bélier à

$$\frac{\mathcal{Y}_0}{n} = \frac{120}{4} = 30 \text{ m.}; n = 4, \text{ nous aurons};$$

$$r = \frac{a}{2g\mathcal{Y}_0} = 0.51; \beta = 2 \text{ secondes}; C = \frac{9.1200}{9.8.120} = 9.2$$

Pour une fermeture linéaire simple il faudra prendre

$$T = \frac{2.1200.3}{9.8.120} 4 = 24,5$$
 secondes.

Avec une fermeture rapide non linéaire nous aurons :

Première partie, avec $\frac{av}{2g\gamma_0}>1$:

$$T_4 = (2n+1) \frac{LV}{2g\mathcal{Y}_0} = 9 \frac{1200.3}{19.6.120} = 13.75 \text{ secondes.}$$

Cette loi de fermeture $\frac{V}{T}$ est utilisable jusqu'à la vitesse:

$$V_4 = \frac{8-4}{0.51 (8+1)} = 4^{m},525$$

soit jusqu'au temps:

$$t = 13.75 - \frac{1200}{1200} (8 - 1) = 6.75$$
 secondes.

Deuxième partie :

A partir de ce point, $\frac{av_0}{2g\mathcal{Y}_0}$ devient < 1 et nous retombons dans le cas correspondant. Nous aurons à la fin de la première période qui suit le temps t:

$$V_2 = 1.525 \left(\frac{8}{9}\right) - \frac{1}{0.51 \times 9} = 1^{m}.137$$

à la fin de la période suivante:

$$V_3 = 4,137.0,89 - 0,218 = 0,794$$

$$V_{\star} = 0^{m},487$$

 $V_5 = 0^{m}, 215$

par contre nous aurons pour ø:

$$ho = rac{2.1200.3}{1200.24,5} = 0^{\mathrm{m}}.245$$

Cette vitesse, comprise entre V4 et V5, est à une distance x de l'ordonnée V5, qui est à la fin de la période $t + 4\theta$; donc p = 4

$$x = \frac{2(0.245 - 0.215)}{0.487 - 0.215} = 0.22$$
 secondes

nous aurons pour la durée totale de la fermeture :

$$T' = 6.75 + 10 - 0.22 = 16,53$$
 secondes

La courbe des vitesses est V, V₄, V₂, V₃, V₄, $\rho T'$.

La durée totale de la fermeture est donc ramenée de 24,5 secondes à 16,53 secondes, soit une diminution de 7,97 secondes, ou de 32,5 %, sans augmenter le coup de bélier fixé à $\frac{\mathcal{Y}_0}{n} = 30$ m. C'est aussi une diminution de $32.5^{\circ}/_{0}$ sur la valeur du coup de bélier $\frac{2\mathrm{LV}}{g\mathrm{T}}$ pour une fermeture linéaire de V à zéro en T' secondes.

Si nous vérifions l'exactitude de cette loi de fermeture nous trouverons pour la fermeture totale depuis $V = 3^{m}$:

$$B = \frac{2.120.3}{9.8.13,75} \frac{1}{2 - \frac{1200.3}{9.8.120.13,75}} = \frac{53.2}{1,778} = 30^{m}$$

et pour une fermeture depuis
$$V_3=0.794$$

$$B=\frac{1200}{9.8}\cdot\frac{0.794-0.487}{4.249}=30^{m}$$

wid semental I * " * Tek

La réduction du temps de fermeture est plus importante dans les basses chutes que dans les hautes chutes; la vitesse de fermeture pouvant être plus grande dans les basses chutes, comme cela ressort de la comparaison des formules 6 et 7:

(6)
$$\frac{1}{1 + ro - \frac{LV}{gTy_0}}$$
 et (7) $\frac{1}{2 - \frac{LV}{gTy_0}}$

le terme rv étant < 1, la formule 6 donnera une valeur plus grande que la formule 7 et nécessitera donc une fermeture plus lente pour maintenir le coup de bélier à la valeur fixée.

Le coup de bélier pour une fermeture linéaire, calculé avec la formule Michaud est diminué dans la même proportion que le temps de fermeture, soit dans le rapport $\frac{T'}{T}$, par l'emploi de ces lois de fermeture.

Remarquons aussi que nous avons utilisé les formules 6 et 7 établies pour des lois linéaires de fermeture afin de déterminer une loi non linéaire; mais il est évident que les lois non linéaires trouvées donneront toujours, pour les longues fermetures, des efforts moindres dans les périodes suivant la première période de fermeture, car les différences de vitesses par périodes entières vont en diminuant au lieu d'ètre constantes comme c'est le cas dans la loi linéaire.

III. Loi d'ouverture produisant un coup de bélier donné pour une durée d'ouverture minimum.

Nous pouvons établir pour les ouvertures, une loi rapide semblable à celle des fermetures. Pour les hautes chutes et $\frac{av_0}{2g\mathcal{Y}_0} \leq 1$, nous savons que le coup de bélier maximum d'ouverture est toujours donné à la fin de la première période pour l'ouverture partant de la vanne complètement fermée. Pour des ouvertures partant d'ouvertures préexistantes, le maximum a encore lieu à la fin de la première période d'ouverture.

En posant que le coup de bélier ne doit pas dépasser $\frac{\gamma_0}{}$, nous aurons pour une loi linéaire d'ouverture (formule 10):

$$\frac{2LV}{gT} \frac{1}{1 + \frac{LV}{gTy_0}} = \frac{y_0}{n}$$

d'où nous tirons : $T=rac{\mathrm{LV}}{g\mathcal{Y}_0}\left(2n-1\right)$

Pour calculer les diverses vitesses aux temps θ , 2θ , etc... qui détermineront la courbe des vitesses d'ouverture, nous poserons pour les hautes chutes avec

$$\frac{aV_f}{2g\mathcal{Y}_0} < 1$$
:

$$1^{re}$$
 période : $\frac{a}{g} \frac{v_1}{1 + rv_1} = \frac{y_0}{n}$

d'où:
$$c_1 = \frac{1}{r(2n-1)} \, ; \quad {\rm avec} \ r = \frac{a}{2g\mathcal{Y}_0}$$

$$2^{me}$$
 période : $\frac{a}{g} \frac{v_1 - v_2}{1 + rv_2} = \frac{\mathcal{Y}_0}{n}$

d'où:
$$o_2 = o_1 \frac{2n}{2n-1} + \frac{1}{r(2n-1)} = o_1 \frac{4n-1}{2n-1}$$

$$p^e$$
 période on aura : $arphi_p = arphi_{p-1} rac{2n}{2n-1} + arphi_1$

La vitesse d'ouverture totale V sera généralement comprise entre deux vitesses o_p et o_{p+1} aux temps p θ et $(p+1)\theta$, à une distance x de v_p et nous aurons :

$$\frac{\mathbf{V} - \mathbf{o}_p}{\mathbf{x}} = \frac{\mathbf{o}_{p+1} - \mathbf{o}_p}{\mathbf{\theta}}$$
$$\mathbf{x} = \frac{\mathbf{\theta} (\mathbf{V} - \mathbf{o}_p)}{\mathbf{o}_{p+1} - \mathbf{o}_p}$$

Et la durée totale de l'ouverture sera (fig. 23):

$$T' = p\theta + x$$

Cette durée T' est toujours plus courte que celle obtenue pour la loi de fermeture.

Comme exemple numérique (fig. 23) prenons les données de la fig. 21, nous aurons :

$$T = \frac{1200.6}{9.8.500} \times 7 = 10.30$$
 secondes

les vitesses seront:

au temps
$$0$$
 $v_0 = 0$

au temps
$$\theta$$
 $c_0=0$
$$c_1=\frac{1}{0.1225\times 7}=1^{\mathrm{m}}.16$$

au temps
$$2\theta$$
 $v_2 = 1.16 \frac{15}{7} = 2^{\text{m}},49$

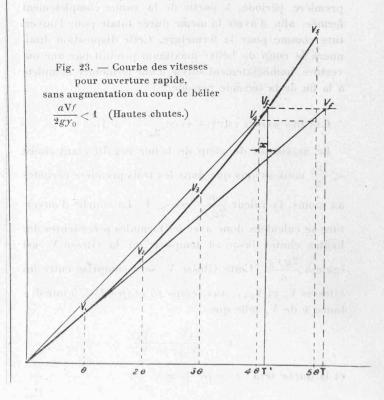
au temps
$$3\theta$$
 $c_3 = 2.49 \cdot \frac{8}{7} + 1.16 = 4^{\text{m}}.00$

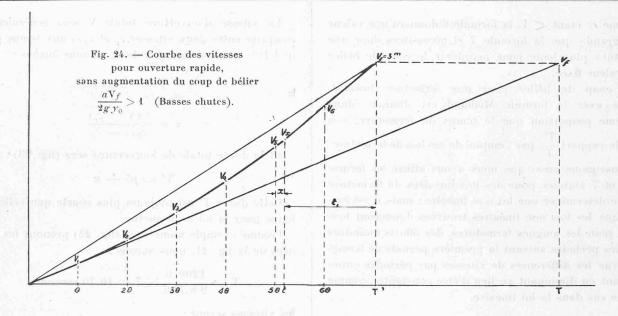
au temps 46 ,
$$\rho_4=5^{\rm m},72$$
 au temps 59 , $\rho_5=7^{\rm m},70$

au temps
$$5\theta$$
 $\phi_5 = 7^{\text{m}}, 7^{\text{m}}$

La vitesse $V=6^m$ est comprise entre o_4 et o_5 à une distance x de o_4 qui est :

$$x = \frac{2(6 - 5,72)}{7,70 - 5,72} = 0,28$$
 secondes





La durée totale de l'ouverture avec cette loi non linéaire sera, p étant égal à 4:

$$T' = 4 \times 2 + 0.28 = 8,28$$
 secondes

c'est une économie de 40.30 - 8.30 = 2 secondes, soit $49.5^{-0}/_{0}$.

L'ouverture de zéro à $V=6^m$ en T'=8,28 secondes, suivant une loi linéaire, donne un coup de bélier maximum de 151^m (formule 10); nous avons ramené ce maximum à 125^m par une loi non linéaire. soit une diminution de $17^{-0}/_0$ environ.

Avec les mêmes données, la loi de fermeture nous avait conduit à une durée T' = 9,37 secondes. Nous pourrons donc diminuer la rapidité d'ouverture dans la première période, à partir de la vanne complètement fermée, afin d'avoir la même durée totale pour l'ouverture comme pour la fermeture. Cette disposition diminuera le coup de bélier maximum produit par une ouverture, immédiatement suivie d'une fermeture complète à la fin de la seconde période.

Cas des basses chutes avec
$$\frac{av_f}{2gy_0} > 1$$
.

Le maximum du coup de bélier négatif étant choisi $<\frac{\mathcal{Y}_0}{2}$ nous savons que dans les trois première périodes au moins, la valeur $\frac{av}{2g\mathcal{Y}_0}$ est < 1. La courbe d'ouverture se calculera donc avec les formules précédentes des hautes chutes jusqu'au temps t, où la vitesse V_x est égale à $\frac{2g\mathcal{Y}_0}{a}$. Cette vitesse V_x sera comprise entre les vitesses V_p et V_{p+1} , aux temps $p\theta$ et (p+1) θ , à une distance x de V_p telle que :

$$x = \frac{\theta \left(\mathbf{V}_x - \mathbf{V}_p \right)}{\mathbf{V}_{p+1} - \mathbf{V}_p}$$

et la durée sera : $t = p\theta + x$.

A partir de la vitesse V_x et du temps t, la loi d'ouverture devient linéaire et nous poserons (formule 13):

$$\frac{L(V-V_{x})}{gt_{1}} \frac{1}{1 + \frac{L(V-V_{x})}{2gt_{1}y_{0}}} = \frac{y_{0}}{n}$$

d'où nous tirons:

$$t_1 = rac{\mathrm{L}\left(\mathrm{V-V}_x
ight)}{g\mathcal{Y}_0} \, \left(rac{2n-1}{2}
ight)$$

La durée totale d'ouverture sera :

$$T'=t+t_1$$

Prenons comme exemple numérique les données de la figure 22 et nous aurons la courbe de la figure 24 dont voici les éléments:

$$\begin{array}{llll} c_0 \ \ {\rm au\ temps}\ z\'ero & c_0 = 0 \\ c_4 \ \ {\rm au\ temps}\ \theta & c_4 = \frac{1}{0.54.7} = 0^{\rm m},\!28 \\ c_2 \ \ {\rm au\ temps}\ 2\theta & c_2 = 0^{\rm m},\!60 \\ c_3 \ \ {\rm au\ temps}\ 3\theta & c_3 = 0^{\rm m},\!965 \\ c_4 \ \ {\rm au\ temps}\ 4\theta & c_4 = 1^{\rm m},\!38 \\ c_5 \ \ {\rm au\ temps}\ 5\theta & c_5 = 1^{\rm m},\!855 \\ c_6 \ \ {\rm au\ temps}\ 6\theta & c_6 = 2^{\rm m},\!40 \\ \end{array}$$

d'autre part nous avons:

$$V_x = \frac{2.9,8.120}{1200} = 4^m,96$$

 V_x est compris entre ρ_5 et ρ_6 à une distance x de ρ_5

$$x = \frac{2.(1.96 - 1.86)}{2.40 - 1.86} = 0.37$$
 secondes

donc: $t = 5 \times 2 + 0.37 = 10.37$ secondes.

A partir de V_x au temps t, la loi est une droite, nous aurons :

$$t_4 = \frac{4200 \; (3 - 4.96)}{9.8.120} \, \frac{7}{2} = 3.73 \; {
m secondes}$$

et la durée totale d'ouverture sera :

$$T' = 10.37 + 3.73 = 14.20$$
 secondes.

Le temps d'ouverture linéaire aurait dû être en po-

$$\frac{2LV}{gT} \frac{1}{1 + \frac{LV}{gTy_0}} = \frac{r_0}{n}$$

d'où
$$\mathbf{T} = (2n-1)\,\frac{\mathbf{L}\mathbf{V}}{g\mathcal{Y}_0}$$

et dans cet exemple: T = 21,5 secondes; l'économie est donc de 21.5 - 14.1 = 7.4 secondes ou de $34.4^{-0}/_{0}$.

Avec les mêmes données, la durée de fermeture était (fig. 22) de 16,53 secondes; la durée d'ouverture est plus courte, comme cela doit être le cas pour un coup de bélier négatif choisi égal au coup de bélier positif de fermeture.

Le coup de bélier maximum, pour une ouverture linéaire de zéro à $V=3^{m}$ en T'=14,10 secondes, serait (formule 10):

$${
m B}=rac{52}{1,217}=42{
m m},7$$

avec la loi non linéaire nous avons ramené ce maximum à 30^m soit une diminution de 30 ⁰/₀.

IV. Surpression produite par un retard dans le fonctionnement des déchargeurs

(fermetures).

Les déchargeurs ont pour but d'ouvrir un orifice en même temps que le régulateur ferme, le déchargeur se fermant ensuite très lentement pour diminuer l'importance du coup de bélier. Ces appareils agissent en général avec un léger retard qui peut produire des surpressions importantes surtout dans les basses chutes, dont la période $\frac{2L}{a}$ est très courte.

Le coup de bélier de fermeture complète en $\frac{2L}{a}$ secondes, qui serait $\frac{av_0}{g}$ si le déchargeur ne fonctionnait pas, deviendra à la fin de la période, par suite de la fermeture partielle produite par le déchargeur :

$$B = \frac{a}{g} \frac{\rho_0 - \rho_1}{1 + r\rho_1}$$

Si le déchargeur agit en retard, la fermeture suivra la vitesse de fermeture de la turbine jusqu'au moment où le déchargeur commencera à fonctionner; il en résulte que la vitesse o_4 sera plus faible et la différence $o_0 - o_4$ plus grande, En admettant un jeu ou un retard de $\frac{1}{n}$ seconde, la vitesse v_4 sera $\frac{n-1}{n}$ v_4 et le coup de bélier deviendra:

$$B = \frac{a}{g} \frac{v_0 - \frac{(n-1)}{n} v_1}{1 + r \frac{(n-1)}{n} v_1}$$

Supposons par exemple:

$$L = 200^{\text{m}}$$
 $a = 800$ $\mathcal{Y}_0 = 50^{\text{m}}$ $V = 4^{\text{m}}$ $T = 4$ sec. $r = 0.816$ $\frac{2L}{a} = 0.5$ $g = 9.8$

la variation de vitesse pendant le temps θ est :

$$0.5 \frac{4^{\text{m}}}{4} = 0^{\text{m}}, 50.$$

Admettons un déchargeur capable de débiter la moitié du volume passant la turbine alors $\rho_4 = \frac{\rho_0}{2}$. Le coup de bélier de fermeture $\frac{2\mathrm{LV}}{g\mathrm{T}}$, qui serait de 40^{m} ,80, sera ramené par le déchargeur à

$$B = 81,60 \frac{0,50 - 0,25}{1 + 0,204} = 16^{m},90$$

Si nous supposons un jeu de 10mm sur une course totale de 400mm effectuée en 4 secondes, le retard dans la mise en fonction du déchargeur sera de :

$$\frac{10.4}{400} = \frac{1}{10} \text{ de seconde}$$

la variation de vitesse qui devrait être de 0m,50 — 0m,25 $=0^{\text{m}},25$ deviendra $0.50-\frac{10-1}{10}$ 0.25=0.50-0.225= 0,275 le coup de bélier atteindra :

$$B = 81,60 \frac{0.50 - 0.225}{1 + 0.816 \cdot 0.225} = 18^{m},90$$

soit une augmentation de 12 % environ, sur le coup de bélier de 16m,90.

Conclusion.

Il résulte de cette étude que les conduites sous pression à caractéristique unique, peuvent être soumises à des coups de bélier qui sont souvent considérables et que la formule de M. Michaud ne couvre pas tous les efforts qui peuvent être produits par les manœuvres du vannage.

Laissant de côté le phénomène complet des résonances, heureusement rare, nous attirons tout spécialement l'attention sur les importantes majorations produites par une ouverture immédiament suivie d'une fermeture complète, ainsi que sur les surpressions occasionnées par un retard dans le fonctionnement des déchargeurs.

Reste la question des fermetures instantanées ou simplement plus rapides que $\frac{2L}{a}$ seconde, par suite d'un fonctionnement anormal du vannage; dans ce cas, nous avons signalé que la valeur $\frac{av_0}{g}$ ne se répartit plus linéairement le long de la conduite; si celle-ci alimente plusieurs orifices, le constructeur verra, d'après les conditions d'exploitation, s'il doit la calculer pour supporter le coup de bélier produit par l'un des vannages ou par l'ensemble de ceux-ci.

Pour les fermetures instantanées, M. de Sparre a démontré que dans les conduites à caractéristiques variables la valeur $\frac{av_0}{g}^{(1)}$ pouvait être majorée de 62 $^0/_0$; ce cas est rare dans les installations de turbines et ne se produit guère que dans les conduites alimentant des presses à emboutir. Cependant, pour les fermetures complètes, non instantanées, mais effectuées en un temps $<\frac{L}{a}$ sec. il y a aussi une aggravation importante

du coup de bélier $\frac{av_0}{g}$, qui croît pendant plusieurs périodes dans les conduites à caractéristiques variables. Toutefois, la répartition de ces efforts n'est plus intégrale le long de ces conduites.

Nous avons ainsi résumé les formules générales permettant de calculer la valeur du coup de bélier maximum dans les conduites à caractéristique unique, pour les principales manœuvres qui peuvent être effectuées par le vannage. Dans un prochain article nous donnerons les formules à utiliser pour le calcul du coup de bélier maximum dans les conduites formées de deux ou de trois tronçons de diamètre et d'épaisseur différents.

(A suivre).

Nouveaux procédés d'essais mécaniques des métaux.

Inventés par M. Charles Frémont 2.

Les essais mécaniques des métaux s'effectuent actuellement à l'aide de machines importantes dont le poids, l'encombrement et le prix restreignent beaucoup l'usage.

1 $\frac{av_0}{g}$ correspondant aux éléments ou tiers inférieur de la conduite.

Note présentée à l'Académie des Sciences de Paris. Voir Comptes Rendus, t. 169, page 228 (4 août 1919).

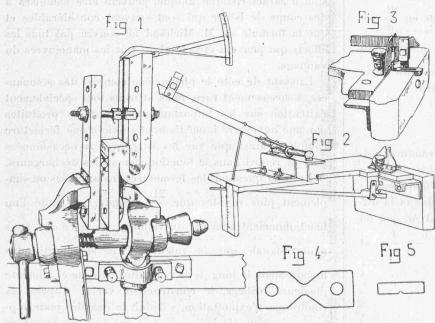


Fig. 1. Machine à essayer le métal à la traction. — Fig. 2 et 3. Marteau à ressort pour essayer le métal au choc. — Fig. 4. Eprouvette de traction. — Fig. 5. Eprouvette de choc.

En outre, ces machines sont construites pour essayer des éprouvettes relativement volumineuses dont les dimensions ont été choisies en vue de déterminer plus particulièrement la moyenne de la résistance du métal; or ce qu'il importe de mesurer c'est surtout la résistance minimum qu'on trouve dans les régions hétérogènes décelées par l'essai de corrosion, parce que ce sont ces points faibles qui sont la cause originelle de toutes les ruptures en service.

En pratique on a aussi à mesurer des résistances locales, par exemple à la suite d'écrouissage, de soudure, etc.

J'ai été conduit à utiliser, pour ces sondages locaux, des éprouvettes de faibles dimensions, puis à imaginer des machines portatives simples et peu coûteuses, pour permettre d'essayer économiquement les métaux, au choc et à la traction, dans les laboratoires d'études et de recherches.

Pour essayer à la traction, le bâti de la machine (fig. 1) se compose d'une flasque droite et d'une flasque contrecoudée en forme de baïonnette, séparées par un cylindre d'acier dur qui leur sert de pivot de rotation.

Sur chaque flasque, trois trous, fraisés extérieurement pour recevoir une rotule, permettent le montage des deux chapes qui portent l'éprouvette à rompre; le choix du trou variant avec la résistance prévue, en bas pour les plus hautes résistances à produire, en haut pour les métaux les moins résistants ou les plus ductiles.

L'appareil étant serré dans un étau d'ajusteur, sous la pression effectuée à l'aide de la vis et de la manivelle, les mors rapprochent les branches inférieures des deux flasques, elles basculent sur l'axe cylindrique en acier dur et écartent les branches supérieures qui opèrent alors la tension croissante de l'éprouvette.

Sous la tension de l'éprouvette, le bâti se déforme élastiquement et cette déformation proportionnelle à l'effort, amplifiée suffisamment, indique par une aiguille sur un cadran, ou une plume sur du papier, et d'après un tarage préalable, la valeur de cet effort à chaque moment de l'essai.

La figure 4 représente cette éprouvette de traction qui a 28^{mm} de long sur 10 de large; si l'on a eu soin de polir cette éprouvette, la limite d'élasticité vraie est rendue visible et par suite mesurable.

La résistance de rupture unitaire conventionnelle est donnée dans cet essai, comme d'habitude, en divisant l'effort maximum par la section initiale.

La ductilité est mesurée statiquement par le rapport de la section initiale à la section finale dans la striction.

Cette ductilité statique n'a d'ailleurs pas l'importance qu'on lui attribue généralement, car les ruptures en service des pièces métalliques ne s'effectuent jamais avec striction comme dans l'essai de traction; aussi en pratique cette mesure de la ductilité statique est remplacée avantageusement par la mesure de la résistance vive du métal essayé dynamiquement par le choc effectué dans certaines conditions.

Pour effectuer pratiquement et économiquement cet essai de choc, j'ai construit un marteau à ressort représenté par les figures 2 et 3

Le percuteur de ce marteau, devant plier une éprouvette de faible section, est constitué par une petite lame d'acier trempé, de 1^{mm} à 2^{mm} au plus d'épaisseur, suivant le cas.