Zeitschrift: Bulletin technique de la Suisse romande

Band: 38 (1912)

Heft: 11

Artikel: La nouvelle usine à gaz de la ville de Lausanne, à Malley

Autor: Cornaz, W.

DOI: https://doi.org/10.5169/seals-29481

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 30.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Bulletin technique de la Suisse romande

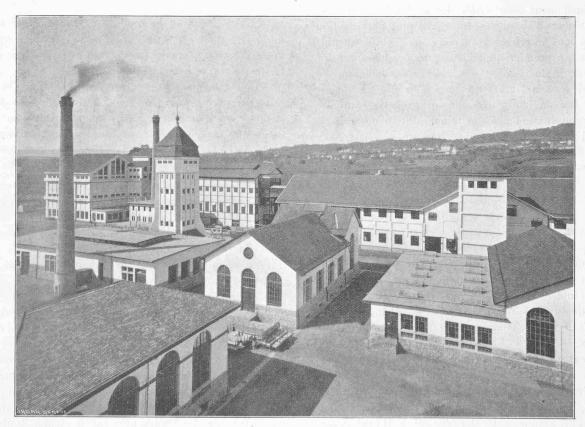
ORGANE EN LANGUE FRANÇAISE DE LA SOCIÉTÉ SUISSE DES INGÉNIEURS ET DES ARCHITECTES — PARAISSANT DEUX FOIS PAR MOIS
RÉDACTION: Lausanne, 2, rue du Valentin: Dr H. DEMIERRE, ingénieur.

SOMMAIRE: La nouvelle usine à gaz de la ville de Lausanne, à Malley (suite), par W. Cornaz, ingénieur. — Les principes à suivre dans — l'organisation des concours d'architecture et leur usage. — Concours pour l'étude d'un bâtiment destiné à l'Ecole de Commerce, à Lausanne: Rapport du jury. — Société fribourgeoise des ingénieurs et architectes. — Société suisse des ingénieurs et architectes. — Association internationale pour l'essai des matériaux. — Bibliographie. — Souterrain du Mont d'Or.

La nouvelle usine à gaz de la ville de Lausanne, à Malley

par W. CORNAZ, ingénieur

(Suite 1).


Appareils. — Le gaz brut passe des fours au bâtiment des appareils par une conduite souterraine de 500 mm. de diamètre qui a 88 m. de longueur; elle est munie d'un siphon de 3,5 m³ de contenance, recevant les premiers produits de la condensation, et qui est vidé une fois par

¹ Voir Nº du 10 mai, 1912, page 101.

semaine, dans les fosses, au moyen d'un compresseur à air. Cette conduite étant souterraine, elle a l'avantage de travailler dans des conditions à peu près analogues dans toutes les saisons et d'amener le gaz à l'entrée du bâtiment des appareils à peu près à la même température pendant toute l'année. Ce fait permet de régler les appareils une fois pour toutes d'une façon plus stable et pour la marche la plus économique.

Ce bâtiment des appareils est subdivisé en trois locaux, à cause des différences de température que produisent les différents traitements du gaz et aussi pour que les fuites de gaz et accidents éventuels ne compromettent pas toute l'installation. Ces trois locaux renferment les appareils suivants:

Dans le premier local : La réfrigération primaire com-

Bâtiment central.

Appareils.

Epurateurs

Fig. 55. - Vue d'ensemble prise du gazomètre.

posée d'un réfrigérant à air et d'un réfrigérant à circulation d'eau.

Dans le local du centre : Les extracteurs à gaz, les laveurs à goudron et à naphtaline (fig. 55 à 58).

Dans le troisième local : la réfrigération secondaire comprenant un réfrigérant à circulation d'eau et un laveur à ammoniaque.

Comme on peut le voir par cette énumération, la réfrigération du gaz se fait en deux étapes, de façon à ce que l'extraction de la naphtaline puisse être placée entre deux et se faire à la température qui lui convient le mieux, c'està-dire à 30° environ.

Les sous-sols sont élevés et bien éclairés, ce qui donne un accès facile aux conduites de gaz, goudron et ammoniaque et permet de contrôler l'écoulement des produits de la condensation ou de faire des réparations dans de bonnes conditions.

La bonne ventilation qui doit pouvoir être réglée facilement, se fait par de nombreuses fenêtres, ainsi que par une lanterne à jalousies.

L'éclairage est combiné pour éviter les dangers d'explosion. Des lampes à gaz munies de réflecteurs sont placées devant les fenêtres à l'extérieur du bâtiment, tandis que l'éclairage électrique se fait à l'intérieur; pour ce dernier les interrupteurs sont placés vers les portes d'entrée à l'extérieur du bâtiment.

Réfrigération primaire. — En arrivant au bâtiment des appareils, le gaz subit une première réfrigération qui se fait graduellement pour éviter des obstructions de goudron: il pénètre d'abord dans un réfrigérant à air à action lente puis dans un réfrigérant à eau dont l'action est plus énergique. Le premier appareil est un condenseur à air qui consiste en un cylindre en tôle de 2 m. 50 de diamètre sur 8 m. de hauteur, dans lequel le gaz circule très lentement de bas en haut. Il a une surface réfrigérante de 68 m² et produit une baisse de température d'environ 5°; le gaz qui y arrive en moyenne vers les 50° en repart à 45°. L'action de ce condenseur pourra être augmentée plus tard, quand cela sera nécessaire, en utilisant un basculeur placé sur l'appareil et qui distribue de l'eau ammoniacale faible sur des claies horizontales; ces dernières n'existent pas pour le moment et seront introduites quand il faudra augmenter l'effet de l'appareil.

Le second réfrigérant est du système Reutter et a une action beaucoup plus énergique. Il consiste en une colonne de section carrée, formée de huit étages de plaques de fonte; à l'intérieur sont disposés horizontalement une quantité de tuyaux (517 de 100 mm. de diamètre) dans lesquels l'eau circule, tandis que le gaz se trouve autour de ces tuyaux.

L'eau entre par le bas de l'appareil pour ressortir par le haut; le gaz suit une marche contraire de haut en bas. Ce réfrigérant occupe à peu près le même espace que le précédent, tout en ayant une surface réfrigérante beaucoup plus grande; cette dernière est de 314 m², capable de refroidir environ 32 000 m³ de gaz en 24 heures. Comme l'appareil précédent, il peut être arrosé d'eau

ammoniacale faible au moyen d'un basculeur qui la fait ruisseler sur les tuyaux.

L'action réfrigérante de ces deux appareils est la suivante :

Lorsque le gaz passe en suivant d'un réfrigérant à l'autre, on compte qu'il faut 0,75 m² de surface réfrigérante à air pour refroidir 100 m. de gaz et 1 m² de surface réfrigérante de réfrigérant à eau. Dans ces conditions ces deux appareils ont, par 24 heures, l'action réfrigérante suivante :

$$\frac{68 \times 100}{0.75} + \frac{314 \times 100}{1.00} = 36500 \text{ m}^3$$

En utilisant l'eau d'arrosage sur le condenseur à air ainsi que sur le Reutter et en augmentant l'eau claire sur ce dernier, ce chiffre de 36500 m³ pourrait facilement être porté aux 40000 m³ que l'usine fabriquera lorsqu'elle travaillera en pleine charge. Mais en marche normale il ne sera pas nécessaire de recourir à ces moyens, attendu que la réfrigération ne doit se faire qu'en partie avec la réfrigération primaire, le reste étant obtenu par la réfrigération secondaire; ce n'est qu'en cas d'arrèt de cette dernière que la réfrigération primaire serait chargée de refroidir complètement à elle seule les 40000 m³.

Cette quantité de gaz traverse la conduite principale de 500 mm. avec une vitesse de :

$$\frac{40\,000}{24\times60\times60\times0.196}=2.35\,$$
 mètres à la seconde, c'est-à-dire en dessous de la vitesse normale de 3 m. à la seconde

Après l'extraction du goudron, la dimension de la conduite principale peut être réduite; elle est à Malley, après la réfrigération primaire de 450 mm., ce qui donne encore la vitesse normale de 2,90 m. à la seconde.

Les écoulements de goudron des réfrigérants et appareils de lavage se font par des siphons recouverts de cloches en verre et sont par conséquent visibles en même temps que facilement accessibles; les températures sont contrôlées à l'entrée de chaque réfrigérant par des thermomètres fixés sur les tuyaux d'entrée des appareils.

Extracteurs. — Dans le local du centre, nous trouvons ensuite les extracteurs ou pompes rotatives à trois palettes, système Beale, qui aspirent le gaz fabriqué aux fours à travers les appareils de la réfrigération primaire que nous venons de voir et qui, de l'autre côté, refoulent ce gaz à travers les autres appareils de lavage, d'épuration et de mesure jusque dans le gazomètre.

L'aspiration entre les extracteurs et les fours doit être maintenue constante si l'on veut avoir une bonne exploitation; ce vide est maintenu régulier dans les limites de 1 à 2 mm. près zéro, au moyen d'un régulateur bypass automatique. Cet appareil met plus ou moins en communication la conduite d'aspiration avec celle de refoulement au moyen d'une soupape à orifices coniques, équilibrée par un contrepoids réglable suivant le vide désiré. Ce vide est enregistré sur des graphiques qu'on change toutes les 24 heures.

Les extracteurs tournent à une vitesse de 72 tours à la

minute et sont accouplés directement à des moteurs électriques de 8 HP faisant 1050 tours à la minute; la réduction de vitesse de 1050 à 72 tours est obtenue par des réducteurs constitués par une seule paire d'engrenages de roues dentées à chevrons. Les accouplements se font au moyen de boîtes hexagonales garnies de lamelles de bois refendues à la scie, qui donnent l'élasticité voulue.

L'emploi des moteurs électriques qui sont habituellement exclus de cette partie des usines à gaz pour des raisons de sécurité et pour éviter les dangers d'explosion ont été adoptés à Malley en prenant certaines mesures de précaution. Ces moteurs sont enfermés dans une carcasse absolument étanche au gaz; l'intérieur de ces carcasses est en communication avec l'air extérieur par l'intermédiaire de canaux disposés dans l'épaisseur du plancher, débouchant dans la façade du bâtiment, et qui assurent une bonne aération de la partie électrique des moteurs.

Les dangers d'explosion sont ainsi complètement impossibles. La sécurité de la marche des extracteurs est très suffisante puisqu'il y a toujours un groupe extracteurmoteur électrique de réserve et que le courant électrique est lui-même en réserve à l'usine. Nous avons tenu à cette solution pour profiter des avantages des moteurs électriques qui étaient dans le cas particulier :

- 1º Coût d'installation bien meilleur marché que celui de machines à vapeur.
- 2° Encombrement très réduit permettant de diminuer les dimensions du bâtiment.
 - 3º Entretien minimum des moteurs électriques.
 - 4° Simplicité de l'installation.

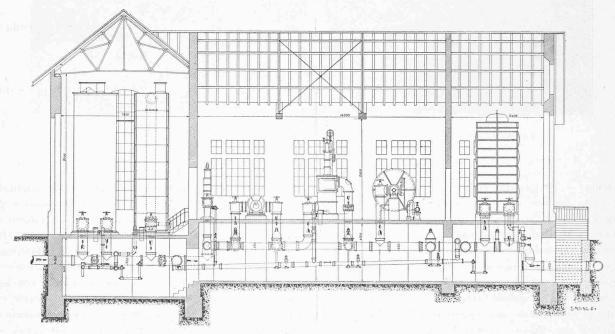


Fig. 56. - Coupe longitudinale du bâtiment des appareils.

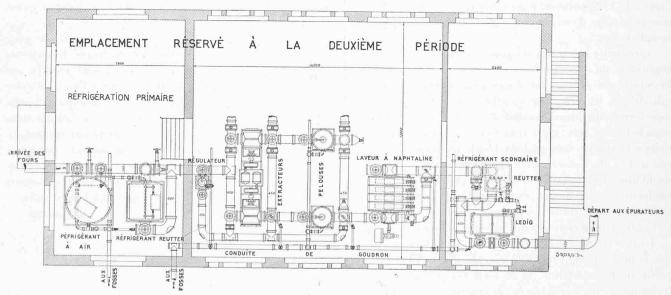
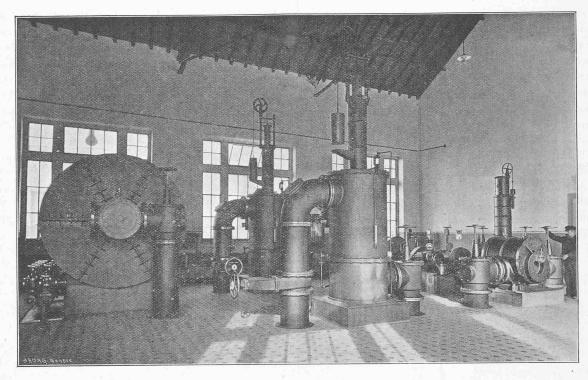



Fig. 57. - Vue en plan du bâtiment des appareils.

Laveur à naphtaline.

Laveurs à goudron.

Extracteurs.

Fig. 58. — Appareils.

Laveurs. — Le gaz qui vient de traverser les extracteurs, passe ensuite dans les séparateurs à goudron, système Pelouze et Audouin, d'une capacité de lavage de 40 000 m³ en 24 heures. Les dernières traces de goudron sont enlevées mécaniquement dans cet appareil, d'après le principe du choc des molécules contre une paroi; en même temps une notable quantité de l'ammoniaque contenue dans le gaz est encore extraite. L'écoulement de ces produits se fait comme aux appareils de la réfrigération primaire par des siphons recouverts d'une cloche en verre qui permettent de contrôler continuellement la marche de l'appareil. Le séparateur à goudron reçoit enfin un écoulement continu d'eau ammoniacale faible qui complète le lavage du gaz.

Après cette extraction du goudron, on enlève au gaz la naphtaline qu'il contient au moyen d'un laveur du type Standard, se composant d'une grande boîte en fonte, cylindrique, traversée par un arbre. Ce dernier porte une roue formée de disques auxquels sont fixés des paquets de planchettes en bois; cette roue tourne à la vitesse de trois tours à la minute dans un bain d'huile d'anthracène mélangée à 4 % de benzol, ayant la propriété d'absorber la naphtaline. Une moitié de cette roue plonge dans l'huile, tandis que l'autre moitié, encore toute ruisselante de cette huile qu'elle a entraînée, offre une grande surface de contact entre l'huile et le gaz qui traverse le laveur.

L'appareil est subdivisé en quatre chambres, en sorte que la première, qui reçoit le gaz, absorbe la plus grande partie de la naphtaline, la seconde un peu moins et la troisième les dernières traces; la quatrième chambre doit, par mesure de sécurité, rester indemne de naphtaline.

Lorsque l'huile de la première chambre contient 25 % de naphtaline, elle doit être remplacée; au moyen d'un système de vannes et d'une pompe on fait alors passer l'huile de la seconde chambre dans la première, celle de la troisième dans la deuxième et celle de la quatrième dans la troisième. La quatrième chambre est pourvue d'huile fraîche. A Malley, cette opération a actuellement lieu lorsque environ 600 000 m³ de gaz ont passé, ce qui se présente tous les 30 jours en moyenne. L'huile usagée est versée dans les fosses à goudron ou vendue comme moyen de chauffage; il est également question de l'employer comme combustible pour les moteurs Diesel.

Comme pour les extracteurs, la force employée pour actionner le laveur à naphtaline est électrique. Deux petits moteurs de 2 HP, l'un formant réserve, sont montés sur un bâti à glissières permettant d'accoupler l'un ou l'autre des deux moteurs. Ils font 1500 tours à la minute, tandis que le laveur, comme nous l'avons vu, ne fait que trois tours; la réduction de vitesse est obtenue par contact direct de la poulie motrice, en cuir, du moteur contre une grande poulie, et par une vis sans fin. Le danger des étincelles électriques est évité par le fait que les moteurs sont en court-circuit et les interrupteurs à bain d'huile.

(A suivre.)