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Définition générale de l'ellipse
d'élasticité des systèmes articulés.

Par B. MAYOR, professeur.

La notion d'-ellipse d'élasticité possède un sens précis
dans le cas où l'on envisage un groupe de barres appartenant

à un système triangulé et libre dans son plan. Elle
perd toute signification en revanche, aussi bien dans le
cas d'un système constitué d'une manière arbitraire, que
dans celui d'un système triangulé assujetti à des liaisons
qui ne peuvent être réduites à un encastrement unique.

Il est cependant possible, comme je me propose de le
montrer ici, de définir un élément géométrique qui n'est
soumis à aucune de ces restrictions et qui, de plus, se
confond avec l'ellipse d'élasticité dans tous les cas où la
definition usuelle donne un sens à cette notion.

On parvient de la manière la plus simple à cet élément
par l'emploi de coordonnées trilinéaires d'un type particulier.

Et comme on peut attribuer à ces coordonnées une
origine qui met immédiatement en évidence leurs propSH
tés mécaniques ; que, d'autre part, elles se prêtent avec
une grande facilité à l'étude des problèmes de la mécanique

appliquée où la considération des propriétés
descriptives est prépondérante, nous commencerons par en
faire une étude sommaire.

I.

I. Considérons, dans un plan, trois axes u, v, w, c'est-
à-dire trois droites sur chacune desquelles un sens de
parcours positif ait été arbitrairement choisi. Supposons
de plus, que ces droites forment un triangle qui sera dit le
triangle de référence.

Une force quelconque F étant donnée dans le plan de
ce triangle, imaginons qu'on la décompose en trois
composantes admettant respectivement les axes>u, v, w, pour
lignes d'action; convenons ensuite de désigner par X,
Y et Z les intensités des composantes obtenues, chacune
d'elles étant affectée du signe plus ou du signe moins,
suivant que son sens concorde ou ne concorde pas avec
le sens de parcours positif choisi sur l'axe correspondant.
Comme la décomposition d'une force suivant trois directions

non concourantes est toujours possible d'une manière

et d'une seule, à toute force F correspond ainsi un
système de valeurs et un seul des trois quantités X, Y et
Z. Réciproquement d'ailleurs, à tout système de valeurs
de ces mêmes quantités correspond manifestement une
force et une seule. En conséquence, les quantités X, Y, Z
seront dites les coordonnées de la force F relativement au

"triangle de référence choisi.
2. Le résultat qui précède peut être interprété d'une

manière un peu différente.
Tout d'abord, si l'on déplace la force F sur sa ligne

d'action sans changer son intensité ni son sens, ses
coordonnées ne subissent aucune modification. D'autre part, si
l'on multiplie par un nombre quelconque p l'intensité de

F, ses coordonnées se trouyent également multipliées par
le même facteur p. D'après cela, les quantités X, Y et Z
peuvent donc être considérées comme les coordonnées

homogènes d'une droite qui se confond avec la ligne d'action

de la force F.
Considérées à ce dernier point de vue, les quantités X,

Y el Z forment bien un système particulier de cordonnées
trilinéaires : elles sont en effet proportionnelles aux
distances qui séparent les sommets du triangle de référence
de la droite considérée, les facteurs de proportionnalité
étant respectivement égaux aux inverses des hauteurs de

ce triangle.
Ajoutons encore qu'il ne résulte aucune ambiguïté du

double sens que l'on peut attribuer aux quantités X, Y et
Z si, du moins, on a soin de spécifier dans chaque cas la
nature de l'élément auquel elles se rapportent.

3. Les coordonnées qu'on vient de définir jouissent de

propriétés évidentes, mais essentielles.
Considérons, en premier lieu, des forces F{, F^,... Fi,

Fn en nombre quelconque, et désignons, d'une manière
générale, par Xi, Yi, Zi les coordonnées de Fi. Le théorème

des moments montre alors immédiatement mue les
coordonnées X> Y, Z de la résultante de ces forces sont
données par les formules

n

X I Xi,
i

Y m I Yi,

Z 2 Zi.
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Considérons ensuite deux droites quelconques, /, et /2,

admettant respectivement pour coordonnées homogènes

Xt, Yt, ZK et X2, F2, Z2. Il résulte alors immédiatement

de la propriété qui précède que les formules
X — À X{ + fit X2

F A Yt + /t F2

Z XZi+fitZ<î
définissent, quelles que soient les valeurs attribuées à / et

fit, une nouvelle droite qui passe par le point de rencontre

de /4 et de /2. Il est visible, de plus, qu'en donnant au

rapport — toutes les valeurs possibles, la droite correspondante

engendre complètement le faisceau déterminé par

l{ et /2.

4. L'intensité d'une force quelconque s'exprime facilement

en fonction de ses coordonnées.

Admettons, en effet, qu'on ait fixé les sens sur les axes

u, v, w, de manière que les sens de rotation qui en résultent

soient tous positifs pour un point situé à l'intérieur
du triangle de référence. Si l'on désigne alors par _4, J? et

C les angles de ce triangle, un calcul élémentaire donne

facilement pour le carré de l'intensité d'une force F de

coordonnées X, Y, Z, l'expression
i?« X* + Yi + Z* —

— 2YZcosA—2ZXcosB — 2XYcosC
qu'on peut également, en désignant par i l'unité imaginaire,

mettre sous la forme suivante

F* ~ {X e'B -(- F B — Z) (X WË + F e* — Z).

Les points circulaires du plan du triangle de référence

peuvent être regardés comme les enveloppes des lignes
d'action des forces dont les intensités sont nulles, mais

dont les coordonnées conservent des valeurs finies. Ils
seront donc représentés en coordonnées-lignes par l'équation

Xi -f F* -f- Z* —

— 2YZcosA — 2ZXcosB — 2XYcosC—0
qui, d'ailleurs, se décompose dans les deux suivantes :

X e'B + Y e~lA — Z=0
X e-tB _|_ Ye1* — Z 0

5. Aux coordonnées de forces ou de droites, qui viennent

d'être définies, correspondent dualistiquement des

coordonnées ponctuelles dont l'origine mécanique est tout
aussi simple.

Considérons, en effet, une masse de nature arbitraire
et d'intensité m, concentrée en un point que nous désignerons

également par m et qui peut être quelconque dans le

plan du triangle de référence. Convenons ensuite dé désigner

par ce, y et z les moments statiques de cette masse

relativement aux axes u, v, w, ces moments statiques étant
affectés du signe qui résulte de la convention suivante :

dans le cas où le sens fixé sur l'axe envisagé donne lieu à

un sens de rotation positif par rapport au point m, le signe
du moment statique est le même que celui de la masse

considérée; lorsque, au contraire, ce même sens de rotation

devient négatif, le signe du moment statique est

l'inverse de celui de la masse.

A toute masse concentrée correspond ainsi un système

de valeurs et un seul des quantités x, y, z. Réciproquement,
à tout système de valeurs de ces quantités on peut faire

correspondre une masse concentrée m dont l'intensité et

la position sont déterminées sans ambiguïté. D'une part,
en effet, les distances du point m aux côtés du triangle de

référence sont entre elles dans les mêmes rapports que les

quantités ce, y, z, et l'on sait que ces rapports suffisent

pour déterminer la position de ce point. D'autre part,
enfin, la position de ce point étant déterminée, l'une

quelconque des quantités x, y ou z permet ensuite de déter^

miner l'intensité de la masse. En conséquence, les quantités

x, y, z seront dites les coordonnées de la masse m. On

peut d'ailleurs remarquer immédiatement que l'intensité
d'une masse s'exprime linéairement en fonction de ses

coordonnées.
Prenons, en effet, comme sens positifs sur les axes

u, v, w ceux qui ont été déjà choisis au paragraphe précédent.

Si l'on désigne alors par a, b, c les longueurs des

côtés et par S la surface du triangle de référence, on
obtient immédiatement, pour l'intensité d'une masse m de

coordonnées x, y et z, l'expression

ax-\-bu-\-czm= 2S

6. Comme dans le cas d'une force, les coordonnées

d'une masse sont susceptibles d'une deuxième interprétation-

Si l'on multiplie, en effet, par un facteur arbitraire une

masse sans changer son point de concentration, ses

coordonnées sont évidemment multipliées par le même facteur.

On en conclut que les quantités x, y, z peuvent encore

être regardées comme les coordonnées homoyènes du

point de concentration de cette masse, ce qui, d'ailleurs,
est évident.

D'autre part, les propriétés générales de ces nouvelles

coordonnées sont entièrement analogues à celles qui
caractérisent les coordonnées d'une force.

Considérons, en effet, un système de masses mt m2,...

mi,... mn en nombre quelconque, et désignons, d'une

manière générale, par ce;, yi, zi les coordonnées de la masse

mi. Il résulte alors immédiatement de la théorie des

moments statiques que les coordonnées ce, y, z de la masse

résultante du système sont données par les formules
suivantes :

n
ce — _. xi,

2yi,

Z — 2. Zi.
K

Si l'on désigne ensuite par xlt yy, r, et ,r2, yt, r2 les

coordonnées homogènes de deux points quelconques mi el

m2, on vérifie sans aucune peine que les formules

ce A x{ + fit œj,

y Àyt -f fit. _/_,

z /rt + j« *a,
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définissent, quelles que soient les valeurs de X et de fit, un

point de la droite qui réunit mt et mi. Il ej|| visible, de

plus, qu'en donnant au rapport — des valeurs convenables,

on peut obtenir tous les points de la droite
considérée.

7. Une formule que nous allons établir met bien en

évidence les relations existantes entre les coordonnées

d'une foi ce et celles d'une masse.

Considérons simultanément une masse m et une force

.Fdont la ligne d'action sera toujours assimilée à un axe

ayant le sens même de la force. Convenons ensuite de

désigner sous le nom de moment relatif de ces deux

éléments, le produit de l'intensité de la force pour le moment

statique de la masse relativement à la ligne d'action de F,
ce moment statique étant pris avec le signe qui résulte de

la convention faite précédemment. Enfin, proposons-nous
de déterminer la valeur de ce moment relatif en fonction
des coordonnées X, Y, Z de la force et des coordonnées

ce, y, z de la masse.

Observons, à cet effet, qu'en vertu d'un théorème bien

connu, la somme des moments relatifs d'un nombre

quelconque de forces par rapport à une même masse est égale

au moment relatif de cette masse et de la résultante des

forces considérées. El comme X, Y el Z sont précisément
les composantes de la force F suivant les axes u, v, w, le

moment relatif cherché, que nous désignerons par la notation

(F, m), a évidemment pour valeur

(F, m) X x + Y y + Z z.

8. Des conséquences essentielles découlent immédiatement

de la formule qu'on vient d'établir.
Le moment relatif d'une force et d'une masse s'annule

dans le cas où le point de concentration de la masse est

situé sur la ligne d'action de la force. Il ne s'annule même

que dans ce cas si, du moins, on suppose comme nous le

ferons dans la suite, que les intensités de la force et de la

masse sont différentes de zéro. En conséquence, la relation

Xx+Yy+Zz—O
exprime la condition qui doit être remplie pour que la

masse m soit concentrée en un point de la ligne d'action
de F.

D'après cela, lorsqu'on regarde X, Y et Z comme les

coordonnées homogènes d'une droite et x, y, z comme les

coordonnées homogènes d'un point, l'équation précédente

exprime que ce point et cette droite sont unis. Dès lors, si

l'on convient de considérer X, Y et Z comme des variables,

cette équation représente le point admettant x, y et

z comme coordonnées ponctuelles; elle représente, au

contraire, la droite admettant X, Y, Z pour coordonnées-

lignes, lorsque x, y et z sont les variables.
9. Sans insister plus qu'il ne convient sur ce point, il

n'est cependant pas inutile de remarquer que les formules
de transformation des coordonnées peuvent s'obtenir très

simplement.
Désignons, en effet, par X, Y et Z les coordonnées

d'une force quelconque F relativement à un premier sys¬

tème d'axes u, v, w qui, cela est bien entendu, doivent

former un triangle. Soient ensuite X', Y' et Z' les

coordonnées de la même force relativement à un deuxième

système d'axes u', v1, w'.
Pour obtenir les relations qui lient ces coordonnées,

considérons trois forces d'intensité unité admettant pour
lignes d'action les axes u1, v' et w' et désignons par

at, û_, a3

leurs coordonnées respectives par rapport au premier
système d'axes. Les coordonnées, par rapport au même

système, des composantes X', Y', Z' de la force F ont alors

évidemment pour valeurs

X'ai, X'a%, Xa3
Y'b{, F62 Y'b3

Z'c{, Z'ct, Z'c3

d'où résultent immédiatement, en vertu du paragraphe 3,

les formules
X X% + Y% + Z'c{
Y ¦ X'a% + Y% + Z'c%

Z X'as + Yb3 + Z'c3

qui permettent précisément de passer du premier au
deuxième système d'axes. (A suivre).

Chemin de fer Neuehâtel-Chaumont

Tramway et Funiculaire.
(Suite et fin1).

Par Philippe TRIPET, ingénieur.

5. Matériel roulant.

Section du funiculaire. — Les voitures du funiculaire
de Chaumont méritent une mention toute spéciale, eu

égard à leur construction originale. Les dimensions

principales de la caisse sont les suivantes :

longueur 8710 mm.

largeur (sans les portes) 2460 »

hauteur depuis les rails 3255 »

Elles comportent :

à l'aval : 1 coupé de 15 places debout ;

au milieu : 1 coupé de 27 places assises ;

à l'avant : 1 coupé à bagages de 5 m8 de surface, pouvant

"contenir en cas d'affluence, 18 voyageurs debout.

La capacité totale des voitures est donc de 60

voyageurs.

Tare des voitures 7 000 kg.
En charge de 60 voyageurs 11 500 »

Les caisses, recouvertes extérieurement de lamelles en

bois de teak, reposent sur des châssis rigides en fers

assemblés, de la construction ordinaire et connue de la
fonderie de Berne, par l'intermédiaire de ressorts, de sorte

que leur roulement est très doux, même sur les parties à

1 Voir N° du 10 novembre 1911, page 239.
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