Zeitschrift: Bulletin technique de la Suisse romande

Band: 37 (1911)

Heft: 19

Artikel: Le pont Ch. Bessières, à Lausanne (suite)

Autor: [s.n.]

DOI: https://doi.org/10.5169/seals-28873

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 22.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Des grilles à barreaux espacés sont placées devant ces ouvertures, pour arrêter les bois flottants. La vitesse de l'eau dans le bassin ne dépasse pas 0,15 m./sec. et la longueur de celui-ci est suffisante pour permettre à la plus grande partie du limon et du sable de s'y déposer. Le gros gravier ne peut pénétrer dans le bassin, car le seuil des ouvertures est bien plus haut que le lit de la rivière. Une ouverture de vidange permet d'en faire partir le limon déposé. L'eau passe du bassin dans la galerie, devant laquelle se trouve une grille à barreaux rapprochés.

La petite vitesse de l'eau dans le bassin permettrait à

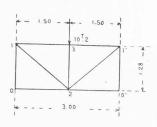
celle-ci de se congeler en hiver; il a donc fallu construire un canal spécial de 35 m. de long, à 6 % de pente, pour en faire dévier l'eau, d'ailleurs claire, pendant cette saison. Il a aussi été prévu un dispositif permettant de rejeter à la rivière les glaçons qui pourraient passer dans le canal, de sorte qu'il n'y a pas à craindre, pour le service, les dérangements si gênants provoqués par cette cause. L'eau traverse ce canal à une vitesse dépassant 2 m./sec. et passe ensuite dans la galerie.

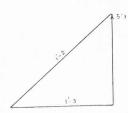
(A suivre).

Le Pont Ch. Bessières, à Lausanne

(Suite 1).

Flexion dans la barre 1-3.

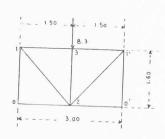

Mt. Flt. max.
$$\left\{\begin{array}{ll} \text{Charge permanente} = -0.69 \\ \text{Chariot} = -0.96 \end{array}\right\} = -1.65 \text{ mt.}$$

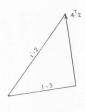

NP 16 $W_n = 228$ $\sigma_a = 0.80 + 0.25 \frac{0.69}{1.65} = 0.90 \text{ t.}$ $\sigma_e = \frac{1.65}{2.28} + 0.16 = 0.88 \text{ t.}$

Rivet de 20 mm.

Au montant 8-9.

- 1° Sous chaussée. Mêmes barres et attaches qu'à l'entretoise 14-15 H. th. =1,20 m.
- 2° Sous rail. Mêmes barres qu'à l'entretoise 10-11 H. th. =1,28 m.


Echelle: 0,005 m. p. t.

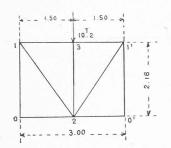

Attaches.

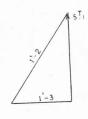
Barres	Efforts	RIVETS								
Darres	Enorts	σ_a	n	σ_e						
	T	T		- 8						
1-2	+ 8,0	0,72	$3~{\rm de}~22$	0,70						
2-3	_10,2	0,72	6 de 20	0,54						

Au montant 6-7.

1º Sous chaussée. — Mêmes barres qu'à l'entretoise 16-17 — H. th. = 1,60 m.

Echelle: 0,005 m. p. t.


Attaches.


Barres	Efforts	RIVETS								
Darres	Enorts	σ_a	n	σ_e						
	Т	Т	3.0							
1-2	+5,8	0,72	3 de 20	0,62						
2-3	- 8,3	0,72	6 de 20	0,44						

 2° Sous rail. — Mêmes barres et attaches qu'à l'entretoise 8-9 $\,$ H. th. $= 1{,}68$ m.

Au montant 4-5.

- 1º Sous chaussée. Mêmes barres et attaches qu'à l'entretoise 6-7 $\,$ H. th. = 2,10 m.
- $2^{\rm o}$ Sous rail. Mêmes barres qu'à l'entretoise 10-11 H. th. = 2,18 m.
 - ¹ Voir N° du 25 septembre 1911, page 208.

Echclle: 0,005 m. p.t.

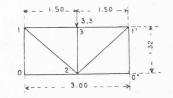
Attaches.

	T. CC 1 -	RIVETS							
Barres	Efforts	σ_{a}	n	σ_e					
	Т	Т							
1-2	+6,2	0,72	$3~{\rm de}~20$	0,66					
2-3	-10,2	0,72	6 de 20	0,54					

Au montant 2-3.

1º Sous chaussée.

Portée th. 3 m.


Ecartement 4 m.

H. th. = 1,32 m.

Charge permanente = 3,3 t.

Surcharge = 5 t.

Echelle des forces ; 0,005 m. p. t.

		EFF	ORTS		117	,		l				RIVETS		
Barres	Charge perm.	Chariot	max.	min.	Profils	Section	l cm.	l	i	σ_a	σ_e	σ_a	n.	σ_e
	Т	Т	Т	Т		cm ²				Т	Т	Т		
1-3	2,0	_ 3,0	-5,0	_ 2,0	- - 80.80.8	24,4	150	2,4	63	0,61	0,21	0,72	- _::-:	
1-2	+ 2,6	+ 3,9	+6,5	+ 2,6	- _{80.80.12}	15,3	_	_	_	0,90	0,43	0,72	3 de 20	0,69
		_ 5,0					130	3	43	0,67	0,34	0,72	6 de 20	0,44

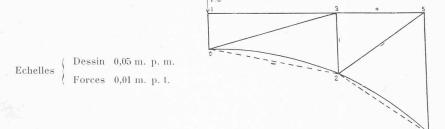
2º Sous rail.

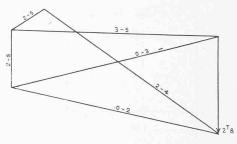
Portée th. 3 m. Ecartement 4 m.

H. th. 1,40 m.

Effort nœud 3
$$\left\{ \begin{array}{ll} \text{Charge permanente} & 4,2 \text{ t.} \\ \text{Surcharge} & 5,96 \text{ t.} \end{array} \right\} = 10,2 \text{ t.}$$

Echelle des forces : 0,005 m. p. t.


		EFF	ORTS					1				RIVETS	
arres Charge perm. Chariot max. min. Profils	Section	l cm.	cm. l		σ_a	σ_e	σ_a n .						
Т	Т	Т	Т		cm ²				Т	Т	T		
-2,2	- 3,1	- 5,3	- 2,2][NP 16	48,2	100	2,84	35	0,70	0,11	0,72	_	_
+ 3,0	+4,3	+ 7,3	+ 3,0	- 80.80.12	15,1		_		0,90	0,48	0,72	3 de 22	0,64
_ 4,2	-5,96	10,2	_ 4,2	80.80.8	24,4	140	3	47	0,66	0,42	0,72	6 de 20	0,54
	T - 2,2 + 3,0	T T -2,2 -3,1 +3,0 +4,3	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $


Au montant 0-1.

Sous chaussée 1,55 m. Mêmes barres et attaches qu'à l'entretoise 2-3 H. th. Sous rail 1,62 m.

D. Console.

Charge permanente en 1
$$\left\{ \begin{array}{ll} \text{Dallage} & 4 \times 0.18 = 0.72 \text{ t.} \\ \text{Garde-corps} & 0.100 \times 4.00 = 0.40 \text{ t.} \\ \text{Poids propre} & 0.08 \times 4.00 = 0.32 \text{ t.} \\ \text{Surcharge} & 4 \times 0.34 = \end{array} \right. \left. \begin{array}{ll} \text{Voir } \text{``Longerons } \text{``} (d. - \text{Sous le garde-corps}). \\ = 1.44 \text{ t.} \\ = 2.8 \text{ t.} \\ 1.36 \text{ t.} \end{array} \right) = 2.8 \text{ t.}$$

EFF	ORTS	DROPHE	G U.	Lam	Ι	1				RIVETS	
max.	min.	PROFILS	Section	l cm.	l	i	σ_a	σ_e	σ_a	n	σ_e
T	Т		cm ²				Т	Т	Т		Т
+6,0	+ 3,1	- -70.70.7	15,9	_	_	_	0,92	0,38	-	<u> </u>	_
- 6,1	- 3,1	_ _ 70.70.9	23,6	75	2,13	35.	0,69	0,26	+ Flex	kion (voir plus loi	in)
-6,2	_ 3,2))	23,6	60	2,13	28	0,71	0,26			-
+6,2	+ 3,2	[] 60.9	7,4	_	_		0,92	0,84	0,74	4 de 18 mm.	0,61
_ 1,7	0,87	= 60.60.8	17,9	34	1,82	19	0,74	0,10	0,74	4 de 18 mm.	0,17
- 1,1	- 0,56	_ _ 60.60.8	17,9	60	1,82	33	0,70	0,06	0,74	4 de 18 mm.	0,11
	$\begin{array}{c} \text{max.} \\ \text{T} \\ + 6.0 \\ - 6.1 \\ - 6.2 \\ + 6.2 \\ - 1.7 \end{array}$	$ \begin{array}{c cccc} T & T \\ +6.0 & +3.1 \\ -6.1 & -3.1 \\ -6.2 & -3.2 \\ +6.2 & +3.2 \\ -1.7 & -0.87 \end{array} $	max. min. PROFILS T T T + 6,0 + 3,1 $-\parallel$ 70.70.7 - 6,1 - 3,1 $-\parallel$ 70.70.9 - 6,2 - 3,2 " + 6,2 + 3,2 \parallel 60.9 - 1,7 - 0,87 $=$ 60.60.8	max. min. PROFILS Section T T T $- (m^2)$ + 6,0 + 3,1 $- (m^2)$ 15,9 - 6,1 - 3,1 $- (m^2)$ 23,6 - 6,2 - 3,2 $- (m^2)$ 23,6 + 6,2 + 3,2 $- (m^2)$ 160.9 7,4 - 1,7 - 0,87 $- (m^2)$ 17,9	max. min. PROFILS Section l^{cm} T T T	max. min. PROFILS Section l^{cm} . i T T T $- (m^2)$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$

M. Flt. dù à la courbure barre 0-2 = 6.1 t. $\times 0.03 = 0.18$ mt.

|| 70.70.9
$$I = 107 \text{ cm}^4$$
 $W = 51 \text{ cm}^3$ $\sigma_e = \frac{18}{51} = 0.36 \text{ t.} + 0.26 \text{ t.} = 0.62 \text{ t.}$ $\sigma_a = 0.69 \text{ t.}$

(A suivre).

Société suisse des ingénieurs et architectes.

Procès-verbal de l'assemblée des délégués du 26 août 1911, à St-Gall.

Ordre du jour :

- Procès-verbal de l'assemblée des délégués du 11 décembre 1910, à Aarau.
- 2. Rapport financier; fixation de la cotisation.
- 3. Propositions du Comité central concernant l'office de placement.
- 4. Contrat avec la Société vaudoise des ingénieurs et architectes au sujet du *Bulletin technique*.
- 5. Contrat avec la Société tessinoise des ingénieurs et architectes au sujet de la *Rivista tecnica*.
- 6. Propositions à l'assemblée générale concernant :
 - a) le lieu et la date de la prochaine assemblée générale;
 - b) nomination d'un membre du Comité central;
 - c) nomination du président du Comité central;
 - d) nomination de membres honoraires.

7. Divers.

Sont présents:

Du *Comité central*: MM. G. Naville, président; D^r F. Bluntschli, vice-président; V. Wenner, ingénieur; O. Pfleghard, architecte; A. Härry, secrétaire (M. H. Peter, ingénieur, est excusé).

74 délégués de 14 sections.

Argovie : MM. S. Grosjean, ingénieur; Arn. Müller-Jutzeler, architecte; E. Bolleter, ingénieur.

Bâle: E. Fæsch, architecte; H. Flügel, architecte; R. Grüninger, architecte; J. Kelterborn, architecte; C. Leisinger, architecte; A. Romang, architecte; F. Lotz, ingénieur.

Berne: O. Tschanz, ingénieur; W. Keller, architecte; H. Eggenberger, ingénieur; A. Flükiger, ingénieur; F. Hunziker, architecte; Th. Gränicher, architecte; E. Joos, architecte; A. Kasser, architecte; A. Zuberbühler, ingénieur; F. Zulauf, ingénieur; Ed. Rybi, architecte; M. Schnyder, ingénieur; E. Baumgart, architecte.

La Chaux-de-Fonds: J. Zweifel, architecte.

Fribourg: F. Broillet, architecte.

Genève: E. Emanuel, ingénieur.

Grisons: E. v. Tscharner, architecte.

Neuchâtel: E. Elskes, ingénieur; J. Béguin, architecte; de Perregaux, ingénieur; Ch. Philippin, architecte; M. Roulet, architecte.

Soleure: E. Schlatter, architecte.

St-Gall: F. Bersinger, ingénieur; K. Böhi, ingénieur; W. Dick, ingénieur; M. Müller, architecte; A. Seitz, ingénieur; H. Zollikofer, directeur du gaz.

Tessin: A. Marazzi, architecte; R. v. Krannichfeldt, architecte.

Thurgovie: J. Schümperli, ingénieur.

Vaud: H. Meyer, architecte; L. Brazzola, architecte; H. Demierre, ingénieur; H. Develey, ingénieur; P. Manuel, ingénieur; A. Paris, ingénieur; E. Quillet, architecte; L. Villard, architecte; A. Dommer, ingénieur; Orpiszewski, ingénieur.

Waldstätten: F. Bossardt, ingénieur; P. Lauber, ingénieur; Griot, architecte; J. Schaad, ingénieur; K. Mossdorf, architecte; F. Felder, architecte.