Zeitschrift: Bulletin technique de la Suisse romande

Band: 36 (1910)

Heft: 24

Sonstiges

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 27.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

trait une marque de complaisance de la part du marchand de courant s'il autorisait pour une fois ou deux seulement l'exception du règlement.

Mais ces permissions entraîneraient beaucoup plus loin qu'on ne le suppose et la détérioration des réseaux ne tarderait pas à se manifester, les machines surchargées diminuent rapidement leur rendement et le matériel en quelques années seulement devient insuffisant aux besoins.

C'est pourquoi il faut s'assurer que tout soit observé strictement et que la règle soit de rigueur sans exception. C'est précisément là où nous voulions en venir.

Il s'agissait donc de régler automatiquement un appareil qui permette d'enclancher pendant les heures autorisées et qui déclanche automatiquement aux heures d'arrêt.

La Société des Ateliers de mécanique de précision, à Territet, a donc établi un interrupteur automatique d'une construction soignée, précise et robuste, qui a pour but d'interrompre automatiquement le courant électrique à une heure déterminée.

Cette interruption a lieu au moyen d'un déclanchement obtenu par un mouvement d'horlogerie que l'on règle auparavant.

Lorsque l'abonné n'a plus droit à l'énergie électrique, il ne peut par aucun moyen l'obtenir, l'appareil présentant toutes les garanties de ce côté là.

Il faut donc attendre l'heure avant de pouvoir réenclancher l'interrupteur.

L'interrupteur automatique se compose de:

- 1. Un interrupteur à rupture brusque;
- 2. Un mécanisme d'enclanchement;
- 3. Un mouvement d'horlogerie.

L'interrupteur est construit de telle façon que l'enclanchement et le déclanchement aient lieu brusquement; les contacts sont lamellés et baignent dans l'huile. Ils sont simples et robustes. Ils sont bipolaires ou tripolaires afin d'éviter la détérioration des surfaces de contacts.

Le mécanisme d'enclanchement faisant l'objet d'un brevet spécial, remplit les conditions nécessaires, en ce sens que la manette d'enclanchement tourne librement dans tous les sens tant que l'abonné n'a plus droit à la consommation.

Il n'est pas possible de forcer l'appareil car lorsque l'on tourne la manette pendant les heures de travail, l'enclanchement a lieu brusquement et dès qu'il est obtenu la manette redevient libre.

Un bouton placé à l'extérieur de l'appareil permet le déclanchement de l'interrupteur, en cas que l'on désire couper le courant avant que le déclanchement automatique se fasse par le mouvement d'horlogerie.

Le mouvement d'horlogerie est des mieux soigné, car l'on y a attaché un soin tout particulier; en effet il est nécessaire que sa marche soit régulière et précise; c'est la raison pour laquelle il a été prévu un échappement compensé, à battement vigoureux; en outre, le mouvement des heures proprement dit est séparé du mouvement des déclanchements; de cette façon, avec deux barillets distincts, les variations sont pour ainsi dire nulles.

Le cadran est divisé en 24 heures dont douze de jours marquées en rouge et douze de nuit marquées en noir; une aiguille fixe placée en haut du cadran sert à la mise à l'heure du mouvement, deux aiguilles sur le bord du cadran servent

en les déplaçant à régler l'heure du déclanchement et l'heure où l'on peut enclancher.

En résumé, le fonctionnement régulier de l'appareil est assuré, car les soins particuliers apportés à sa fabrication autorisent à le placer en premier rang.

Il ne se fait qu'un type d'appareil et les cotes d'encombrement ne changent pas, elles restent les mêmes pour les circuits monophasés ou triphasés et peuvent servir pour des intensités allant de 1 ampère à 200 ampères.

Le poids total de l'appareil est de I7 kg.

Encombrement:

En hauteur 460 mm. En largeur 204 » En profondeur 260 »

BIBLIOGRAPHIE

Les Roches et leurs éléments minéralogiques, Ed. Jannettaz, maître de conférences à la Sorbonne, assistant de minéralogie au Muséum. 4^{me} édition, revue et augmentée, 696 pages, deux cartes géologiques, 20 planches chromolithographiques, 8 planches en simili-gravure et 322 fig., 8 fr. broché. — A. Hermann & fils, éditeurs, 6, rue de la Sorbonne, Paris.

Ayant passé en revue les caractères généraux des pierres (densité, dureté, etc.) et la façon de la mesurer, l'auteur expose la cristallographie, ne mentionnant que les formes naturellement réalisées.

Au contraire, l'étude optique des propriétés des coupes minces est très complète : elle est fondamentale en pétrographie. Les aspects observés soit en lumière parallèle, soit en lumière convergente, se déduisent analytiquement de la théorie ondulatoire de la lumière et des propriétés fondamentales de la matière cristalline (conservation de la symétrie).

La comparaison entre différentes autres propriétés des cristaux amène à une loi fort suggestive : dans les cristaux et dans les corps à structure pseudo-cristalline, tels que les roches schisteuses, la direction de plus grande conductibilité thermique est celle de plus grande cohésion, de plus grande élasticité sonore, de plus grande résistance à la flexion, de plus grande densité linéaire, c'est-à-dire de plus petit paramètre, lorsqu'il s'agit de cristaux — c'est-à-dire encore de plus petit intervalle moléculaire.

La cinquième partie traite de l'analyse chimique des minéraux et plus particulièrement des essais au chalumeau, parce qu'ils sont les plus rapides.

Dans l'étude très complète des minéraux, les minerais d'un même métal sont groupés ; et, en effet, on les trouve naturellement réunis. Maintenant, nous connaissons les éléments des roches ; il nous reste à voir comment on les trouve dans la nature : l'étude des roches est l'aboutissement tout naturel de l'étude des minéraux. Celle-ci sert d'introduction à celle-là. L'auteur adopte une marche analytique : partant d'une roche, il la brise, sépare les éléments minéralogiques. Il distingue ceux qui sont essentiels, accessoires ou accidentels. Un tableau permet de reconstituer la roche. Deux caractères la déterminent : ses éléments, sa structure et le tableau sera

à double entrée. Toutefois, c'est un peu aride et l'on désirerait un fil conducteur pour faciliter cette recherche.

Ajoutons qu'une série de tables aident à déterminer les minéraux par leurs propriétés physiques et nous aurons une idée de la quantité des documents accumulés et classés.

C. R.

Eléments de calcul vectoriel, avec de nombreuses applications à la géométrie, à la mécanique et à la physique mathématique, par C. Burali-Forti et R. Marcolongo, traduit de l'italien par S. Lattès, 229 pages. Prix, 8 fr. — Librairie scientifique A. Hermann & fils, Paris.

Ce livre a pour but principal l'exposé des éléments du calcul vectoriel; nous disons éléments, car les auteurs se sont bornés, dans leur première partie à ce qu'ils nomment le système minimum; celui-ci n'introduit que les éléments suivants: nombres réels, points, vecteurs et formes de première espèce de Grassmann (barycentres de Möbius).

Des applications aux mathématiques élémentaires montrent la souplesse de ce système minimum; les formules fondamentales de la trigonométrie plane et sphérique sont établies comme en se jouant; il en est de même de formules de géométrie dans l'espace : angles, distances, identité de Lagrange, transformation de coordonnées, etc. Certaines constructions de statique graphique se démontrent aussi très simplement. Mais des applications à des questions de mathématiques supérieures font voir toute l'importance que peut acquérir ce système. Nous ne citerons que les formules de Frenet relatives à l'arc, la courbure et la torsion d'une courbe gauche; mises sous forme vectorielle, elles contiennent six éléments liés par trois relations; tandis que par la méthode cartésienne, il faut quinze éléments et neuf relations. D'autres applications sont relatives au calcul intégral, la mécanique, l'hydrodynamique, la théorie de l'équilibre des corps élastiques et l'électrodynamique.

Par les applications à des questions connues, les auteurs se proposent de faire comprendre comment l'usage des vecteurs permet de présenter la géométrie analytique sous une forme géométrique absolue. Les éléments sont envisagés géométriquement en dehors de tout système fixe de références, ce qui permet d'éliminer tout un algorithme indirect provenant des coordonnées. Les opérations ont toujours lieu sur les éléments géométriques eux-mêmes; en outre, les notations sont conformes presque dans leur totalité aux notations proposées par les fondateurs du calcul vectoriel (Grassmann, Möbius et Hamilton).

Dans un appendice, les auteurs exposent que leur système minimum, sans être impuissant, ainsi qu'il en a été accusé, ne peut servir à résoudre toutes les questions et doit être élargi, pour ainsi dire, par l'introduction des formes de Grassmann de deuxième et troisième espèce. Ces formes sont définies et leurs propriétés établies. En outre, après avoir défini les quaternions de Hamilton et démontré quelquesunes de leurs propriétés, le livre se termine par quelques notes historiques et critiques.

L'exposé du système grassmanien ne concorde pas avec le calcul primitif de Grassmann, mais avec la forme que M.Peano a donnée à ce système. « Il semble, disent les auteurs, que nous approchions du moment où l'admirable édifice élevé par Grassmann deviendra, avec les simplifications introduites par Peano, l'instrument usuel à la fois simple et puissant de calcul géométrique ».

En résumé, nous pouvons dire que le livre de MM. Burali-Forti et Marcolongo est un exposé à la fois clair et précis des éléments du calcul vectoriel, des symboles dont il fait usage et des opérations qui lui sont nécessaires. Il rendra les plus grands services à celui qui voudra se familiariser avec le calcul.

M. L.

Tunnel du Loetschberg.

Longueur: 14 536 m.

Etat des travaux au 30 novembre 1910.

Galerie de base.	Côté Nord Côté Sud des S Kandersteg Goppenstein côté:			
Longueur de la galerie de base le				
31 octobre m.	6066	6315	12481	
Longueur de la galerie de base le				
30 novembre m.	6421	6482	12903	
Longueur exécutée en novembre 1910 m.	255	167	422	
Journées d'ouvriers hors du tunnel .	10772	10659	21431	
» dans le tunnel .	27084	40917	68001	
» ensemble	37856	51576	89432	
Moyenne journalière hors du tunnel	371	367	738	
» » dans le tunnel	934	1411	2345	
» ensemble	1305	1778	3083	
Température du rocher à l'avancement °C.	24,1	32,5	114410	
Volume d'eau sortant du tunnel . lsec	. 232	62		

Observations.

Côté nord. — La galerie de base a traversé le granit de Gastern, qui contient des filons d'aplite et de porphyre. La roche est compacte et irrégulièrement fissurée.

On a percé, à la perforation mécanique, avec 4-5 perforatrices à percussion Meyer en fonction, 255 m. de galerie de base, ce qui donne un progrès moyen de 8,79 m. par jour de travail.

Côté sud. — La galerie de base a traversé le granit tantôt quartzeux, tantôt riche en mica, de structure parallèle localisée. La roche est fortement et irrégulièrement fissurée et présente des crevasses.

La galerie de base a été percée à la perforation mécanique, sur une longueur de 167 m., ce qui donne un progrès moyen de 5,76 m. par jour de travail. Quatre perforatrices à percussion Ingersoll étaient en activité.

Berne, le 7-novembre 1910.

Association amicale des anciens élèves de l'Ecole d'ingénieurs de l'Université de Lausanne.

Demande d'emploi.

Ingénieur-constructeur de Lausanne cherche situation, tout de suite ou pour époque à convenir, dans bureau ou chantier. 1 an ½ de pratique sur chantier et dans bureau.

Références à disposition.

Prière de s'adresser au Secrétariat de l'Ecole d'Ingénieurs de Lausanne.

Lausanne. - Imprimerie H. Brunner, Toso & Cie, Louve, 8.