Zeitschrift: Bulletin technique de la Suisse romande

Band: 35 (1909)

Heft: 20

Artikel: A propos du concours international de plans pour l'utilisation des forces

motrices du Walchensee en Bavière

Autor: Michaud, J.

DOI: https://doi.org/10.5169/seals-27591

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 19.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Bulletin technique de la Suisse romande

ORGANE EN LANGUE FRANÇAISE DE LA SOCIÉTÉ SUISSE DES INGÉNIEURS ET DES ARCHITECTES. — Paraissant deux fois par mois.

REDACTION: Lausanne, 2, rue du Valentin, P. MANUEL, ingénieur, et Dr H. DEMIERRE, ingénieur.

SOMMAIRE: A propos du concours international de plans pour l'utilisation des forces motrices du Walchensee en Bavière, par J. Michaud, ingénieur. — La transmutation des métaux. — Le viaduc de l'Assopos. — Concours au II degré pour l'élaboration des plans d'un bâtiment d'école secondaire et supérieure des jeunes filles, aux Petits-Délices: rapport du jury. — Inauguration des forces motrices de la Viège de Saas. — Société suisse des ingénieurs et architectes: Rapport du Comité central pour les années 1907-09 (suite et fin). — Mise au concours de la place de secrétaire permanent. — Nécrologie: Elie Guinand. — Bibliographie.

A propos du concours international de plans pour l'utilisation des forces motrices du Walchensee en Bayière.

Par J. MICHAUD, ingénieur.

Les lecteurs du Bulletin technique de la Suisse romande seront peut-être intéressés par quelques renseignements sur les résultats du concours international institué par l'Etat bavarois, en vue d'obtenir la meilleure solution possible du problème de l'installation des forces motrices du lac de Walchen.

Trois des membres du jury de ce concours sont Suisses; l'un d'eux, M. Palaz, est même Lausannois. Le verdict a été rendu fin juillet dernier.

Le lac de Walchen, l'un des plus pittoresques des Alpes bavaroises est séparé, sur sa rive gauche, par le Kesselberg du Lac de Kochel qui est à un niveau de 202 mètres plus bas. De rive à rive il n'y a que deux kilomètres et le tunnel qui permettra de déverser les eaux de l'un dans l'autre aura à peine plus d'un kilomètre de long. Sur sa rive droite, le Walchensee est séparé de la vallée au fond de laquelle coule l'Isar par le massif montagneux de l'Isarberg dont la base n'a que $3 \frac{1}{2}$ kilomètres de largeur.

Rien donc de plus simple que de percer le Kesserberg par un tunnel et d'utiliser l'eau du Walchensee et la chute entre les deux lacs. Le cours d'eau de la Jachen qui alimente le Walchensee est peu important et le volume d'eau ainsi utilisable modeste. Mais l'Isar, dans le voisinage du Walchensee, est déjà un cours d'eau important et possède un niveau suffisamment élevé pour qu'on puisse, en le détournant, l'amener dans le lac. Il en est de mème pour le Rissbach affluent important de l'Isar.

On voit que le problème posé est comparable à celui qui a été résolu pour le lac de Joux, mais qu'il est plus complexe et que les résultats à obtenir sont beaucoup plus importants.

Au Walchensee, il s'agit d'un débit permanent de 25 à 29 mètres cubes par seconde, sous une chute brute de 202 mètres et avec un lac régulateur de 16 kilomètres carrés de superficie, tandis qu'au lac de Joux, il n'y a que 1,6 mètre cube de débit permanent, une chute de 240 mètres et un lac de 9 kilomètres carrés de surface. La dénivel-

lation permise au lac de Joux entre les basses et les hautes eaux est de 3,50 m. tandis qu'au Walchensee, on en prévoit une de 13 à 20 mètres suivant les projets. Aussi tandis qu'au lac de Joux la force permanente est de 3750 chevaux, elle en atteint 50 000 au Walchensee.

Comme toujours, c'est l'initiative privée qui a attaché le grelot. Le conseiller Schmick de Darmstadt fut le premier à demander une concession en 1904. Son exemple fut suivi à la fin de la même année par le major Donat. Mais l'Etat bavarois s'empara de l'idée et fit étudier, par son personnel technique, un projet d'utilisation de ces forces, en vue surtout de réaliser progressivement la traction électrique des chemins de fer de l'Etat.

Dans tous ces projets, le lac de Walchen fonctionne comme accumulateur. Dans celui du major Donat, on constitue à l'aide de grands barrages, des lacs artificiels sur l'Isar ou ses affiuents. Ces lacs suppléent ou même remplacent le lac de Walchen, comme accumulateur. En outre, ils créent des chutes et des forces supplémentaires. Dans son avant-projet, l'administration bavaroise avait dû renoncer à créer des lacs artificiels à cause de la grande difficulté, pour ne pas dire l'impossibilité, de construire des barrages très élevés et solides dans les terrains d'alluvion sur lesquels coule l'Isar.

Ces trois projets primitifs contiennent d'ailleurs, en germe, toutes les solutions que le concours international a mises au jour. Le concours a été fort brillant. Des articles spéciaux parus dans la Deutsche Bauzeitung, de Berlin, et dans la Schweizerische Bauzeitung, de Zurich, en rendent compte. Trente et un projets ont été présentés et six recompensés. Ce ne sont généralement pas des œuvres individuelles, mais plutôt des œuvres de collectivités: ingénieurs civils, architectes, électriciens et fabriques de machines associés. On peut se faire une idée de la masse énorme de travail effectué par les concurrents, enrappelant que les 31 projets comportent ensemble 1416 plans et 116 mémoires justificatifs. L'écrivain de la Bauzeitung berlinoise estime à 25 000 marks la dépense moyenne faite pour élaborer chacun des 31 projets, soit un total de 775 000 marks; tandis que la rémunération qui leur a été allouée, sous forme de six primes ne s'élève qu'à un total de 60 000 marks, soit moins du douzième de la dépense. L'évaluation du journal allemand est peut-être un peu exagérée; mais la grandeur colossale du travail présenté subsiste.

Comme le problème à résoudre ne souffrait pas de grandes difficultés purement techniques et que l'attention des concurrents avait été appelée sur le côté artistique de l'entreprise, les plans présentés sont extrêmement soignés dans la forme et chacun des auteurs s'est beaucoup préoccupé de l'effet architectural des constructions qu'il proposait.

Estimant sans doute que les étapes successives à parcourir, pour arriver à l'utisation complète des forces du Walchensee ne se succéderaient que très à la longue, comme il convient du reste à l'œuvre d'une administration publique, le programme du concours limitait à 3,50 m. seulement l'abaissement autorisé des eaux du lac pendant la première période quitte à augmenter plus tard cet abaissement. Plusieurs projets supposent la création de quais sur certaines parties des rives, avec murs de 4 ou 5 mètres de haut. En admettant, contrairement aux idées des disciples de Ruskin, que la beauté du paysage serait mieux conservée de cette façon, pendant la première période des travaux tout au moins, on peut se demander si ce ne sera pas plutôt une cause d'enlaidissement pendant les périodes subséquentes où les variations de niveau atteindront 13 ou même 20 mètres, et laisseront les murs de quai terriblement en l'air.

A côté des éloges mérités par les concurrents du Walchensee et relevés à juste titre dans les deux journaux cités plus haut, il nous sera peut-être permis de relever deux points qui nous paraissent critiquables, tout en renvoyant aux articles des deux Bauzeitungen les lecteurs qui voudraient se renseigner avec quelques détails sur les éléments constitutifs des solutions proposées, barrages, souterrains, turbines, dynamos, etc.

La première critique s'applique à l'appréciation de la quantité d'eau que peuvent réellement fournir en temps de basses eaux les trois cours d'eau qui alimentent le Walchensee et la seconde aux prises d'eau dans leur rapport avec la question de l'ensablement des canaux.

D'après les données fournies aux concurrents par l'administration bavaroise, dans les documents du concours, il est admis que le bassin de l'Isar fournit un débit minimal de 7,6 litres par seconde et par kilomètre carré, celui du Rissbach un débit de 9,1 litres et enfin qu'à la sortie du lac de Walchen ledébit peut des cendre à 6,8 litres par kilomètre carré. On remarquera que ces chiffres sont bien plus forts que ceux que l'on a contrôlés en Suisse, soit 4 à 5 litres seconde par kilomètre carré. Cette différence est évidemment possible, sinon vraisemblable.

Il faut cependant relever le fait curieux que c'est à la sortie du lac que ce débit minimum par kilomètre carré est le moindre. Normalement ce devrait être le contraire. En effet, si en hautes eaux et période de crue le lac peut recevoir jusqu'à 73 m³ par seconde tandis qu'il n'en sort que 49 m³, il devrait s'en échapper en basses eaux et période de décrue plus d'eau qu'il n'en entre et par conséquent selon toute vraisemblance plus qu'il n'en passe dans les cours d'eau voisins qui n'ont pas de lac régulateur. Peut-être y a-t-il comme au lac de Joux des exutoires invi-

sibles, en sorte que l'effluent visible de la Jachen n'emmène pas à lui seul toute l'eau qui sort du lac. Cela n'est cependant pas probable.

Pour corroborer ces craintes sur la valeur réelle des débits minima avec lesquels il faut compter, on peut faire la remarque suivante. Le 25 septembre 1906 l'administration bavaroise a fait relever soigneusement trois profils en travers de l'Isar, au point où elle prévoyait l'établissement du barrage de prise. Or en ces trois points très voisins l'un de l'autre, la section de l'eau avait une surface très sensiblement la même pour toutes les trois et égale à 12,63 m². Le rayon moyen en était d'environ 0,46 m. et la pente superficielle du cours d'eau de 3,7 %, en sorte que le débit devait atteindre 11,9 m³ par seconde, si le lit de l'Isar est formé de cailloux roulés, ou de 16,1 m³ si le lit peut être assimilé à de la terre. Or, dans les relevés journaliers des six années d'observations, faites près de Wallgau au pont de l'Isarhorn et qui ont été communiquées aux concurrants pour leurs études, le débit indiqué pour ce même 25 septembre 1906 est de 22 mètres cubes par seconde.

Il semble donc probable que les débits en basses eaux sur lesquels les projets sont basés sont trop élevés, comme c'est du reste le cas habituel, dans les projets d'utilisation de forces motrices hydrauliques. La réalisation de l'entreprise étant chose décidée, il semble qu'il n'y aurait que des avantages et point d'inconvénients à procéder à la vérification soignée de l'exactitude de ces débits.

Le second point, sur lequel nous désirons attirer l'attention, est la question de l'influence que les charriages doivent exercer sur la forme à donner aux barrages de prise. L'Isar et le Rissbach sont des cours d'eau torrentueux qui charrient des quantités énormes de matières solides. Quarante mille mètres cubes par an pour l'Isar à ce que disent les renseignements officiels.

Les prises à exécuter doivent être un peu différentes des prises d'eau ordinaires. En effet, celles-ci utilisent en totalité les bassee eaux qui sont habituellement propres, mais en partie seulement les hautes eaux, qui sont volontiers chargées de corps étrangers et cela en proportion d'autant plus forte que le débit est plus grand. On résout plus ou moins complètement le problème de ne pas risquer d'ensabler les canaux de dérivation, en cherchant, dans la mesure du possible, à ne dériver en temps de forts charriages que les eaux de surface qui sont plus claires et en laissant les eaux de fond, soit les plus chargées, continuer leur cours dans le lit de la rivière. On purge en outre par le fond les eaux déjà dérivées. Mais malgré les précautions prises l'ensablement n'est pas toujours évité et il n'est pas nécessaire de courir bien loin pour rencontrer des dragues disposées en permanence dans les canaux de dérivation pour parer aux ensemblements.

Au Walchensee, le cas est un peu différent. Si l'on se décidait à détourner la totalité des eaux de l'Isar et du Rissbach pour les amener dans le lac, on pourrait résoudre avec sécurité le problème, comme on l'a fait en Suisse en détournant les eaux de la Kander pour les amener dans le lac de Thoune et cela déjà au XVIII e siècle et au siècle suivant,

celles de la Linth dans le lac de Wallenstadt et celle de l'Aar dans le lac de Bienne.

Il suffit de donner à la dérivation une pente et une section égales ou équivalentes à ce qui existe dans la partie amont du cours d'eau, avant le point où les ensablements ont commencé à se produire et ont obligé à faire la correction.

Pour le but poursuivi au Walchensee, il n'est pas nécessaire de prendre le total de toutes les crues, car cela augmenterait beaucoup la section de dérivation et constituerait une dépense excessive et qui n'équivaudrait pas au gain fait en eau accumulée. La limite du volume d'eau à détourner à laquelle se sont arrêtés les divers auteurs de projet est assez variable. Ainsi, tandis que le projet très pondéré qui a reçu le premier prix, limite à 30 et 15 mètres cubes par seconde les apports à retirer de l'Isar et du Rissbach, la plupart des autres élèvent cette limite jusqu'à 50 et 20 mètres cubes, c'est-à-dire bien près du maximum observé.

La dérivation de l'eau n'étant pas totale, il semble indiqué de l'établir de façon à laisser dans le lit de la rivière les eaux de fond les plus chargées et de n'envoyer dans les souterrains que les eaux de surface.

Pour cela il est à peu près indispensable d'avoir en travers du cours d'eau un barrage mobile comme il en existe de nombreux types et non pas un barrage fixe, et d'installer un seuil légèrement relevé à l'entrée de la dérivation.

C'est le contraire qui a été généralement projeté, quitte à installer une purge supplémentaire mais nécessairement dérisoire après la prise.

Si dans le cas d'une disposition qui semble rationnelle le cours d'eau à l'aval de la prise, ne recevant plus qu'une petite quantité d'eau proportionnellement très chargée, s'ensable, le mal ne sera pas très grand et facilement réparable. Mais si c'est, comme dans la plupart des projets, le souterrain qui reçoit la portion de l'eau proportionnellement la plus chargée de corps en suspension ou entraînés et s'il s'ensable un jour de grande crue et se remplit de gravier, le nettoyage sera long, difficile et coûteux. On sait du reste que les souterrains de dérivation d'eau qui s'ensablent, ce n'est pas un mythe, même si l'accès du gravier, sinon du sable, est absolument et efficacement interdit.

La transmutation des métaux.

La vieille chimère des alchimistes deviendrait-elle une réalité et allons-nous voir les chimistes du XXº siècle opérer la transmutation des métaux? Un illustre savant anglais sir W. Ramsay prétend avoir transformé le plomb en charbon. Voici d'ailleurs les faits: sir W. Ramsay a découvert, il y a deux ans, que l'émanation du radium se décompose spontanément en hélium — un gaz qu'on rencontre dans l'atmosphère terrestre, en quantité très minime, et dans les protubérances solaires — et en d'autres corps non encore déterminés.

Si la décomposition de l'émanation a lieu en présence d'eau, on n'obtient plus de l'hélium mais du néon et si elle a lieu en présence d'un sel de cuivre, elle fournit de l'argon.

Le néon et l'argon sont deux gaz « nobles » de l'atmosphère terrestre.

Mais examinons les choses de plus près: tous ces gaz, produits de la décomposition de l'émanation du radium, font partie d'une même famille (colonne O de la classification de Mendéléieff). Groupons-les parordre de leurs poids atomiques croissants, nous aurons:

			Poids atomiques		
Hélium				4	
Néon .				20	
Argon .				39,9	
Krypton				81,8	
Xenon	u K			128	

Quant à l'émanation, on peut y attribuer un poids atomique de 200. Nous voyons donc que l'émanation, suivant les conditions dans lesquelles s'effectue sa décomposition, fait apparaître différents corps qui font tous partie de la même famille chimique et ont un poids atomique plus ou moins petit suivant que l'énergie de l'émanation est employée tout entière à sa propre décomposition ou qu'une fraction de cette énergie est absorbée par un travail accessoire de décomposition. Nous avons dit en effet que, abandonnée à elle-même, l'émanation produit spontanément de l'hélium dont le poids atomique est le plus petit de tous ceux des corps de la famille; mais que si une partie de l'énergie doit fournir un travail de décomposition secondaire on obtient un gaz dont le poids atomique est plus grand que celui de l'hélium, soit le néon lorsque cette décomposition secondaire est celle de l'eau et l'argon si c'est celle d'un sel de cuivre. Dans ce dernier cas, Ramsay a reconnu en outre le lithium parmi les produits de la décomposition. Or, le lithium (poids atomique 7,03) appartient à la même famille chimique que le cuivre (poids atomique 63,6). Ramsay, appliquant ici sa théorie que nons avons exposée plus haut, de la décomposition d'un corps simple en corps simples de poids atomiques plus petits, émit l'idée que le cuivre, sous l'influence de l'émanation du radium, avait été « décomposé » et que le lithium était un produit de cette décomposition. Afin de confirmer ses vues, Ramsay étudia l'influence de l'émanation sur les corps simples d'une autre famille; il choisit celle du carbone (colonne IV du système périodique de Mendéléieff). Cette famille contient les éléments suivants :

				at	Poids omiques.
Carbone					12
Silicium					28,4
Titane.					48,1
Germania	um		,		72,5
Zirconiur	m				90,6
Etain.		 ν,			119
Cerium					140
Plomb.					206,9
Thorium					232,5