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5 cm. reposant tous les 50 cm. sur poutrelles de 21 cm.

sur 6 cm. d'épaisseur, se portait en grande partie d'un mur
à l'autre sans trop charger la solive médiane qui baissait

sensiblement aux étages inférieurs. Seule la charge d'essai

les y a contraint. Mais une fois la flexion prise au droit
de cette solive par striction du métal, le plancher ne devait

plus revenir sur lui-même.

Après vérification des diverses parties de la construction,

aucune trace de fatigue n'a pu être découverte.

Application de la statique graphique aux systèmes

de l'espace.

Par M. R. Mayor, professeur.

(Suite y.

CHAPITRE VIII

La méthode des sections multiples.

115. Pour déterminer les tensions des barres d'un
système articulé, on peut encore utiliser un procédé qu'il est

naturel de désigner sous le nom de méthode des sections

multiples et dont nous avons indiqué le principe dans une
note des comptes-rendus des séances de l'Académie des

sciences du 20 juillet 1908. Ainsi que cela résulte de la suite,
cette méthode comprend comme cas très particulier celle

de Culmann et paraît susceptible, en conséquence, d'applications

plus nombreuses.

Considérons, en effet, un système articulé libre dans

l'espace et en équilibre sous l'action de forces concentrées

en ses nœuds. Admettons qu'il possède un groupe P de p
barres, dites principales, satisfaisant aux conditions
suivantes :

11 existe n sections Sit S2, Si, Sn, dont chacune

divise le système en deux parties distinctes en rencontrant
toutes les barres principales sans passer par aucun nœud.
De plus, chaque section telle que Si rencontre encore un
groupe Qi de qi barres, dites auxiliaires, les divers groupes
Qi étant supposés n'avoir en commun aucune barre. Sous

certaines réserves qui résultent de la suite, il est possible de

déterminer géométriquement ou analytiquement les tensions
de toutes les barres principales et auxiliaires, lorsque les

nombres p, qi et n vérifient la relation

(1) p -f 2qi 6n.

En effet, désignons d'une manière générale par Ai et Bi
les deux parties en lesquelles le système se trouve divisé

par la section Si, et, pour préciser ces notations, remarquons

que chacune de ces sections sépare les nœuds situés

sur les barres principales en deux classes qui ne dépendent
pas de l'indice i. Nous admettrons alors que les diverses

-parties Ai contiennent en commun tous les nœuds de l'une

1 Voir N» du 25 juin 1908, page 137.

de ces classes, les parties Bi renfermant nécessairement

tous les nœuds de l'autre.
Imaginons ensuite que la section Si ayant été réellement

opérée, on supprime la partie Bi en remplaçant son effet

par des tensions équivalentes. En exprimant que la partie
restante demeure en équilibre sous l'action de ces tensions

et des forces extérieures qui y sont appliquées, on obtient

un système de six équations linéaires où figurent comme
inconnues, les tensions principales et les tensions auxiliaires

du groupe Qi. Si donc on applique successivement le

même raisonnement à chacune des sections S», on obtient

un ensemble de 6n équations qui, en général, permet de

calculer les tensions principales et auxiliaires, lorsqu'on

suppose vérifiée la relation (1), puisque, dans ce cas, le

nombre des inconnues est précisément égal à celui des

équations.
Avant de poursuivre, quelques remarques sont

indispensables.

Tout d'abord, on peut admettre que qi est inférieur, ou

au plus égal, à cinq; car, s'il en était autrement, il y aurait

avantage à supprimer la section Si qui introduirait un
nombre de tensions auxiliaires inconnues supérieur ou égal

à celui des équations qu'elle fournit.
D'autre part, on peut encore supposer que p est au plus

égal à six. Car, si l'on avait p>6, on voit, sans aucune

difficulté, qu'on pourrait, par exemple, combiner la section

Sj avec chacune des suivantes de manière à constituer un

nouveau système de n—1 sections ne rencontrant plus les

barres principales et conduisant à un système de 6(n—1)
équations entre des inconnues dont le nombre se trouverait
diminué de plus de six unités. Les barres du groupe Qi

deviendraient ainsi principales, tandis que celles des grou^

pes Qg,..., On resteraient auxiliaires.
Ces diverses conditions étant supposées remplies, la

relation (1) montre immédiatement que n est au maximum

égal à six. De plus, il devient possible de déterminer géo^

métriquement les tensions dans toutes les barres rencontrées

par les diverses sections Si.

Les barres du groupe Q1 peuvent être considérées comme

les directrices de q{ complexes spéciaux ; elles définissent

donc, en général, un système linéaire de complexes dont

le système complémentaire possède 6—qi termes. Choisissons,

dans ce système complémentaire, 6 — qt complexes

n'appartenant pas à un même système linéaire dont le

nombre de termes soit inférieur à 6 — q{, et répétons cette

opératiqp pour chacune des sections Si. On est ainsi conduit

à une suite de complexes dont le nombre est précisément

égal à p, puisque, d'après la relation (1),

n n
2 (6 — qi) 6n — Iqt p.
i i

Convenons de les désigner par (/"!,), (7^), (>TP), les

6—li premiers dépendant de Slt les 6—g8 suivants de S2,

et ainsi de suite.

On peut déjà observer que ces complexes permettent

une détermination analytique très simple de toutes les

tensions principales.
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Si, d'une manière générale, on désigne en effet par (Fi)
le système constitué par les forces extérieures agissant sur
la partie Ai, il résulte d'une remarque déjà faite que A{

demeure en équilibre sous l'action de (Ft) et des tensions

des barres des groupes P et Qt. La somme des moments de

ces diverses forces s'annule donc par rapport au complexe

(F4), et comme celui-ci est en involution avec chacune des

barres du groupe Qu l'équation qu'on obtient de cette

manière renferme comme seules inconnues les tensions

principales. Si donc on applique le même raisonnement à

chacun des complexes (.Ti), on obtient en définitive un

système de p équations linéaires renfermant comme seules

inconnues les p tensions principales qui, de cette manière,

peuvent se déterminer analytiquement.
On peut déduire de ce qui précède une solution purement

géométrique en remarquant que les barres principales

peuvent, à leur tour, être considérées comme les directrices

de p complexes spéciaux. Elles définissent donc un

système linéaire à p termes que nous désignerons par (C)

et possédant, en général, un complexe et un seul qui se

trouve simultanément en involution avec lesp—1
complexes (F2), (F3), (Fp). Soit alors (F,') ce complexe.

Puis, de même, désignons par (F2') le complexe de (C) qui
est en involution avec (Fd), (jT3), (F4), (Fp>, et ainsi de

suite jusqu'à (Fp') Qui appartient encore à (C) et se trouve

en involution avec (Fj), (F2), (rp i).
Imaginons alors qu'on décompose, ce qu'il est possible

de faire d'une manière et d'une seule, le système (Ft) en

deux systèmes dont l'un, (F/), admette (F/) pour complexe

d'action et dont l'autre soit en involution avec (Fi). Les

moments de (Ft) et de (F/) sont alors égaux par rapport à

(Fj), de sorte que, dans l'application de la méthode analytique,

ces deux systèmes peuvent être substitués l'un à

l'autre, lorsqu'on forme l'équation des moments par rapport
à (Fj). De même, si l'on décompose encore (F4) en deux

systèmes dont l'un (F'2) ad mette (F2') pourcomplexe d'action

et dont l'autre soit en involution avec (F2), il est encore

permis, lorsqu'on forme l'équation des moments relative à

(F2), de remplacer (F4) par (F'2). On voit immédiatement

dès lors qu'il est possible, sans altérer les équations dont

dépendent les tensions principales, de substituer aux n
systèmes (Fi), p systèmes (Fi') admettant respectivement
les complexes (F/i pour complexes d'action.

Si, d'autre part, on désigne par (F') le système résultant
de tous les (F/), il est encore possible, dans l'application
de la méthode analytique, de remplacer l'un quelconque
de ces (F/) et, par suite, chacun d'eux par (F') ; car, par
exemple, le moment de (F/) par rapport à (Fj) est le même

que celui de (F1), les complexes d'action de (F'),' (F8')

étant tous en involution avec (F,).
Si donc on désigne par (T) le système formé par les

tensions principales, il résulte de ce qui précède que les

moments de T) et de (F') sont égaux par rapport aux p
complexes (Pi). Comme, d'autre part, les complexes d'action
de ces deux systèmes appartiennent à (C), (T) et (F') sont
nécessairement identiques. Pour obtenir les tensions

principales il suffira donc de décomposer (F') suivant les p

barres principales, ce qu'il est toujours possible de faire
d'une manière et d'une seule, le complexe d'action de (F')
appartenant à (C).

Les tensions principales ayant été ainsi déterminées, il
est bien simple d'en déduire les tensions de toutes les barres

auxiliaires.
Considérons, en effet, la section S{ et convenons de

désigner par (T{) le système de forces constitué par les
tensions des barres formant le groupe Q{. Un raisonnement

déjà utilisé tout au début de ce chapitre montre
immédiatement que les trois systèmes (T), (Fj) et (Td) se font

équilibre ; et, comme les deux premiers sont connus, on

peut facilement déterminer (TJ, puis le décomposer suivant
les barres auxiliaires du groupe Qi. Un procédé analogue

permettrait de déterminer toutes les tensions auxiliaires.

116. Lorsque le système considéré et les forces qui le

sollicitent ont été représentés dualistiquement sur le plan II,
toutes les opérations que nécessite l'application de la
méthode des sections multiples peuvent être effectuées

graphiquement.

Pour déterminer, en premier lieu, les complexes (Fi),
il suffit d'appliquer une méthode analogue à celle qui se

trouve exposée au paragraphe 97 et à l'aide de laquelle on

peut obtenir le complexe en involution avec cinq droites

données.

Supposons, en effet, qu'on veuille déterminer le

complexe (F4) qui doit être en involution avec toutes les barres

auxiliaires du groupe Qit et, pour fixer les idées, admettons

que ce groupe renferme trois barres que nous désignerons

par (lt), (i2) et (i3).
Choisissons alors trois complexes (G'), (G") et (G'") ne

faisant pas partie d'un même système à deux termes et

renfermant tous trois la droite (tj); un pareil choix, nous l'avons

déjà vu, est possible d'une infinité de façons différentes.

Considérons ensuite le système à deux termes défini par

(G') et (G"),'puis déterminons, à l'aide du procédé indiqué

au paragraphe 96, le complexe de ce système qui renferme

la droite (1%). Soit alors (Gj'") ce complexe qui, en vertu

d'un théorème établi, contient aussi la droite (Zd) et, par

conséquent, se trouve en involution avec (i4) et (1$).

En considérant encore le système à deux termes défini

par (G") et (G'"), on peut déterminer d'une manière

semblable un nouveau complexe (G,') contenant aussi les deux

droites (t4) el (k). Enfin, par des opérations analogues et à

l'aide de (G/) et (G"), on peut obtenir un dernier complexe

renfermant (i{), (l^) et (i3), et qui, nécessairement, peut

jouer le rôle de (F,). De plus, il est évident que tous les

complexes (P) peuvent être obtenus par cette méthode à

laquelle, d'ailleurs, on peut apporter des simplifications

identiques à celles qui font l'objet du paragraphe 98.

Les complexes (Ft') peuvent être déterminés ensuite

par un procédé semblable.

Il est facile, en effet, de déterminer préalablement autant

de complexes qu'on le veut du système à p termes (C) défini

par les barres principales. Car, d'une part, tout complexe

spécial admettant une de ces barres comme directrice ap-
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partient à ce système, et, d'autre part, il en est de même de

tout complexe d'un faisceau défini par deux complexes

quelconques de (C).
Choisissant alors un nombre suffisant de ces complexes,

des opérations analogues à celles qui viennent d'être décrites

permettent de déterminer facilement tous les

complexes (rZ).
Actuellement, il est possible d'obtenir les systèmes de

forces (Fi).
Le complexe d'action de (Fi) et (ri) définissent, en effet,

un système à deux termes possédant un seul complexe en

involution avec (Fi). La méthode indiquée au paragraphe 96

conduit immédiatement à ce complexe et la recherche de

(Fi) ne dépend plus que de la décomposition de (Fi), suivant

ce même complexe et suivant (Fi). D'ailleurs, cette
décomposition n'exige que la construction d'un triangle dont un
côté représente en grandeur, direction et sens la force

représentative de (Fi), tandis que les deux autres côtés sont

respectivement parallèles aux droites représentatives des

deux complexes considérés.
Tous les systèmes (Fi) étant ainsi déterminés, la

recherche de leur système résultant (F'j n'offre aucune
difficulté et peut, par exemple, s'effectuer à l'aide d'une chaîne

funiculaire. Il suffit dès lors, pour obtenir les tensions

principales, de décomposer (F') suivant les barres principales.

Et, comme le complexe d'action de (F') appartient
nécessairement à (C), la décomposition de (F') s'opère

d'autant plus facilement que le nombre p des barres

principales est plus petit. Examinons en effet quelques cas

particuliers.
En premier lieu, supposons que p ait la plus grande

valeur possible, c'est-à-dire qu'il soit égal à six. Le

complexe d'action de (F') est alors quelconque puisqu'un
système à six termes renferme tous les complexes de

l'espace, et sa décomposition suivant les six barres principales

peut s'opérer à l'aide du procédé indiqué à propos de la

méthode de Culmann.
Admettons, en second lieu, que les barres principales

soient au nombre de cinq et désignons-les par (£.), (ig), (l3),

(£,j) et (i5). Proposons-nous de déterminer la tension (Tb) de

la barre (i5) et, dans ce but, convenons de représenter par
(T"5') le système, d'ailleurs inconnu, formé par les tensions

restantes. Les trois systèmes (F'), (T5) et (T5') se font équilibre

et, en vertu d'une propriété souvent appliquée, leurs

complexes d'action appartiennent à un même système à

deux termes.
D'autre part, on démontre sans aucune peine que le

système à cinq termes (C) défini par les barres principales
renferme un complexe et un seul qui soit en involution
avec (l{), ia), (lg) et (i4) ; de plus, une méthode semblable à

celle que nous avons indiquée pour la recherche du
complexe opposé à une barre permet de l'obtenir. En le
désignant par (G5), on voit immédiatement qu'il est en involution

avec le complexe d'action de (T5'). Et comme ce

dernier appartient à un système à deux termes défini plus
haut, on l'obtient sans aucune peine. Il suffit dès lors, pour
déterminer (r5), de décomposer (F') suivant ce dernier

complexe et la barre (l5). D'ailleurs, il est bien évident que
les tensions des autres barres principales peuvent être
obtenues à l'aide du même procédé. Enfin, il est maintenant
bien visible que les cas où p est inférieur à cinq se résolvent

à l'aide de considérations analogues à celles que nous
venons de développer.

117. Dans tout ce qui précède nous nous sommes
préoccupés uniquement de la recherche des tensions principales.

Mais, dès que celles-ci sont connues, il est bien
simple d'en déduire les tensions auxiliaires.

Considérons, en effet, la section Si et convenons de

désigner par (di) le système des tensions auxiliaires
correspondantes et par (T) celui des tensions principales. (Fi),
(T) et (t9i) se font équilibre et l'on peut déterminer (di),
puisque (Fi) et (T) sont connus. En décomposant alors
(di) suivant les barres auxiliaires du groupe Qi, ce qui
n'exige que des opérations analogues à celles que nous
venons de décrire, on obtient toutes les tensions auxiliaires
de ce même groupe. (A suivre./

Concours pour un pavillon de musique,
à Genève1.

Nous reproduisons aux pages 251 à 253 les principales
planches des projets « Odéon » (2me prix), de MM. Ed. Fa-

tio et Ad. Thiers, architectes, à Genève, et «.Sur le lac»
(3me prix), de MM. De Rham et Peloux, architectes, à

Lausanne.
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Plan du rez-de-chaussée.

2""- prix : projet « Odéon », de MM. Ed. Fatio et Ad. Thiers,

architectes, à Genève.

1 Voir N» du 25 octobre 190?. page 237.
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