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Application de la statique graphique aux systèmes

de l'espace.

Par M. B. Mayor, professeur.

/Suite V.

106. Considérons toujours le système articulé précédemment

défini et admettons qu'il soit sollicité par des forces

concentrées en ses noeuds et se faisant équiliûre. Convenons

encore de désigner par (F) le système constitué par
les forces extérieures qui agissent sur la partie A et par Ti
la tension produite dans la barre (U) rencontrée par la section

S. Admettons enfin que seule cette dernière barre soit

élastique et déformable, toutes les autres étant, provisoirement

du moins, considérées comme formées d'une substance

qui ne s'allonge ninese raccourcit sous l'influence des forces

extérieures. Si l'on désigne alors par Ei son module d'élasticité

et ai l'aire de sa section transversale, l'allongement
qu'elle subit est donné par la formule bien connue

Tilidk
EiOi

Si donc on suppose la partie B maintenue fixe, la résultante

du système de rotations qui caractérise le déplacement

de la partie mobile A a pour valeur

g.— Tik

ou, en tenant compte de la formule

(F, mi)
Ti

qui vient d'être établie,

6

(h m) '

(F, wi) k
Ei oi(k, a>i)r

Or, dans cette dernière expression, les quantités Ji,

(h coi), Ei et ai ne dépendent en aucune façon des forces

qui agissent sur le système, et la valeur de l'expression

'U
Ei ai (k, û>i)2

doitétre considérée comme une constante caractéristique de

la barre (li). Elle va jouer le rôle de la quantité qu'on ap-

i Voir N° du 23 mai 1908, p. 113.

pelle quelquefois, dans le cas des systèmes plans, le poids

élastique de la barre (it), et nous la désignerons simplement

par fa. On aura donc
6i =: (F, a>i) pu.

Imaginons alors qu'on multiplie par [n les intensités de

tous les vecteurs dont l'ensemble constitue la vis désignée

par (a>i) ; on obtient un nouveau système ayant encore le

complexe opposé à (k) pour complexe d'action et qui,

comme fa, est caractéristique de la barre considérée en ce

sens qu'il ne dépend pas des forces extérieures. Pour

désigner ce nouveau système, dont le rôle est essentiel, nous

utiliserons encore un terme introduit en mécanique par les

géomètres anglais et nous l'appellerons le torseur adjoint
à la barre (k) ', de plus, nous le désignerons par la notation

symbolique (ßi). Dans ces conditions, la formule précédente

peut être mise sous la forme

di (F,ßi),

et l'on peut énoncer le théorème suivant :

Lorsque la barre (k) s'allonge seule sous l'action d'un

système de forces (F) agissant sur la partie modèle Â, la
résultante du système de rotations qui représente le déplacement

de A est égal au moment de (F) par rapport autorseur

adjoint à (k).

107. Il est actuellement possible de caractériser d'une

manière simple et précise le système de rotations qui
représente le déplacement, de la partie mobile, lorsque la

barre (h) s'allonge seule sous l'action de (F).
Nous venons de voir, en effet, qu'il admet même

complexe d'action que (ßi) ou (oh), et que l'intensité de sa

résultante générale a (F, ßi) pour valeur. Il ne dépend donc

que de (F) et de (ßi) et constitue en définitive un nouveau

torseur que nous appellerons le dérivé de (F) par rapport
à (ßi). On peut l'obtenir en multipliant par (F, ßi) les

vecteurs dont l'ensemble constitue la vis (wi) ', mais il est clair

qu'on parvient au même résultat en multipliant les vecteurs

dont l'ensemble forme le torseur adjoint (ßi) par ce même

moment, préalablement divisé par l'intensité de la résultante

générale de (ßi).
Comme nous le verrons dans un instant, la notion de

torseur dérivé facilite notablement l'étude des déformations
des systèmes articulés. Elle intervient également dans la
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théorie des poutres à fibre moyenne gauçffi ainsi que dans

diverses questions de mécaniœerationnelle. En particulier,
elle permet de résumer, dans l'énoncé suivant, les résultats
obtenus jusqu'ici :

Lorsque la barre (li) s'allonge seule sous l'action d'un

système deSrces (F) agissant sur la partie mobile A, le

déplacement subi par cette dernière est entièwÊnent représenté

par le torseur dérivé de (F) relativement au torseur adjoint
à(k).

408. PouMBtudier les déplacements qui prennent
naissance dans un système lorsque plusieurs barres s'allongent
simultanément sous l'action de forces extérieures données,

il est nécessaire d'étendre quelque peu la notion de torseur
dérivé.

Considérons, dans ce but, un système de ff&es (F) et
des torseurs, en nombre quelconque, (j2t), (i22), (ßi),...,
(ßri). Déterminons les torseurs dérivés de (F) par rapport
aux divers torseurs (ßi). Composons enfin tous ces torseurs
dérivés en appliquant les règles ordinaires de la composition

des vecteurs et des systèmes de vecteurs : on est alors
conduit à un torseur résultant qui sera dit le dérivé de (F)
par rapport à l'ensemble des (ßi).

Cette notion acquise, considérons un système articulé
possédant n barres ('), (Z2), ...W[k), ¦¦ (In), admettant
chacune untorseur adjoint bien défini, et soit, d'une manière

générale, (ßi) celui qui correspond à (k).
Pour déterminer ces torseurs adjoints, n sections Si}

iS2, Si, Sn auront dû être pratiquées. Ces sections
ne sont pas nécessairement différentes les unes des autres,
mais chacune d'elles doit diviser le système en deux parties
distinctes en rencontrant six barres. Nous désignerons alors

par Ai et Bi les deux parties qui correspondent à la section
Si et nous admettrons essentiellement que ces parties
constituent des systèmes indéformables lorsqu'on supprime les

barres coupées, et cela quelle que soit la valeur de l'indice i.
De plus, nous supposerons encore que toutes les parties Ai
possèdent en commun un certain nombre de nœuds reliés

par des barres non rencontrées par les diverses sections Si,
ces barres et ces noeuds formant encore un système
indéformable désigné par A ; que, de même, toutes les parties
Bi possèdent en commun un deuxième système indéformable

B.
Ces diverses conditions étant remplies, imaginons qu'on

applique aux nœuds de A des forces extérieures formant
un système (F). Si l'on maintient fixes les nœuds de B et

que seules les n barres considérées (l^, (1%), (kî) puissent
se déformer sous l'action de (F), la partie A, que nous
appellerons encore la partie mobile, subit un déplacement
qu'on peut facilement déterminer à l'aide du principe delà
superposition des déplacements infiniment petits.

Lorsqu'en effet, la barre (k) s'allonge seule sous l'action
de (F), le déplacement de la partie mobile est représenté

par le torseur dérivé de (F) relativement ä(ßi). Comme,
d'ailleurs, ce déplacement peut être considéré comme
infiniment petit, lorsque les n barres considérées se déforment

simultanément sous l'action de (F), le déplacement

total de A est évidemment défini par le torseur dérivé de

(F) relativement à l'ensemble des torseurs adjoints (ßi). On

peut donc énoncer le théorème suivant :

Lorsque n barres se déforment simultanément, sous l'action

d'un même système de forces (F), le déplacement de la
partie mobile est complètement représenté par le dérivé de

j^aivSmivemerfffäSli^isemble des torseurs adjoints aux barres

cwmidérées.

Il cfflpient de faire observer que, dans la recherche du

dérivé, il nBt pas permis de remplacer les torseurs adjoints

par leur système résultant. Le problème de la composition
ou plutôt de l'équivalence des torseurs adjoints au point de

vue du dérivé est l'analogue de celui de l'équivalence des

masses dans la théorie des moments d'inertie des systèmes

plans. Cela va, d'ailleurs, clairement ressortir de la suite.

109. Il est nécessaire maintenant d'exprimer sous une
forme analytique la correspondance qui lie un système (F)
à son torseur dérivé.

Dans ce but, désignons par X, Y, Z, L, M, N les

coordonnées de (F) et par X', Y', Z', L', M', N' celles du dérivé

(F'). Soientj de plus, a,, bi, a, Ai, fn, vt les coordonnées de

(ßi) et Ri l'intensité de la résultante générale de ce torseur
' adjoint.

Le moment de (F) par rapport à (ßi) ayant pour
expression

(F, ßi) XXi + Y/Xi + Zvi + Lai + Mbi + Na,

les coordonnées du dérivé de (F) par rapport à (ßi) auront

pour valeurs

X'i ^-(F,ßi) L'i 4:(F,ßi)

Z'i
Ci

(F, ßi)

M'i

N'i

(F, ßi)

Par suite, celles de (F') auront pour expressions

X' 2-B-(F, ßi)
i m
n J,.

T 2-£(F,ÛÙi m

Z' 2-£- (F, ßi)
i Bi

L' ¦ 2 A (F, ßi),
1 Bi

M' I 2 B. (F, ßi)
1 Bi

N' 2-^-(F,ßi).
1 Bi

Or si l'on remplace, dans ces formules, (F, ßi) par sa

valeur, on voit immédiatement qu'on peut les mettre sous

la forme suivante :

X' aHL + a^M + ai3N -j- aHX + aiSY + ai6Z,
Y' <%£ + a^M + aj3ZV + a^X -f o^ Y + a^Z,

N' aGlL H- amM + amN + aGiX -f- a05 Y + tQz,
où l'on a posé

n «.ï n ;,.g n ...9
» rt-. —> y

2y Ojbj
ati — z «13 —

1 Bi i iii a*
-Ri
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Le tableau formé par les coefficients a est symétrique
par rapport aux éléments de sa diagonale, et si l'on
considère la forme quadratique

0 -g- [a,, L* + anM* + a33W + a„K* + a55 Y2 + «ee2*] +
+ a^LM + ai3LN y auLX y aKLY + aiBLZ +
+ a^MN + a^MX + a^MY + c^eMZ + a3iNX +
+ a^NY + a3GNZ + a^XY *46 XZ + a56YZ,

on voit immédiatement que les coordonnées de (F') peuvent
être mises sous la forme

X'
d)

00 00V — —— 7'¦ a0
dN'

— dx> M WÊÈ ~ àz

110. Pour interprêter ces résultats, convenons d'envisager,

d'une façon générale, les complexes linéaires comme
des éléments géométriques à l'aide desquels on puisse
constituer des figures dans l'espace. Comme alors, les coordonnées

X, Y, Z, L, M, N du système (F) peuvent être co||^|
dérées comme les coordonnées homogènes de son complexe
d'action, l'équation

0 0

représente une quadruple infinité de complexes ttgéaires
dont l'ensemble constitue ce que nous appellerons, dans la

suite, le système quadratique (0). Ainsi que nous allons le

montrer, c'est précisément ce système quadratique qui joue,
dans l'espace, le même rôle que l'ellipse d'élasticité relative
aux systèmes articulés plans. Mais, auparavan^È est in|hp|
pensable d'étendre quelque peu la notion de déplacement
d'un point d'un solide suivant un axe passant parce point.

Supposons donc qu'un solide subisse un déplacement
infiniment petit représenté par un torseur que noM
désignerons encore par (F'). Par un point quelconque (P) de

ce solide faisons passer un axe, c'est-à-dire une droite sur
laquelle on peut admettre qu'un vecteur unité a été porté
dans un sens déterminé. On peut alors démontrer
immédiatement que la projection sur cet axe du déplacement que
subit le point (P) est égal au moment du torseur (F') par
rapport au vecteur unité porté par cet axe. Cette projection
ne dépend donc pas de la position particulière du point (P)

sur l'axe, et il est permis, en conséquence, de l'appeler le

déplacement du solide suivant cet axe. Dans le cas
particulier où elle s'annule, l'axe devient un axe de déplacement
nul et appartient au complexe d'action de (F').

Au lieu d'un axe considérons ensuite une vis ou, ce qui
revient au même, un complexe linéaire sur l'axe duquel
un sens positif (sens de la résultante unité de la vis
considérée) a été fixé. Il devient alors naturel d'appeler
déplacement du solide suivant cette vis, le moment du
torseur (F') par rapport à cette même vis. Lorsqu'en particulier

ce moment s'annule, la vis et le complexe qui la porte
peuvent être appelés une vis et un complexe de déplacement

nul, et l'on voit immédiatement que tous les

complexes de déplacement nul forment un système linéaire à

cinq termes qui coïncide avec le système complémentaire
du complexe d'action de (F1).

Ces définitions données, reprenons le système articulé
précédemment conapéré, et supposons toujours que la

partie mobile A soit sollBtée par un système de forces (F).
Proposons-nous alors de déterminer l'ensemble formé par
les complexes de déplacement nul, lorsque les n barres (l{),
(Z2),..., (In) se déforment simultanément sous l'action de (F).

Désignons, à cet effet, par X", Y", Z", L", M", N" les

coordonnées de l'un quIElonque (F") de ces complexes de

déplacement nul. Par définiron, le moment du torseur
dérivé (F') de (F) par rapport à une vis portée par (F") doit
s'annuler. On aura donc

X"L' + Y"M' + Z"N' + L"X' + M" Y' + N"Z' 0,

ou, en tenant compte des formules (I)

00 M Ô0 ,7„d0 ,Ô0 ,M,.d0 N„d0.X-dX+Y ~dY + Z ^Z + L^L+M àM+ iRTdN' :0.

Mais le premier membre de cette relation n'est autre
chose que la forme polaire de 0 relativement aux deux

complexes (F") et (F) ; il est donc permis de dire que les

complexes de déplacement nul de la partie mobile forment

un système linéaire à cinq termes qui coïncide avec le

système polaire de (F) relativement à (0).

111. La propriété qui précède montre bien que (0)
constitue l'extension naturelle à l'espace de la notion
d'ellipse d'élasticité ou, plutôt, de la notion de conique
conjuguée de cette ellipse. Parmi les nombreuses conséquences

qu'on en peut déduire, nous nous bornerons à en indiquer
une qui peut servir de définition au système quadratique 0.

Pour que le complexe d'action de (F) soit, en même

temps, un complexe de déplacement nul, il faut et il suffit

que l'on ait

X™ 1 Y^ 4- Z^- y L^- + M^ y N^-X àX+ * dY + * dZ + LdL+MdM + iy dN 0,

ou bien, puisque 0 est une forme homogène et quadratique,

20 0.
En conséquence, tout complexe du système (0) est

caractérisé par le fait qu'il est de déplacement nul, lorsqu'il
coïncide avec le complexe d'action d'un système de forces

agissant sur la partie mobile A.

112. On peut se placer à un point de vue un peu différent

pour interprêter les formules obtenues.

Si l'on considère les quantités X, Y, Z, L, M, N comme
les coordonnées d'une droite, la relation

LX + MY + NZ 0

étant, cela est bien entendu, supposée vérifiée, l'équation

0 0

est celle d'un complexe quadratique évidemment formé par
les directrices de tous les complexes spéciaux qui sont
contenus dans le système (0). Ce complexe possède de

nombreuses propriétés qui le rapprochent aussi de l'ellipse
d'élasticité des systèmes plans et l'on peut montrer, en

particulier, qu'il se réduit en définitive à la conique con-

jugée de celte dernière, lorsque le système considéré est

entièrement contenu dans un plan.
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Toute droite appartenant à ce complexe est, en effet,

une droite de déplacement nul, lorsque (M se réduit à une
résultante unique ayant précisément cette droite pour ligne
d'action. D'autre part, les droites qui sont situées dans un

plan quelconque enveloppent une conique; et, comme cette

propriété subsiste dans le cas où le système considéré est

plan, il résulte immédiatement des propriétés de la conjuguée

de l'ellipse d'élasticité, que cette dernière conique se

confond avec celle du complexe relative au plan du système.

113. La connaissance de tous les torseurs (ßi) entraîne
celle du système quadratique (0). Ce dernier sera donc
parfaitement représenté sur le plan II, à l'aide des seuls

éléments représentatifs de ces torseurs, éléments que l'on
détermine sans aucune peine, à l'aide des considérations

développées au cours de ce chapitre. Dans ces conditions,
l'étude graphique des déformations des systèmes articulés,

pour lesquels chaque barre possède un complexe opposé,

est possible ; en revanche, son intérêt est minime, étant

donné le peu de généralité des systèmes auxquels elle est

applicable et la complexité des opérations qu'elle entraîne.

Pour toutes ces raisons, nous n'insisterons pas davantage

sur ce sujet qui, actuellement du moins, ne peut offrir qu'un
intérêt théorique.

114. Une dernière remarque doit encore être faite.

L'existence du système (0) paraît dépendre essentiellement

de celle des complexes opposés aux barres qui se

déforment. Il n'en est rien cependant, et l'on peut démontrer,
à l'aide du principe de la superposition des effets des forces

et d'une extension convenable du théorème de Maxwell sur
la réciprocité des déplacements, que l'on peut faire

correspondre à un ensemble de barres, dont aucune ne possède

un complexe opposé, un système quadratique jouant
exactement le même rôle que (0). Mais nous ne pouvons donner

ici cette démonstration qui n'a, d'ailleurs, aucun rapport

avec la méthode de Culmann.
(A suivre.)
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