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Application de la statique graphique aux systémes
de T'espace.

Par M. B. Mayor, professeur.

[Suite1).

106. Considérons toujours le systeme articulé précédem-
ment défini et admettons qu’il soit sollicité par des forces
concentrées en ses nceuds et se faisant équiliore. Conve-
nons encore de désigner par (I) le systéme conslitué par
les forces extérieures qui agissent sur la partie A et par T;
la tension produite dans la barre (1;) rencontrée par la sec-
tion S. Admettons enfin que seule cetle derniere barre soit
élastique et déformable, toutes les autres élant, provisoire-
mentdu moins, considérées comme formées d’une substance
qui ne s’allonge ninese raccourcitsous influence des forces
exltérieures. Si I’'on désigne alors par I; son module d’¢las-
ticité et o; 'aire de sa section transversale, l'allongement
qu’elle subit est donné par la formule bien connue
Tk

ol
! E; i

Si donc on suppose la partie B maintenue fixe, la résul-
tante du systeme de rotations qui caractérise le déplace-
ment de la partie mobile A a pour valeur

e
Eiai (Li wi)
ou, en tenant compte de la formule
I, wi
T ( > .),

(li wi)
qui vient d’étre établie,

(F, wi)li
Eiai(li, wi)*

=

Or, dans celle derniére expression, les quantilés U,
(L wi), I; et ¢; ne dépendent en aucune facon des forces
qui agissent sur le systéme, el la valeur de 'expression

‘U
o ai(li, wi)?
doitétre considérée comme une conslante caracléristique de
la barre (1;). IEHe va jouer le role de la quantité qu’on ap-

! Voir No du 25 mai 1908, p. 113.

pelle quelquefois, dans le cas des systemes plans, le poids
élastique de la barre (1;), et nous la désignerons simplement
par y;. On aura donc

0 = (F, wi) pi.

Imaginons alors qu’on multiplie par y; les intensités de
tous les vecteurs dont I’ensemble constitue la vis désignée
par (wi); on obtient un nouveau systéme ayant encore le
complexe opposé a (1) pour complexe d’action et qui,
comme /1, est caractéristique de la barre considérée en ce
sens qu’il ne dépend pas des forces exlérieures. Pour dé-
signer ce nouveau systeme, dont le role est essentiel, nous
utiliserons encore un terme introduit en mécanique par les
géometres anglais el nous l'appellerons le torseur adjoint
a la barre (1;); de plus, nous le désignerons par la notation
symbolique (£;). Dans ces conditions, la formule précédente
peut étre mise sous la forme

0 = (F, 29,
et I’on peut énoncer le théoréme suivant :

Lorsque la barre (L) s'allonge seule sous Uaction d'un
systéme de forces (F) agissant sur la partie modéle 4, la
résultante du systéme de rotations qui représente le déplace-
ment de A est égal awmoment de (F) par rapport autorseur
adjoint a (l;).

107. 1l est actuellemeut possible de caractériser d’'une
maniére simple el précise le systeme de rotations qui re-
présente le déplacement de la partie mobile, lorsque la
barre (li) s’allonge seule sous l'action de (F).

Nous venons de voir, en effet, qu’il admet méme com-
plexe d’action que (&) ou (wi), et que I'intensité de sa ré-
sultante générale a (I, £i) pour valeur. Il ne dépend done
que de (I) et de (£;) et constitue en définitive un nouveau
torseur que nous appellerons le dérivé de (I7) par rapport
a (£2). On peut I'obtenir en multipliant par (I, £i) les vec-
teurs donl 'ensemble constitue la vis (w;); mais il est clair
qu’on parvientau méme résultat en multipliant les vecteurs
dont Pensemble forme le torseur adjoint (£;) par ce méme
moment, préalablement divisé par lintensité de la résul-
lante générale de (£;).

Comme nous le verrons dans un instant, la notion de
torseur dérivé facilite notablement I'étude des déformations
des systemes articulés. Elle intervienl également dans la
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théorie des poutres a fibre moyenne gauche ainsi que dans
diverses questions de mécaniquerationnelle. En particulier,
elle permet de résumer, dans I’énoncé suivant, les résultats
obtenus jusqu’ici :

Lorsque la barre (1) s'allonge seule sous Uaction d'un
systéeme de forces (F) agissant sur la partie mobile A, le dé-
placement subi par cette derniére est enticrement représenté
par le torsewr dérivé de (I) relativement au torseur adjoint

a ().

108. Pour étudier les déplacements qui prennent nais-
sance dans un systéme lorsque plusieurs barres s’allongent
simultanément sous I’action de forces extérieures données,
il est nécessaire d’étendre quelque peu la notion de torseur
dérivé.

Considérons, dans ce but, un systeme de forces (/) et
des torseurs, en nombre quelconque, (£2)), (29), ..., (£i), ...,
(£2,). Déterminons les torseurs dérivés de (/) par rapport
aux divers torseurs (£:). Composons enfin tous ces torseurs
dérivés en appliquant les regles ordinaires de la composi-
tion des vecteurs el des systemes de vecteurs: on est alors
conduit & un torseur résultant qui sera dit le dérivé de (F)
par rapport & ’ensemble des (£2;).

Celte nolion acquise, considérons un sysléme articulé
possédant n barres (;), (ly), ..., (L), ..., (In), admettant
chacune untorseuradjoint biendéfini, et soit, d’une maniere
générale, (£2;) celui qui correspond a (L;).

Pour déterminer ces torseurs adjoints, n sections Sj,
Sgy «.vy Si, ..., Sp auront di étre pratiquées. Ces sections
ne sont pas nécessairement différentes les unes des autres,
mais chacune d’elles doit diviser le systéme en deux parties
distinctes en rencontrant six barres. Nous désignerons alors
par A; et B; les deux parties qui correspondent a la section
Si et nous admettrons essentiellement que ces parties cons-
tituent des systemes indéformables lorsqu’on supprime les
barres coupées, et cela quelle que soit la valeur de I’indice 1.
De plus, nous supposerons encore que toutes les parties 4;
possédent en commun un certain nombre de nceuds reliés
par des barres non rencontrées par les diverses sections S,
ces barres et ces nceuds formant encore un systéme indé-
formable désigné par A ; que, de méme, toutes les parties
B; possedent en commun un deuxiéme systeme indéfor-
mable B.

Ces diverses conditions étant remplies, imaginons qu’on
applique aux noeuds de A des forces extérieures formant
un systeme (I7). Si ’on maintient fixes les nceuds de B et
que seules les n barres considérées (1)), (Iy), ..., ({,) puissent
se déformer sous I'action de (I), la partie A, que nous ap-
pellerons encore la partie mobile, subit un déplacement
qu’on peut facilement déterminera 'aide du principe de la
superposition des déplacements infiniment petits.

Lorsqu’en effet, la barre (1) s’allonge seule sous I'action
de (I"), le déplacement de la partie mobile est représenté
par le torseur dérivé de (f') relativement a (£i). Comme,
d’ailleurs, ce déplacement peut étre considéré comme in-
finiment petit, lorsque les n barres considérces se défor-
ment simultanément sous Paction de (I), le déplacement

total de 4 est évidemment défini par le torseur dérivé de
(F) relativement & ensemble des torseurs adjoints (£;). On
peut done énoncer le théoreme suivant :

Lorsque m barres se déforment simultanément, sous Uac-
tion d’un méme systéme de forces (I), le déplacement de la
partie mobile est complélement représenté par le dérivé de
(F) relativement a Uensemble des torseurs adjoints aux bar-
res considérées.

Il convient de faire observer que, dans la recherche du
dérivé, il n’est pas permis de remplacer les torseurs adjoints
par leur systeme résultant. Le probléme de la composition
ou plutot de I'équivalence des torseurs adjoints au point de
vue du dérivé est 'analogue de celui de I'équivalence des
masses dans la théorie des moments d’inertie des systemes
plans. Cela va, d’ailleurs, clairement ressortir de la suite.

109. Il est nécessaire maintenant d’exprimer sous une
forme analytique la correspondance qui lie un systeme ()
a son Llorseur dériveé.

Dans ce but, désignons par X, Y, Z, L, M, N les coor-
données de (I) et par X', Y/, Z/, L', M, N’ celles du dérivé
(F"). Soient; de plus, ai, bi, ci, i, pui, vi les coordonnées de
(£2;) et R; lintensité de la résullante générale de ce torseur
adjoint.

Le moment de (/) par rapport a (£;) ayanlt pour ex-
pression

(F, i) =Xk + Ypi + Zvi + La; + Mb; + Ny,
les coordonnées du dérivé de (I7) par rapport & (£;) auront
pour valeurs

a; ' 4i
X'i=2(F,9), L= g (&, 2
b T
Yl = 'I%i ([’, .(.)i) s M= ﬁ' (I(a -(')') >

; Ci ’ Vi )
l’izl_{ll_(F;-(-)i)y Nl:j{:(["!!l) ’

Par suite, celles de (F') auront pour expressions
> !

, (1,' ai 7.0 T =1 7\2y l{i 0
X:Tw('w-i)» L—-l-h,—ial,--:),
; ;

n b: ! n 1
Y'=32(F 0, =23 § (F, 2,
L 1

g1 — 3 L 0 A 0
2'=%— (I, &), N' =23 _—(F, 2).
it 1 Ry

Or si Pon remplace, dans ces formules, (I7, £;) par sa
valeur, on voil immédiatement qu’on peut les metlre sous
la forme suivante :

X' = ayL + apM + 3N + e X + a5 Y + 52,

Y = ag L + atgqM + ttgN 4 ey X + g5 Y + @942 ,

N’ = ay L + apM + wgN 4 agpX 4+ ¢ Y + epZ

oit 'on a posé

s B L
e ), e et

- S RT TR T

L3 3 oaib; « 5w @i Ci - R i vi
g=2 =, =2 ——, ., Qg=2 L.
'“ Ryl 2 R RO Ry
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Le tableau formé par les coefficients « est symétrique
par rapport aux éléments de sa diagonale, et si I'on con-
sidere la forme quadratique

0= % [ L2 + agaM? + ag3N2 + @y X2 + 55 Y2 + 2] +
+ aplM + a3LN + a;, LX + ;LY + «,cLZ +
+ aosMN + aguMX + ;MY 4+ aoMZ + aqNX +
+ a5 NY + a5NZ + s XY + a5 XZ + a;4YZ,
on voit immédiatement que les coordonnées de (') peuvent
étre mises sous la forme

o ., o, oD

X — —

I oL’ o oN’
L0 o, D

Zf ;C)\, M = ay, N _—C)Z .

110. Pour interpréter ces résullats, convenons d’envisa-
ger, d’une facon générale, les complexes linéaires comme
des éléments géométriques a ’aide desquels on puisse cons-
tituer des figures dans I’espace. Commealors, les coordon-
nées X, Y, Z, L, M, N du systéme (I) peuvent étre consi-
dérées comme les coordonnées homogenes de son complexe
d’action, I’équation

?®=0
représente une quadruple infinité de complexes lincaires
dont ’ensemble constitue ce que nous appellerons, dans la
suite, le sysleme quadratique (@). Ainsi que nous allons le
montrer, c’est précisément ce systéme quadratique qui joue,
dans lespace, le méme role que I’ellipse d’élasticité relative
aux systemesarticulés plans. Mais, auparavant, il est indis-
pensable d’étendre quelque peu la notion de déplacement
d’un point d’un solide suivant un axe passant par ce point.

Supposons donc qu’un solide subisse un déplacement
infiniment petit représenté par un torseur que nous dési-
gnerons encore par (/). Par un point quelconque (P) de
ce solide faisons passer un axe, c’est-d-dire une droite sur
laquelle on peut admettre qu’un vecteur unité a été porté
dans un sens déterminé. On peut alors démontrer immé-
diatement que la projection sur cet axe du déplacement que
subit le point (P) est égal au moment du torseur (/') par
rapport au vecteur unité porté par cet axe. Celte projection
ne dépend donc pas de la position particuliére du point (P)
sur I’axe, et il est permis, en conséquence, de 'appeler le
déplacement du solide suivant cet axe. Dans le cas parli-
culier ou elle s’annule, I'axe devient un axe de déplacement
nul et appartient au complexe d’action de (I'')

Au lieu d’un axe considérons ensuite une vis ou, ce qui
revient au méme, un complexe linéaire sur I'axe duquel
un sens posilif (sens de la résultante unité de la vis con-
sidérée) a ¢été fixé. Il devient alors naturel d’appeler
déplacement du solide swivant celte vis, le moment du tor-
seur (') par rapport a cette méme vis. Lorsqu’en particu-
lier ce moment s’annule, la vis et le complexe qui la porle
peuvent étre appelés une vis et un complexe de déplace-
ment nul, et Pon voit immédiatement que tous les com-
plexes de déplacement nul forment un sysleme linéaire &
cing lermes qui coincide avec le systeme complémentaire
du complexe d’action de (/).

Ces définitions données, reprenons le systéme articulé
précédemment considéré, et supposons toujours que la
partie mobile 4 soit sollicilée par un systeme de forces (/).
Proposons-nous alors de déterminer I’ensemble formé par
les complexes de déplacement nul, lorsque les n barres (1)),
(ly). ..., (ln) se déforment simultanément sous 'action de (I).

DLbl‘Tl]ODS, a cet effet, par X”, Y”, 2", L", M", N” les
coordonnées de I'un quelconque (/) de ces complexes de
déplacement nul. Par définition, le moment du torseur dé-
rivé (I'7) de (F) par rapport a une vis portée par (/™) doit
s’annuler. On aura donc

XL+ Y'M + Z'N' 4+ L'X' + M"Y' + N"Z' =0,
ou, en tenant compte des formules (I)

., 0D ,,c)(/)
Fiox Y'Y

Mais le premier membre de cette relation n’est autre
chose que la forme polaire de @ relativement aux deux
complexes (/™) el (I"); il est donc permis de dire que les
complexes de déplacement nul de la partie mobile forment
un systeme linéaire a cing termes qui coincide avec le
systeme polaire de (/) relalivement & (@).

" a(D

— (0%

w0@ ., 00 | 0D |
+ 2" G op + Mo+ Ny

111. La propriété qui précede montre bien que (@)
conslitue I'extension naturelle a 'espace de la notion d’el-
lipse d’élasticité ou, plutot, de la notion de conique con-
juguée de celte ellipse. Parmi les nombreuses conséquences
qu’on en peut déduire, nous nous bornerons & en indiquer
une qui peut servir de définition au systéme quadratique @.

Pour que le complexe d’action de (/) soit, en méme
temps, un complexe de déplacement nul, il faul et il suffit
que I'on ait

o o

.
\a\+’a) +/az+l‘ I +Mafu+1\cm 0,
ou bien, puisque @ est une forme homogene el quadralique,

20.—=0

En conséquence, lout complexe du sysleme (@) esl ca-
raclérisé par le fait qu’il est de déplacement nul, lorsqu’il
coincide avec le complexe d’action d’un sysleme de forces
agissant sur la partie mobile A.

112. On peul se placer & un point de vue un peu diffé-
rent pour interpréter les formules oblenues.
Si I'on considere les quantités X, Y, Z, L, M, N come
les coordonnées d’une droile, la relation
LX + MY 4+ NZ =0
élant, cela est bien enlendu, supposée vérifice,
@ =20
est celle d’un complexe quadratique évidemment formé par
les directrices de lous les complexes spéciaux qui sonl con-
tenus dans le systeme (@). Ce complexe possede de nom-
breuses propriélés qui le rapprochent aussi de lellipse
d’élasticilé des systemes plans el 'on peul monlrer, en
particulier, qu’il se réduit en définilive a la conique con-
jugée de celte derniére, lorsque le systeme considére est

I'équation

entlicrement conlenu dans un plan.
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Toute droite appartenant & ce complexe est, en effet,
une droite de déplacement nul, lorsque (I') se réduit & une
résultante unique ayant précisément cette droite pour ligne
d’action. D’autre part, les droites qui sont situées dans un
plan quelconque enveloppent une conique; et, comme cette
propriété subsiste dans le cas ot le systéme considéré est
plan, il résulte immédiatement des propriétés de la conju-
guée de ellipse d’elasticité, que cette derniére conique se
confond avec celle du complexe relative au plan du systeme.

113. La connaissance de tous les torseurs (£;) entraine
celle du systeme quadratique (@). Ce dernier sera donc par-
faitement représenté sur le plan /7, a l'aide des seuls élé-
ments représentatifs de ces lorseurs, ¢léments que I'on
détermine sans aucune peine, a 'aide des considérations
développées au cours de ce chapitre. Dans ces conditions,
I’étude graphique des déformations des systemes articulés,
pour lesquels chaque barre posséde un complexe opposeé,
est possible ; en revanche, son intérét est minime, étant

donné le peu de généralité des systémes auxquels elle est
applicable et la complexité des opérations qu’elle entraine.
Pour toutes ces raisons, nous n’insisterons pas davantage
sur ce sujet qui, actuellement du moins, ne peut offrir qu’un
intérét théorique.

114. Une derniere remarque doit encore étre faite.

L’existence du systéme (@) parait dépendre essentielle-
ment de celle des complexes opposés aux barres qui se dé-
forment. Il n’en est rien cependant, et 'on peut démontrer,
a l'aide du principe de la superposition des effets des forces
et d’une extension convenable du théoréeme de Maxwell sur
la réciprocité des déplacements, que I'on peut faire corres-
pondre & un ensemble de barres, dont aucune ne possede
un complexe opposé, un systeme quadratique jouant exac-
tement le méme role que (@). Mais nous ne pouvons donner
ici cellte démonstration qui n’a, d’ailleurs, aucun rapport
avec la méthode de Culmann.

/A suivre.)
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