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Calcul des ponts suspendus à

et sans hauban.

Par A. PARIS, ingénieur civil,
Privat-docent à l'Université.

Comme l'arc élastique à deux articulations, le pont
suspendu n'est qu'une fois statiquement indéterminé. Son

calcul se fait généralement par des méthodes analytiques,
basées sur l'hypothèse de déformations insignifiantes du

câble raidi, supposition qui n'est admissible que pour une

poutre raidissante suffisamment forte pour bien répartir
les charges, et qui ne permet que son calcul approximatif.

Nous nous proposons de rechercher une méthode tenant

compte de la solidarité du câble et de la poutre et permettant

de fixer leurs dimensions par un calcul unique. Nous

admettrons du reste l'hypothèse des déformations
négligeables, comme dans les autres systèmes hyperstatiques.

La différence fondamentale de notre système avec l'arc
élastique sans tympans vient de ce que, dans ce. dernier,
l'arc supporte à lui seul les poussées normales comme les

moments fléchissants qu'elles occasionnent. La poutre sous

chaussée n'est supposée là que pour transmettre les charges

sur les montants verticaux reposant sur l'arc. Sa résistance
à la flexion est négligée. Dans le pont suspendu, au
contraire, le câble, susceptible de supporter de grands efforts

longitudinaux de tension, est incapable de résister à un
effort de flexion appréciable. Toutelarésistanceàla flexion
est demandée à la poutre raidissante par le câble déforma-
ble. On ne considère dès lors pas les nœuds de la membrure

droite comme articulés. On ne peut, au contraire,
calculer les déformations élastiques qu'en tenant compte
de leur résistance à la flexion, condition de stabilité du

système.
Notre épure représente ce système, articulé sur les piles

A et B. Le câble est ancré dans le sol à une certaine
distance et nous étudierons plus loin l'influence de ces

ancrages. Nous admettrons d'abord les attaches A et B fixes.

Comme les appuis (A) et (J5) de la poutre se trouvent en

avant des piles, nous reporterons les articulations en A* et

son symétrique B*, ce qui n'a pas d'influence, vu le peu

d'élasticité du câble et nous supposerons les appuis (A) et

(B) remplacés par des suspensions a.

Nous décomposons les réactions obliques R et R' du
câble dans leurs éléments verticaux Vet Vet horizontaux

± H. La composante //suivant la corde A* S* pourrait être

oblique en cas de disymétrie. Pour la commodité, nous

avons fait la décomposition en A, mais nous introduirons
dans le calcul les valeurs relatives à A*. Les composantes
verticales élant statiquement déterminées, nous recherchons

la ligne d'influence de la tension H. Pour cela, nous
faisons agir une force //= P dans la corde A* B* et nous
traçons les deux lignes élastiques verticale et horizontale
du système d'une manière analogue à celle exposée par le

Professeur W. Ritter pour l'arc élastique.
Une section X verticale intéresse un élément s de la

poulie et l'élément correspondant t du câble. La poutre et

le câble ont des coefficients d'élasticité E et E', qui peuvent

être très différents, suivant les matériaux. Nous
nommerons / le moment d'inertie de la poutre et F la section

utile du câble.
La force H se décompose en deux forces S et T agissant

dans les éléments de la construction. La force 2'du câble

est centrée, l'autre composante S, résultat des actions a, b,

«offest verticale et passe par l'intersection de T et H. Son

moment fléchissant par rapport au centrede l'élément s est

donc égal à // ?/, différence des moments de H et T. Ce

moment provoque une déformation angulaire du segment
de poutre égale à H g y, où g s : E /est le poids élastique

de l'élément s. Sous l'influence de cette déformation,
le point A" se déplacera et la corde A* B* s'allongera. Mais

le câble, ne pouvant se disjoindre dans la coupe X, fera

pivoter les barres a, ,b et c et le déplacement de A* sera

a g y y
+ d

H gif
La déformation longitudinale du câble provoque un

second déplacement relatif de A* et B*. La force agissant est

T— H. h : r, et l'allongement horizontal de la barre t est

\H h t : r E' F] cos a, où cos a est égal à h\r, ce qui donne

// ha-1 : E' F i%

déplacement qui se transmet intégralement en A".

La déformation des tiges de suspension a une influence

négligeable, comme généralement du reste celle du câble

lui-même, comme nous le verrons par la suite.
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Posons maintenant par analogie avec l'arc à deux
articulations

ws g y et wt =t h : E' Fr*
ou wt et ws sont les angles de rotation provoquant les

déplacements relatifs de A* et B". Nous considérons ces
angles comme poids élastiques relatifs aux divers éléments de

poutre et de câble et les faisons agir aux centres de rotation
correspondants, soit au milieu des barres du câble le poids
ws relatif au segment de poutre sous jacent et au milieu
des segments de poutre celui wt, qui provient du câble

superposé.

Nous avons à rechercher maintenant deux lignes
élastiques. Premièrement, nous traçons la ligne élastique AiBl
de la poutre, pour déterminer le déplacement vertical du

pied des charges mobiles. Pour cela, nous faisons agir
verticalement les seuls poids ws, angles de déformation de la

poutre. Nous prenons une distance polaire c, et la choisissons

égale à la somme 2 (ws + wt) de tous les poids
élastiques. Le déplacement du pied d'une force P sous
l'influence de I/:=lf sera donc égal à c{. z, puisque les angles
ws sont divisés par la distance polaire c\.

En second lieu, nous traçons Ja ligne élastique horizontale

du système entier pour calculer l'allongement de la
corde A* B* sous l'action de R=\t. Nous faisons donc agir
tous les poids, soit ws et wt, horizontalement et les
coordonnons par un polygone funiculaire de distance polaire c2.

Nous obtenons ainsi sur la corde A* B* un segment 2. c2. e

m S (w), où m est l'ordonnée du centre S des poids élastiques

sous A* B*. Il résulte du théorème de la réciprocité,
qui veut que l'allongement de A* B*, sous l'influence d'une
force P unitaire, soit égal au déplacement vertical de P
sous l'influence de la force H suivant A* B*, l'équation

P ct z E m S (w)

soit, puisque c4 2 (w)

H — P. m

Comme dans l'arc, le polygone At B{ est la ligne
d'influence de la tension H, mais avec cette différence que si
les poids wt du câble ne sont pas négligeables, la distance
polaire ci est plus grande que la somme 2 (wa) des poids
élastiques de la poutre. Il en résulte une diminution de la
tension en cas de faible coefficient d'élasticité du câble.

Le point F d'intersection de la réaction totale R avec la
ligne m se détermine, par raison d'équilibre, les compo-

z isantés étant P — et P .—r, en prolongeant dans le pornl ' * B f
lygone At B{ la ligne Bi P{ jusqu'à son intersection avec la
verticale A±. Elle y intercepte le segment z' qu'on relève,
et qui donne verticalement le point F. Les réactions
successives donnent la ligne KK des intersections.

Le moment fléchissant dans une section X' de la poutre
a pour ligne d'influence la somme algébrique du triangle
des actions verticales statiques et de la courbe due à la
tension H. Pour que le moment s'annule, il faut que la réaction

R coupe le câble dans la section X'. Le point nul de

[d. surface d'influence est alors verticalement sous l'inter¬

section de cette réaction avec la ligne KK. Son sommet se

trouve sous la section X'.. Nous pouvons donc la tracer.
Pour calculer l'échelle de cette surface, nous avons l'ordonnée

ri de son sommet, qui représente le moment 1* x.x': l
d'une force P 1« agissant en X' sur la travée libre du
câble.

Les lignes d'influence des efforts dans le câble et les

tiges de suspension b, c, etc., dépendent seulement de celle
de la tension H. Pour savoir dans quelle proportion, on
fait agir en A" et B* une force H—V- et l'on cherche son
action dans les éléments successifs du câble,. Les composantes

verticales du polygone H Ie donnent les efforts
des suspensions et pour la barre c par exemple, nous avons
l'effort

C P .— 4-.
m 1

Le maximum de H donne le maximum de toutes ces
forces.

La réaction d'appui de la poutre, soit la force a du sus-
pensoir fictif, est égale à la réaction verticale totale V en
A* diminuée de la composante verticale à fournir par le
câble 1.

Le calcul des forces transversales agissant dans la poutre

.raidissante dépend aussi du polygone H= "P. La force
Q{, du premier champ, soit la réaction d'appui elle-même,

est égale à P Il m 1 J

a' T k
Qi P ¦ — \-r ¦ ™1 m L i

soit

_1_
' a'

On trouve l'ordonnée v, de cette surface sous A{ en
faisant & J. On mesure alors vi dans le polygone H 1

comme abcisse du segment vertical, égal à m, intercepté
entre l'horizontale H et le rayon 1. L'échelle de cette surface

d'influence est alors a'\m où al se mesure à l'échelle
des longueurs comme m, si la distance H i est l'unité
de longueur, et l'on a

a

mQ1=(A)=P(a)
On aurait de même

a' — b

en portant sous A{ le segment vt déterminé dans le polygone

H 1 par le rayon 2. L'influence de la force H y est

diminuée par l'augmentation de v. Vers le milieu, la droite
se redresse, pour s'incliner en sens inverse dans la seconde

moitié de la travée.

Comme on le voit, les lignes d'influence indiquent des

moments négatifs pour certains cas de charge, ainsi que
des réactions négatives d'appui (A). Si les charges fixes ne

pouvaient équilibrer ces réactions négatives d'appuis, il
faudrait effectivement prévoir la suspension a, faute de quoi
l'état d'équilibre du système ne serait plus ce que le calcul
donne dans l'hypothèse de barres rigides.

Influence de la température. Une élévation de température

de t° produit un changement de distance entre A*
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et B" égal katl. Si l'allongement est positif, il s'ensuit une

diminution Tdela tension horizontale, soit T .m 2(iv)
atl le déplacement, ce qui donne

A T= v.l I : m 2 (w).

Appuis élastiques et continuité. Si au lieu d'un ancrage

fixe du câble raidi, nous trouvons en A l'extrémité d'un

câble d'ancrage ou d'une nouvelle travée suspendue, la

force H sera diminuée par le déplacement élastique du

chariot. Ce déplacement devant s'ajouter dans l'épure au

segment e mesuré sur la corde A*B% il en résulte une

augmentation de l'ordonnée m du centre S qui se trouve

reporté en S'. Cette augmentation de m à m' est

proportionnelle à la diminution de H. Nous avions trouvé comme

déplacement la valeur 2c2e, le polygone n'intéressant que

la moitié du système, vu la symétrie. Supposons nos deux

appuis élastiques. S'ils le sont inégalement, nous compléterons

notre polygone funiculaire. Sinon, et c'est ce que

nous supposons ici, nous nous bornerons à la moitié.

Soit Hg& le déplacement horizontal infligé à l'appui A

par la force //cherchée. Pour le porter au dessin à la même

échelle que l'allongement A* B*, nous le divisons par la

distance polaire c2, ce qui nous donne comme segment

additionnel
e' g i2 : r2

et c'est par l'extrémité du segment agrandi que nous

menons une parallèle à la tangente extrême. Le point d'intersection

avec la verticale de symétrie, soit avec l'autre

tangente déplacée ou non, nous donne la nouvelle valeur m'

à attribuer à m. La réaction horizontale sera dès lors

TI — P - : m'

où m' est plus grand que m, du fait de l'élasticité des

appuis. Nous ne possédons du reste de ces éléments d'appuis

que le produit gi*, c'est-à-dire le déplacement. Si nous

voulons en déduire le poids élastique de forme gi, nous

trouvons une valeur nulle, le rayon degiration i étant

infiniment grand. C'est pourquoi l'on doit mener une parallèle

au dernier côté de la ligne élastique. La somme des poids

w ne change pas, mais bien leur moment statique qui aug.

inente de g i2 et fait descendre le centre de gravité S.

Exemple numérique. Nous avons appliqué la méthode

qui précède au calcul du pont suspendu de Langenargen

au lac de Constance, et c'est lui qui nous a fourni les don.

nées de notre épure.
Le câble a une section métallique de 80 cm2. La poutre

raidissante a comme membrure supérieure un fer à U PN 18

et comme membrure inférieure une section en T ayant une

âme de 200.6 mm., 2 cornières inégales PN 6 4/2.10 et une

semelle de 210. (3 mm. Le moment d'inertie de la poutre

entière est de 134900 cm4. Le coefficient d'élasticité est de

2150 t/cm2 tant pour le câble que pour la poutre.
Les éléments we de la poutre ont donné les valeurs 0,78,

1,85, 2,85, 3,75, 4,60, 5,35, 5,95, 6,45, 6,95, 7,30, 7,55 et

7,70, le tout multiplié par 10-* et en allant des segments

1 à 12. La somme est

2 (ws) — K»-* 61,08 cm" t-1

pour la moitié de la poutre.

Les éléments wt du câble ont donné comme somme

2 (wt) 10—* 0,24,

soit une valeur négligeable à côté delà première. Les

polygones funiculaires n'ont pu en tenir compte. La somme
est

2'(w) 10-* 61.32 ¦

pour le demi-arc. La distance polaire c4 est prise égale à

2 X 61,32 .10—4 et la distance c2 est égale à 50.10—i cm01-'.

L'ancrage est élastique et donne, avec la section de

câble indiquée et une longueur horizontale de 17m,50, un

déplacement horizontal

J h =z 1750 : 2150 80 10~2 1,02 cm» t-«

et nous portons la longueur dh : c2, soit

e' 1,02 IO-2 : 50 10~* 2,04 cm.

Cette longueur e' est trop petite à l'échelle pour paraître

sur l'épure, nous l'avons fortement majorée pour
différencier m'de w. Mais de fait, l'ancrage est rigide. Seulement

sa présence augmente les allongements dus à la

température, qui se calculent sur la longueur totale de 98 m.

Pour 25° d'écart, nous avons un allongement de 1/3240 soit

3,03 cm. L'allongement A* B* pour H P est

m' 2 (w) 740 2 61,32 10-* 9,1 cm.

et nous trouvons comme tension

3"= 3,03 : 9,1=0,34».
Cette valeur très faible provient de la légèreté de la

poutre raidissante, trop déformable.

Les installations électriques pour l'exploitation

et l'éclairage dans le grand tunnel du Simplon.

ParE. ROD,

inspecteur des télégraphes aux G. F. F.

Indépendamment de la traction électrique, l'équipement
du tunnel du Simplon a exigé l'installation, tant dans le

tunnel lui-même que dans les gares de Brigue et d'Iselle,

de nombreux appareils électriques pour la correspondance,

les signaux, le contrôle de la marche des trains et l'éclairage.

Pour ces installations, on a posé 4 câbles de Brigue à

Iselle et un certain nombre de câbles locaux dans ces deux

gares ainsi qu'à la station d'évitement du tunnel.

I. CABLES

1. Câbles pour appareils à faible courant, reliant les garés

de Brigue et d'Iselle.

Ils sont au nombre de trois, savoir:

un câble pour le télégraphe;
un câble pour le téléphone kilométrique, les cloches-

signaux et divers autres appareils;

un câble pour le bloc-système, utilisé en outre pour une

communication téléphonique directe.

Dans l'étude de la question, on avait envisagé

l'éventualité, qui s'est réalisée dès lors, de la traction électrique à
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