Zeitschrift: Bulletin technique de la Suisse romande

Band: 32 (1906)

Heft: 18

Artikel: Quelques problèmes spéciaux tirés du domaine des turbo-machines

hydrauliques

Autor: Neeser, R. / Siegmund, R.

DOI: https://doi.org/10.5169/seals-25587

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 09.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Bulletin technique de la Suisse romande

ORGANE EN LANGUE FRANÇAISE DE LA SOCIÉTÉ SUISSE DES INGÉNIEURS ET DES ARCHITECTES. — Paraissant deux fois par mois.

Rédacteur en chef: M. P. HOFFET, professeur à l'Ecole d'Ingénieurs de l'Université de Lausanne.

Secrétaire de la Rédaction : M. F. Gilliard, ingénieur.

SOMMAIRE: Quelques problèmes spéciaux tirés du domaine des turbo-machines hydrauliques (suite et fin), par M. R. Neeser, ingénieur, protesseur à l'Université de Lausanne. — Une restauration utilitaire, par M. John Landry, architecte à Yverdon. — Divers: Tunnel du Simplon. Extrait du XXXIº rapport trimestriel sur l'état des travaux au 30 juin 1906. — Tunnel du Ricken. Bulletin mensuel des travaux (extrait): août 1906. — Expériences sur l'emploi des condensateurs électriques à haute tension pour la protection des réseaux. — Bibliographie: Mitteilung der Eidgen. Materialprulungsanstalt am Schweiz Polytechnicum, in Zürich. X. Heft. Resultate der Untersuchung von armiertem Beton auf reine Zugfestigkeit und auf Biegung unter Berücksichtigung der Vorgänge beim Entlasten. — Statistique du matériel roulant des chemins de fer suisses. Etat fin 1905. — Société suisse de propriètaires de chaudières à vapeur. Rapport sur l'exercice 1905 (extrait) (suite et fin). — Température du sol. — Tunnel sous la Manche. — Fendillement des surfaces de béton. — Meunerie ancienne et moderne. — Concours: Hôtel du Pont et Terminus, à Vevey. — Association amicale des anciens élèves de l'Ecole d'Ingénieurs de l'Université de Lausanne: Offres et demande d'emploi.

Quelques problèmes spéciaux tirés du domaine des turbo-machines hydrauliques.

Par M. R. NEESER, ingénieur, professeur à l'Université de Lausanne, avec la précieuse collaboration de M. R. SIEGMUND, ingénieur à Milwaukee, Amérique.

(Suite et fin) 1.

F. Détermination de l'arête d'ouverture maximum.

Nous avons trouvé plus haut qu'il faut et qu'il suffit pour qu'une arête de sortie soit une arête d'ouverture maximum, que l'intersection J L du plan R T, tangent à l'aube en J, et du plan axial E_i E_i , soit en tous les points de l'arête normale au filet liquide r correspondant.

Supposons fixée l'une des courbes a b c ou A' B' C' définies plus haut, le profil a b c par exemple (fig. 17), et déterminons l'autre, A' B' C', de façon que la condition du maximum de l'ouverture a_{2i} soit satisfaite pour toute l'arête A B C.

Le plan R T en un point quelconque J de l'arête est fixé par deux droites : la tangente à la trajectoire relative du point J, et la trace J L, perpendiculaire à r, des plans R T et E_i E_i . Mais ce plan tangent R T contient évidemment la tangente T à l'arête de sortie ; or, comme nous connaissons la projection t, tangente à a b c, de T sur E_i E_i , il ne sera pas difficile de déterminer l'angle γ de T et du plan E_i E_i (\checkmark de T et t), et par suite l'autre projection orthogonale t' de T sur un plan P perpendiculaire à O_1 O_2 . Nous aurons ainsi fixé la direction sous laquelle la courbe cherchée A' B' C' doit couper la trace O' J' des plans E_i E_i et P.

Il suffira, pour résoudre le problème, de mener par t le plan projetant T t de T sur E_i E_i (fig. 17), d'en déterminer l'intersection T avec R T, et d'opérer le rabattement (T) de T autour de t sur E_i E_i ; on aura en (T) J t, l'angle γ cherché.

Nous obtiendrons facilement un point K' du rabattement de T, comme suit :

Menons par un point H_1 , choisi arbitrairement sur r, un plan auxiliaire perpendiculaire au plan E_i E_i , et dont la trace H_1 K_1 L sur E_i E_i soit, par exemple, perpendiculaire à t. Ce plan auxiliaire coupera le plan R T suivant

une droite HL, dont nous connaissons un premier point L; nous allons en déterminer un second, H, par exemple, (H" dans le rabattement), qui, puisqu'il a sa projection en H_1 sur r, sera situé sur R.

Or le triangle J H_1 H est évidemment rectangle en H_1 ; l'angle H_1 H J, de H_1 H $(-u_{2i})$ et de H J (w_{2i}) , est l'angle β_{2i} donné par le diagramme de sortie du point J; il est donc possible de construire en J H_1 H' le rabattement du triangle J H_1 H sur E_i E_i . La distance H_1 H' = H_1 H, fixe la position du point H dans l'espace et nous fournit un second point de l'intersection H L du plan R T et du plan auxiliaire H_1 K_1 L. Rabattons maintenant ce dernier autour de H_1 L; nous obtiendrons en H'' L le rabattement de H L, et par suite en K J K_1 ou K' J K_1 (rabattement de K J K_1 autour de J K_1), l'angle γ .

La projection de γ sur le plan P perpendiculaire à O_1 O_2 , (voir les opérations 12 à 14), nous donne en γ' l'angle que doit faire en J', avec le plan axial O' J', la tangente t' à la courbe cherchée A' B' C'.

En répétant ces opérations pour différents points $1, 2, 3, \ldots$ de a b c, nous obtiendrons les projections $\gamma'_1, \gamma'_2, \gamma'_3, \ldots$ sur le plan P, des angles $\gamma_1, \gamma_2, \gamma_3, \ldots$; il ne nous restera plus qu'à tracer dans ce plan P une courbe A' B' C', telle que ses tangentes t' aux points 1', 2', 3',.... correspondant à $1, 2, 3, \ldots$ de a b c, fassent avec chacun des plans méridiens O' 1', O' 2', O' 3'.... les angles γ_1' , γ_2' , γ_3' que nous venons d'obtenir.

La courbe d'intersection A B C de la surface de sortie a b c et du cylindre droit construit sur A' B' C', sera une arête d'ouverture maximum.

Il va de soi que l'on pourrait aussi partir de la courbe A' B' C', et déterminer a b c de façon à obtenir en A B C une arête qui donnât aussi le maximum d'ouverture. La solution resterait la même ; seul, l'ordre des opérations serait, en partie du moins, interverti.

Cas particuliers.

 $1^{\rm o}$ Nous allons reprendre le cas particulier où l'arête $A\ B\ C$ est contenue toute entière dans un plan axial, c'est-à-dire où :

 $\gamma = 0$

pour tous les points de sortie.

 $^{^{1}}$ Voir N° du 10 septembre 1906, page 193.

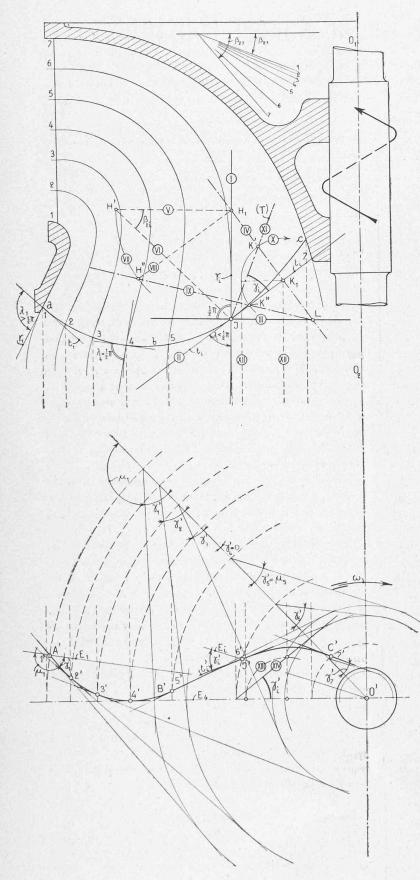


Fig. 47. — Arête d'ouverture maximum. Cas général.

Nous savons déjà qu'alors la tangente t se confond avec la trace J L des plans R T et E_i E_i . Si donc l'arête de sortie doit être une arête d'ouverture maximum, il faudra que cette trace t soit en tous les points de sortie perpendiculaire à r:

L'arête d'ouverture maximun assujettie à être située toute entière dans un plan axial est, par conséquent, une trajectoire orthogonale des filets liquides.

On s'efforcera donc, dans ce cas particulier, de choisir comme arête de sortie une de ces trajectoires orthogonales, a b_1 c_1 par exemple (fig. 16), ou du moins une courbe s'en rapprochant autant que possible. On ne peut en effet pas toujours s'en tenir exactement à la trajectoire orthogonale, à cause des difficultés de construction ou d'exécution que ce choix pourrait entraîner; mais il est très facile de se rendre compte jusqu'à quel point on peut s'en écarter, sans diminuer trop le débit de la turbine. Il suffit d'examiner l'influence de l'angle φ sur les grandeurs β'_{2i} et ψ_{2i} données par les équations :

et $\lg \beta'_{2i} = \sin \varphi \, \lg \beta_{2i},$ $\psi_{2i} = 1 - \frac{\delta i}{t_{2i} \sin \beta'_{2i}}.$

On constate ainsi que, si φ est assez voisin de $\frac{\pi}{2}$, sin φ diffère peu de 1; β_{2i} et ψ_{2i} seront peu diffèrents de leur maximum respectif. Le débit de la turbine n' en souffrira pas beaucoup.

Cette conclusion est d'autant plus exacte que tg β_{2i} et par suite β_{2i} seront grands; or cette condition est en général satisfaite pour les points de l'arête voisins de l'axe de la turbine, c'est-à-dire justement dans la région où, pour les raisons indiquées ci-dessus, il est souvent impossible de satisfaire à la condition du maximum de ψ_{2i} :

$$\varphi = \frac{\pi}{2}$$
.

Grâce à cette heureuse coïncidence, il sera possible de choisir tout de même au besoin, comme arête de sortie, une courbe telle que pour les points voisins de l'axe 0_1 0_2 , φ soit un angle aigu:

$$\varphi < \frac{\pi}{2}$$
,

sans que le débit de la turbine subisse, de ce fait, une diminution trop sensible.

Une conséquence immédiate de ce qui précède, c'est que, dans le cas d'une turbine Francis normale (fig. 16), où $\gamma = 0$, il est absolument inutile, voire dangereux, de choisir une arête de sortie se prolongeant très avant dans la direction du diffuseur, comme a b' c par exemple. Si l'aubage est bien construit, c'est-à-dire si la perte à la sortie doit atteindre la valeur prévue au début (voir équation 8, page 151), ou, ce qui revient au même, si les angles β_{2i} des trajectoires relatives et des vitesses périphériques à la sortie de l'aube doivent correspondre à ceux donnés par les diagrammes (fig. 7), l'arête a b' c fournira certainement des coefficients d'ouverture ψ_{2i} , et par suite un débit

$$Q = \pi \Sigma (D_{2i} \Delta_{2i} \downarrow_{2i} c'_{2i})$$

inférieur aux valeurs qui résulteraient d'une trajectoire orthogonale, ou d'une courbe voisine. En outre, l'arête prolongée $a\ b'\ c$ donnerait naissance à une aube très longue, c'est-à-dire à une surface mouillée inutilement grande.

On constaterait de même, en résolvant quelques exemples concrets, que, même dans le cas d'une turbine évasée, où $D_{2\alpha} > D_1$, il n'est pas avantageux de trop s'écarter de la trajectoire orthogonale (si $\gamma = 0$, bien entendu); car, bien que les facteurs D_{2i} et Δb_{2i} augmentent de valeur, les coefficients ψ_{2i} diminuent et le débit Q diminue en général lui aussi, à mesure qu'on s'écarte de l'arête d'ouverture maximum.

Le choix d'une arête de sortie donnant lieu à une trop grande variation de la valeur de \mathcal{L}_{2i} aurait encore un autre inconvénient. Nous avons en effet admis, au début de cette étude, une répartition des filets liquides telle que chacune des turbines partielles ainsi obtenue débite la même quantité d'eau; or cette répartition des filets liquides ne conserve son exactitude première que si les coefficients d'ouverture de chaque turbine partielle ont la même valeur. Si ce n'était pas le cas, comme on pourrait le prévoir par exemple si l'arête de sortie différait beaucoup de la trajectoire orthogonale, il faudrait procéder à une nouvelle répartition des turbines partielles et par suite à un nouveau contrôle du débit de la turbine. Ce contrôle est par contre parfaitement superflu si l'on utilise l'arête d'ouverture maximum ou une courbe très voisine, car alors les coefficients ψ_{2i} varient fort peu d'un point à un autre de l'arête.

$$2^{\circ}$$
 $\gamma \neq 0$.

Si, comme nous venons de le voir, il est facile de fixer le caractère géométrique de l'arête d'ouverture maximum dans le cas où elle est située toute entière dans un plan méridien, il n'en est plus de même lorsque cette condition n'est plus satisfaite, c'est-à-dire lorsque la projection A'B'C' de ABC sur un plan P perpendiculaire à O_1O_2 est, soit une droite qui ne rencontre pas l'axe, soit une courbe quelconque. L'arête d'ouverture maximum est alors une courbe plane ou gauche, sans caractère géométrique bien accusé. Nous en indiquons toutefois quelques propriétés caractéristiques, qui faciliteront la recherche d'une arête de sortie rationnelle.

Dès que ABC n'est pas située dans un plan axial, il n'y a évidemment plus de raison immédiate de choisir le profil abc suivant une trajectoire orthogonale des filets liquides; il faudra au contraire s'en écarter si la condition du maximum de ψ_{2i} doit être satisfaite.

Or nous avons vu qu'à chaque profil $a\,b\,c$ correspond une seule projection $A'\,B'\,C'$ déterminant avec la surface de sortie $a\,b\,c$ une arête d'ouverture maximum; ces courbes $a\,b\,c$ et $A'\,B'\,C'$ doivent satisfaire à certaines conditions géométriques (voir chapitre F), dont il est facile de déduire entre autres les résultats suivants :

Appelons comme précédemment (chapitre C, fig. 9): λ , l'angle compris entre les projections r et t de R et T sur E_i E_i , et compté à partir de r vers t dans le sens du mouvement des aiguilles d'une montre ;

 μ , l'angle compris entre la projection t' de T sur le plan P perpendiculaire à O_1 O_2 et le plan méridien E_i E_i , compté à partir de t' vers le plan E_i E_i dans le sens de la rotation ω de la turbine.

Ces angles λ et μ ainsi définis devront, si l'arête A B C doit être d'ouverture maximum, satisfaire à la condition :

$$\cos \lambda \cos \mu \ge 0;$$
 33)

ils doivent donc être tous les deux simultanément ou obtus ou aigus.

Il suffit, pour constater l'exactitude de ce résultat, d'appliquer les conclusions du chapitre F (fig. 17) à chacun des quatre cas résumés sous fig. 9, qui nous donnent le schéma de toutes les positions relatives de R et T.

Supposons, comme illustration de ce qui précède, qu'il s'agisse de déterminer l'arête de sortie d'une turbine quelque peu forcée, où (fig. 15):

$$D_{2a} > D_1$$
.

Soit C, la projection du point extrême C de A B C situé sur le profil intérieur de la roue. Soit en outre E' C' l'intersection de l'aube et du plan E C passant par C et perpendiculaire à l'axe O_1 O_2 ; cette intersection, déterminée au moyen des angles β_1 et β_{2c} (fig. 7), et en se servant des considérations générales exposées au commencement du chapitre C (page 162), fixe approximativement la position de l'arête d'entrée E' de la turbine. Reste maintenant à choisir l'arête A B C, c'est-à-dire les courbes a b c et A' B' C'.

Il est certainement avantageux, voire nécessaire, de choisir le point extrême A' de A B C, situé sur le profil extérieur 1-1 de la roue mobile, aussi près que possible de E'. On obtient ainsi, délimité par la couronne extérieure 1-1 et deux aubes consécutives quelconques, un canal E' A' E_1' A_1' , qui, grâce à sa faible longueur, n'oppose que peu de frottement au passage de l'eau. A ce premier avantage s'en ajoute un second, bien précieux aussi.

Supposons en effet qu'on choisisse l'arête A B C dans le plan méridien A'' C' O'; il sera très difficile, souvent même impossible, à moins d'augmenter démesurément la hauteur axiale l de la couronne extérieure, d'obtenir un canal $E' A'' E_{1}' A_{1}''$ dont la section normale décroisse constamment de E' vers A'; cette difficulté, bien connue des constructeurs de turbines Francis, existerait même dans le cas, pourtant favorable, où le profil extérieur 1-1 serait un cylindre 1-1'.

Supposons en effet (fig. 15a) qu'il faille réunir, sur le cylindre 1-1' développé, les arêtes d'entrée E' et E_1' aux trajectoires relatives R et R_1 de A'' et de A_1'' ; il faudra, si l'on veut éviter l'étranglement du canal en K, augmenter sa hauteur axiale de l à l', ou, si l'on tient à conserver l, choisir comme arête d'entrée la partie supérieure de la courbe E' A'', comprise entre le point E' et la couronne extérieure de hauteur l. (Ce dernier moyen, comme aussi le choix d'arêtes d'entrée obliques, est du reste excellent, parfois même le seul qui permette d'obtenir une surface d'aube à courbure suffisamment douce). Les trajectoires relatives R et R_1 assurent au canal une section allant sans

cesse en diminuant de E vers A, la vitesse relative croîtra par conséquent d'une façon continue de la valeur w_1 en E, à la valeur w_2 en A.

Mais on pourrait obtenir le même résultat en rapprochant les points de sortie A'' et A_1'' des points d'entrée E' et E_1' ; le canal A' E' A_1' E_1' ainsi déterminé aurait sur le précédent l'avantage incontestable d'être beaucoup plus court, c'est-à-dire, d'offrir à la veine liquide une surface mouillée plus faible.

Admettons maintenant que le canal extérieur soit limité non pas par le profil cylindrique 1-1', mais par le filet liquide divergent 1-1; la difficulté que nous venons d'énoncer s'accroît encore du fait que, la trajectoire relative se rapprochant de l'axe O_1 O_2 si l'on va de A vers E, le pas de l'aubage diminue et le danger d'étranglement dans le voisinage de K augmente encore. Il est alors de toute nécessité de rapprocher les points A et E. La valeur de l'angle $\delta = E'$ O' $A' = E_1'$ O' A'_4 dépend d'une série de facteurs, tels que le pas des aubes, le rapport $\frac{D_2}{D_1}$, la hauteur l et la

forme de la couronne extérieure, l'angle β_{21} , etc., etc.; nous recommandons toutefois comme première approximation de le choisir à peu près comme suit :

$$\hat{\delta} = (1, 3 \text{ à } 2, 0) \epsilon = (1, 3 \text{ à } 2, 0) \frac{t}{\pi D_1}$$

Supposons donc fixée la projection A' de A; il nous reste encore à réunir C' et A'.

On pourrait choisir l'arête A B C dans le plan A'B'C'; seulement, pour les points de sortie voisins de l'axe, comme C par exemple, on aurait :

$$\cos \lambda_c \cos \mu_c < 0$$
 car $\lambda_c < rac{\pi}{2}$ et $u_c > rac{\pi}{2}$;

l'arête ainsi obtenue ne saurait se rapprocher d'une arête d'ouverture maximum, puisqu'elle ne satisfait pas en C à la condition 33; elle ne conviendrait donc pas pour une turbine forcée. Il faudrait plutôt, puisque dans le voisinage de C

$$\lambda c < \frac{\pi}{2}$$
,

choisir t' de façon que

$$\mu c < \frac{\pi}{2};$$

l'arête devrait par conséquent sortir du plan axial O'A''. Mais, pour réunir C' à A' de façon que A' B' C' soit en C' tangente à t', on utilisera en général une courbe S' telle qu'en A' l'angle $\mu_{A'}$ de t' et du plan axial A' O' satisfasse toujours à l'inégalité :

$$\mu_{\text{A}} > \frac{\pi}{2}$$
.

Si donc l'arête A B C doit, dans le voisinage de ce point, se rapprocher de l'arête d'ouverture maximum, il faudra d'après l'équation 33 que :

$$\lambda a > \frac{\pi}{2};$$

le profil a b c sera, dans le voisinage de a, situé a l'extérieur de la trajectoire orthogonale. La valeur des angles $u_{A'}$ et λa , c'est-a-dire la direction des tangentes t et t' est déterminée exactement par la construction indiquée sous figure 17.

Ainsi, le profil a b' c (fig. 15) situé à l'extérieur de la trajectoire orthogonale a b_1' ... qui, dans le cas où $\gamma=0$ doit être si possible évité parce qu'il ne donne pas le maximum d'ouverture, recouvre tous ses droits dès que la projectoire A' B' C' de A B C peut être choisie comme nous venons de l'indiquer.

Nous jugeons inutile de poursuivre l'étude des différents cas particuliers qui peuvent encore se présenter. Ceux que nous venons de traiter suffisent, nous l'espérons du moins, à faire comprendre l'importance du choix de l'arête A B C ou, ce qui revient au même, des profils a b c et A' B' C'.

CONCLUSIONS

En résumé, une arête de sortie rationnelle devrait se rapprocher autant que possible d'une arête de débit maximum et satisfaire par conséquent aux conditions suivantes:

1° si
$$\gamma = 0$$

c'est-à-dire, si l'arête A B C est située dans un plan méridien, on s'efforcera de la choisir selon une trajectoire orthogonale des filets liquides, ou une courbe qui s'en écarte aussi peu que possibte;

$$2^{\circ}$$
 si $\gamma \neq 0$,

c'est à dire, s'il s'agit d'une arête A B C gauche ou située dans un plan qui ne contienne par l'axe O_4 O_2 , les propriétés géométriques de l'arête de sortie rationnelle ne se résument plus en une formule aussi simple que dans le cas précédent; on choisira les profils a b c et A' B' C' de façon qu'ils satisfassent autant que possible, en tous leurs points, à la condition du maximum d'ouverture (Chap. F, fig. 17), et, en particulier, à la condition:

$$\cos \lambda \cos \mu \geq 0$$
.

Une restauration utilitaire.

Les autorités municipales d'Yverdon ont installé, vers 1840, les écoles publiques dans le vieux Château bâti par Pierre de Savoie. Désirant utiliser certains emplacements vacants, elles ont fait étudier par M. l'architecte Isoz un projet prévoyant les nouvelles salles qui devenaient nécessaires. Toute idée de restauration était restée étrangère à ce projet, qui fut soumis à l'approbation du Service des monuments historiques, le Château d'Yverdon étant un édifice classé. M. l'archéologue Næf demanda que les murs du Château fussent préalablement explorés et piqués au vif. Cette exploration fit découvrir une série d'anciennes baies, de créneaux, etc., et, entre autres, les restes d'une fenêtre ogivale éclairant jadis la chapelle du Château.

Sur ces indications, la façade entière fut restaurée et la fenêtre ordinaire, prévue au projet, remplacée par la fenêtre dont nous donnons le dessin, étudié par M. Isoz et reproduit