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Méthode générale de calcul de la poutre continue

sur appuis élastiques.

Par M. A. PARIS, ingénieur civil.
Privat-Docent à l'Université de Lausanne.

(Suite/1.

VIII. TEMPÉRATURE, DEPLACEMENT DES APPUIS

ET FREINAGE DES TRAINS

1° Action de la température. Dans le cas d'actions
verticales A* et R1 sur les appuis g et d, nous obtenions

une variation J A R de la distance des appuis. Cette variation

nous permettait de calculer la réaction W agissant
suivant AR. En cas de changement de température, ce

n'est plus la distance Ag Ra qui varie, mais, ce qui revient
au même, la longueur l de la travée à intercaler dans cette

distance.
Au chapitre II, où nous avons étudié la force W, nous

avons trouvé, pour son action sur la travée et ses appuis,
l'expression

JAR=W[gg ya fg + gd yd fd + â h] W À

où â h a l'une des deux valeurs 3).
Si nous remplaçons â AB par

Al=z±:atl
nous obtenons la formule

20) ÀW =±a.t°.l
équation qui nous donne la valeur de W.

Considérons maintenant le cas de dilatation, positive ou

négative, d'une pile.
Soit Ah le changement de hauteur du point d'appui

Ap. Pour annuler les efforts produits de ce fait dans la

construction, nous devons couper la poutre deux fois au

dtoit de la pile considérée, soit à droite et à gauche de la
section d'appui, ainsi qu'aux extrémités des deux travées

adjacentes. Nous obtiendrons de ce fait 4 angles 0 de

déformation, deux sur la pile considérée avec les tangentes en
ce point à la travée, et deux à l'autre extrémité des travées

1 Voir N° du 25 mars 1905, page 80.

adjacentes. Comme ci-dessus, nous mesurons ces angles à

la distance l, égale à la portée horizontale de la travée

intéressée.

Une fois ces 4 angles connus, leur commune mesure
étant la dilatation ±Ah, on opère séparément pour chaque
travée. On commence par remettre en position les 2

tangentes extrêmes de la travée de gauche, puis celles de la

travée de droite, comme ci-dessus, au moyen des droites

G et D de chaque travée.
Considérons les deux sections de la travée de gauche

comme figées. La construction reprendra les propriétés de

la travée de droite, articulée sur deux appuis élastiques.
Si alors nous faisons agir les forces G et D de cette travée,

nous obtenons des efforts dans toute la construction. Nous

agissons ensuite symétriquement pour la travée de droite
et annulons ses 2 angles, égaux, de déformation.

Les deux actions, exécutées simultanément, donneront

pour résultat la somme de ces efforts partiels et annuleront

tous les angles de déformation, soit des éléments

de poutre entre eux, soit de ces éléments avec la pile
envisagée.

Nous ' trouverons alors, en reprenant les formules 17

et 18

Ga= t—j i—^7i T ¦ \±AK\cm
[ga da ea + gg dg eg] '¦ J

1
Db

[gb d0 eb + ga dd ed]
â h]cm

équation que nous appliquons successivement aux deux

travées adjacentes à la pile considérée.

2° Influence de déplacement des appuis. Si le bas de

la pile p subit un mouvement dans le plan de symétrie
longitudinal de la construction, le déplacement produit au

point A peut se décomposer en 3 éléments.

a) un déplacement simple suivant l'axe de la travée l ;

bl un déplacement simple vertical ;

c) une rotation simple.

Au moyen de cette décomposition, nous nous retrouvons

exactement dans les conditions dues à la dilatation
des travées ou des piles, du moins pour ce qui concerne les

deux déplacements a) et b). Quant à la rotation simple du

point A, nous l'exprimons, pour chaque travée adjacente,
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en fonction de la portée horizontale de cette travée, et le

segment, mesuré sur les verticales vg de la travée de gauche

et vd de celle de droite, s'ajoute au déplacement
vertical ou s'en soustrait pour permettre l'application des

formules 21.

Les efforts dus au déplacement dans le sens des travées

adjacentes se calculent séparément pour chacune des 2

travées et les résultats s'ajoutent ensuite.

3° Influence du freinage des trains. Lorsqu'un train
fait usage de ses freins, chaque véhicule est soumis à un
moment de renversement dans le sens de la course. La

force horizontale, qui agit ainsi dans le centre de gravité
du véhicule, se combine avec son poids et remplace son

action verticale par une oblique. Comme la force d'inertie
mise en action de ce fait ne dépend pas seulement du poids

du véhicule, mais encore de l'action des freins, ces forces

obliques ne seront pas parallèles. Si nous les décomposons

à la hauteur de l'axe de la poutre, le polygone funiculaire
des composantes verticales ne sera pas seulement déplacé

contre l'avant du train, mais encore déformé.

Le déplacement du polygone funiculaire est sans grand

intérêt, puisque la position du train est variable. Quant à

sa déformation, que nous ne pouvons du reste pas

déterminer, elle est de peu d'importance sur la construction.

Elle pourrait toutefois augmenter la charge statique, si,

sur la travée considérée, derrière des voitures non pourvues

de freins, s'en trouvaient qui peuvent freiner. Le

nombre de forces verticales agissant sur l'axe augmenterait
du fait de leur convergence, et d'autant plus que le train
serait plus au-dessus de l'axe.

Nous laissons de côté une action si indéterminée, du

reste nulle dans notre cas puisque nous supposons, dans le

calcul de la force F de freinage, que tous les axes freinent

proportionnellement à leur poids. Nous ne considérons dès

lors plus que les forces F1 dans l'axe de la travée.

Une légère déformation du polygone funiculaire est

encore occasionnée par le fait que les véhicules divisent leur
action entre leurs essieux, ce qui fait que, si la résultante

verticale reste égale, sa répartition varie suivantlaforce.de

freinage. Les côtés du polygone funiculaire reliant un véhicule

au suivant resteront donc seuls invariables, abstraction

faite du déplacement parallèle. Entre eux se déformeront

un peu les côtés reliant les charges successives de la
voiture elle-même, car la résultante tourne autour du centre
de gravité pendant que les actions directes pivotent autour
des points de contact des roues sur le rail. Cette déformation

est.insignifiante dès que plusieurs véhicules peuvent
se trouver ensemble sur la travée.

La force F1 se répartit tout le long de l'axe, d'une
manière que nous supposerons uniforme, quoique ce ne soit

pas le cas en réalité.
Pour déterminer la réaction W, nous supposons

l'articulation B remplacée par un chariot. La force F' se reporte
ainsi entièrement sur A et détermine suivant A R un
déplacement A AB de Bb par rapport à Bd, d'une valeur

AAB %F' Ah + Ftggygfg

où A h est égal à gt 1$ (voir Eq. 3), même pour l'axe

courbe.
En annulant le déplacement AAR par l'action des forces

W', nous trouvons comme ci-dessus

Ft
soit

22)

H-çâh

W F*

9<j ¦ Va ¦ fg\

1

Wt À,

q àh-\- gg yg fg

À

Nous aurons en définitive, comme réaction en A, la force

de compression — F( + W1 et, en R, la force de tension

-\- Wc, toutes deux dirigées contre la force F1 de freinage.

Les réactions W{ et F' ne suffisent pas à établir l'équilibre

lorsque l'axe de la travée est courbe. Elles agissent

suivant la corde A R, tandis que les actions de freinage se

répartissent le long de l'axe courbe. Supposons maintenant

pour simplifier, cette répartition symétrique encore, mais

telle que la résultante Ff des forces élémentaires A F passe
'

par le centre de gravité élastique de la travée, centre de

l'ellipse gt.
Le moment statique de F1 sur la corde A R sera Ft. yt

(fig. 12) et sera équilibré par 2 forces verticales A1 et Rt,

inverses et égales

A1 Rt Ft. Vi
l

Pour être stricts, nous aurions déjà dû faire intervenir
ces forces dans le calcul de We, mais leur action sur sa

valeur est négligeable, vu leur faible rapport à Ft.

U ne nous reste plus maintenant qu'à déterminer les

angles de déformation produits en A et R par les forces

Ft, Wc, A1 et R1. Le moment fléchissant total de ces forces,

autour de R\ étant nul, nous pouvons considérer la travée l
comme encastrée en ce point et calculer ainsi les déformations

propres produites en A.

La force Ft, qui agit dans le centre de l'ellipse de la

travée, ne produit aucune rotation en A, quoiqu'elle n'agisse

pas directement sur Ai.
Les déplacements horizontaux et verticaux en A étant

simples, ils sont les sommes algébriques des déplacements

horizontaux et verticaux des différents points d'application
des forces A F sous l'influence des A F correspondantes.

Dans notre hypothèse, le déplacement A h est donc bien

la moitié du déplacement que produirait F1 agissant
directement sur A. Quant au déplacement vertical simple A v, il
peut être négligé 2.

1 En effet, la travée étant supposée symétrique par rapport à l'axe
vertical, si nous considérons son axe courbe A B divisé en segments
égaux, sur deux segments symétriques agissent des forces d .F égales
et confondues dans la même direction parallèle à A JB. Ces deux forces
d F donnent ensemble en A le même angle de rotation qu'une seule
d'entre elles, agissant directement sur A. Nous aurons donc, comme
rotation définitive, celle que produirait en A la force 1/s ^> agissant
sur À, et passant par le centre de gt, c'est-à-dire une rotation nulle.

3 Nous pouvons le décomposer en 3 éléments : le déplacement
produit par les forces / F agissant sur la moitié droite de la travée,
le déplacement produit dans la moitié droite par les forces IF agissant

sur la moitié gauche, et enfin le déplacement produit dans la
moitié gauche par les forces agissant sur elle. La première et la
troisième de ces composantes s'annulent à peu près, d'autant plus que
l'axe est moins courbe ; quant à la seconde, elle est très petite puisque
la force '/s F passe par le centre de y( et que l'ellipse est peu oblique,
dans une moitié d'arc.
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(Fig. 7)

La déformation due à la réaction A1 se déduit de la

Fig. 7. Nous trouvons ainsi, pour la travée encastrée en B,

une rotation et un déplacement vertical. Nous faisons

abstraction du déplacement horizontal.

A'va=At. gt.ka. Pa.

La force R1 donnera pareillement

A' Vb Rl. gt. kb pb.

Nous ajoutons ces valeurs aux déplacements produits
en A et R par les forces Wc et [— F + W]1 et nous

trouvons, pour les déformations propres de la poutre, les

segments représentatifs

Ava [—F+ W]t.gi.yt.ka—At.gt.ka.pa (en-A)

Avb= Wt gi yi kb — Bt gt kb pb (en R)

Dans ces équations, les forces — F -\- W et J sont

négatives, Wet S positives, si A est à l'avant du train, ce

que nous supposons. Ces valeurs Ava &tàvb sont, à la
distance l, la mesure des angles q>b et cpa de déformation de la

poutre aux extrémités R et A glissant sur la droite A R.

Nous possédons maintenant les valeurs nécessaires à la
détermination des angles, nous ne faisons que rappeler ici
les formules déduites au chapitre III.

Nous aurons donc

Angle de déformation en A (avant du train).
Influences

Avb= Wt. .gt.yikb—Rt.gi.kb.pb (pfffiawe) des réaotionssr la travée

rjga At. gg rg ta (positive) A (—) sur l'appui g

ygb R*. gd rd td (positive) R (+) sur l'appui d
'

yjgw=[—F+W]ggyg, sa (négaiH&) —F+ Wsr l'appui g

i/fgw— W gdyd sd (négative) W sur l'appui d.

La somme algébrique de ces. 5 valeurs donne le segment
relatif à la déformation en A. Nous tüouverons au point R

Angle de déformation en R (arriére du train).
Influences

Ava=[—F-\-W}giyika—AtgvkalPa(lÉ$aVÉ) desn&ctions sr latravée

ijdb R* gd rd. tb (négative) B.(4»):gur l'appui d

içda A1 gg rg tg (négative) A (—) sur l'appui g

rj'dw'= Wt gd yd sb (positive) W sur l'appui d

rj"du)-= [— F -\- W]ggyg sg (positive) —F+ Wsrl'appui g

La somme algébrique de ces valeurs donne le
segment relatif à l'angle de déformation en B. Ayant calculé
ainsi les deux angles, nous trouvons, comme ci-dessus, les

forces G et D par les formules 17 et 18 où yaet yb sont à

remplacer par les segments trouvés. Le facteur w n'y intervient

plus.
Nous avons fait ce développement spécialement pour les

forces de freinage, parce que les formules se montrent ainsi

complètes. Les mêmes formules serviront à déterminer les

angles 6g et dd de déformation dus soit à une dilatation,
positive ou négative, d'une travée, soit à un déplacement
simple d'une tête de pile dans Taxe d'une travée. Les forces

Wt ont été déterminées dans les N°* 1 et 2, quant à F1,

A1 et B(, elles font défaut.

S'il s'agissait de faire le calcul pour des forces biaises ou

horizontales autres que le freinage, par exemple le vent sur

une ferme de toiture, on ferait comme pour ces dernières

la décomposition à la hauteur de l'axe et le calcul serait dès

lors identique. Si l'effort s'exerçait sur un montant, on
calculerait les déformations du montant supposé libre et l'on

agirait comme en cas de déplacement d'une pile.

IX. POINTS FIXES

Traitant le cas général de poutre continue sur appuis

élastiques, nous avons vu que chacune des quatre actions

transmises par la travée à un appui, g par exemple, y

provoque de la part de ses éléments, la travée et la pile, deux

réactions dont on peut déterminer les lignes d'action par
l'intermédiaire des ellipses gt et gp. Comme nous n'avons

posé aucune condition à ces ellipses partielles, ces lignes
d'action sont parfaitement distinctes les unes des autres.

Supposons maintenant que, l'élasticité longitudinale de

la pile étant négligeable, l'ellipse finale de son sommet se

réduise à une droite verticale, il en sera alors de même de

l'ellipse gg dont'l'axe horizontal s'annulera, son centre se

trouvant sur l'axe vertical de la pile.
Dans ces conditions, pour une force extérieure

quelconque, le point Ag aura son centre de rotation sur cet axe

vertical, à une hauteur dépendant seulement du point
d'intersection de la force extérieure avec l'axe restant. Si la

travée t est encastrée, élastiquement ou non, à son extrémité

gauche, la réaction qu'elle fournira devra avoir son

antipôle sur l'axe vertical par A ; cette réaction passera
donc par l'antipôle de l'axe par rapport à l'ellipse gt du

point At. Cet antipôle, où se coupent toutes les réactions

opposées par la travée t aux actions venant de droite, se

nomme un point fixe de cette travée. La condition de son

existence est la rigidité longitudinale de la pile p.
Il est clair qu'un groupe de réactions, ayant passé par

un point fixe, se recroiseront dans chacune des travées
suivantes en des points invariables, même quand ces travées

ne posséderaient pas par elles-mêmes de points fixes
véritables.

Ces points fixes deviennent des points d'inflexion fixes,
s'ils tombent sur l'axe de la poutre, car pour toute force

agissant sur une autre travée, la ligne de pression coupe
l'axe en ce point et en fait invariablement un point
d'inflexion de la ligne élastique.

U y a deux catégories de points fixes. Le professeur
"W. Ritter les désigne par I et K suivant qu'ils se rapportent

à des actions venant de droite ou de gauche. Ils se

déterminent aisément dans les poutres continues sur appuis
verticalement rigides, au moyen de la ligne élastique (voir
W. Ritter, 111, Der continuirliche Balken). Ils servent alors

à la détermination des lignes de fermeture des surfaces de

moments. Ha ont de même été signalés dans l'arc continu

sur appuis rigides (voir H. Lossier, L'arc continu). Mais là,
comme dans la poutre continue, ils disparaissent dès que
la pile correspondante présente une élasticité longitudinale.
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CONCLUSION

Comme nous l'avons fait remarquer au commencement
de cette étude, la méthode qui vient d'être exposée ne constitue

pas une simplification du calcul courant, elle né saurait

donc lui être préférée dans les cas ordinaires, niais elle

pourra être utile dans les problèmes rendus difficiles parla
continuité et l'encastrement.

Comme Tlans l'arc, nous aurons besoin de polygones
funiculaires pour la détermination des ellipses d'élasticité
des diverses pièces, si du moins ces ellipses ne sont pas
données à priori, comme c'est le cas pour des pièces droites
et de section constante. Ces ellipses trouvées, nous avons
encore à les combiner successivement pour obtenir les

ellipses de droite ou de gauche des appuis. Pour ce qui
concerne ces derniers éléments, nous renvoyons simplement
au traité de l'arc continu, où ils ont été recherchés et
exposés avec toute la clarté désirable par M. Henry Lossier,
professeur agrégé à l'Ecole polytechnique fédérale, et nous
profitons de l'occasion pour le remercier ici de l'aide et des

conseils qu'ils nous a donnés pour ce travail.
(A suivre/.

Etude sur la reconstitution et la restauration

du temple de St-Gervais, à Genève.

Par M. Robert MORITZ.

fSuite} \.

La pierre de taille employée pour la construction des

piliers et des nervures des voûtes est la molasse du lac. Les

meneaux des fenêtres étaient en grès. Les voûtes sont en

tuf, celles des bas-côtés en briques semblables à celles des

mFH

m.

i «a«9rpWf-

Mi ..>¦«.j>.
i«.:

i mm
\ m* Mim

.7-^Sk

m%
2*1

Fig. 4. — Vestiges des bases des grosses colonnes de la nef.
(Trouvées sous l'ancienne chaire).

1 Voir N" du 25 mars 1905, page 77.

yV-fAf

V

ê.*um W<w*"-

Fig Clef de voûte (chœur).

voûtes des couloirs de la crypte. La face principale et les
contreforts sont en maçonnerie composée de boulets, de

briques et d'autres matériaux ; ils sont revêtus à l'extérieur
en molasse du lac, sauf quelques assises des soubassements

qui sont en roche. Les faces latérales de la nef et du choeur,
ainsi que la face postérieure, sont appareillées en grosses

% t
*¦«*>

¦éf:

Fig. 6. Cul-de-lampe (chœur).

briques semblables à celles que l'on trouve à l'intérieur des

couloirs de la crypte, à la face Nord du clocher et dans la

cage de l'escalier. Sous la corniche du toit, une frise constituée

par ces mêmes briques court autour de ces trois façades.
Des frises d'un dessin semblable se retrouvent dans presque
tous les édifices de cette époque à Genève. Sur la face Nord
du clocher, une retranche de briques indique l'appentis
d'un toit antérieur à celui de l'église actuelle.

Les socles des bases des grosses colonnes de la nef son-
à plans octogonaux, de même que la plinthe. Elle est coût
ronnée dans le haut et dans le bas par un boudin à profil
circulaire, surmonté d'un listel. Le boudin du bas est de

plus grande dimension et court dans la première scotie de
la plinthe. La base de la colonne contre laquelle était adossée

la chaire avant les récents travaux de restauration, est
la seule dont on ait retrouvé des vestiges du profil. Les
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