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Méthode générale de calcul de la poutre continue

sur appuis élastiques.

Par M\j A. PARIS, ingénieur civil.
Privat-Doeent à l'Université de Lausanne.

Les méthodes graphiques de calcul de la poutre continue,

telles qu'elles ont été développées par le professeur
D1'W. Ritter dans son ouvrage «Der continuirliche Balken»,
font appel soit à la ligne élastique de la poutre, soit aux

ellipses d'élasticité de ses sections successives. Ces deux

méthodes, fort différentes l'une de l'autre, ne peuvent se

combiner pour permettre le calcul de cas intermédiaires,
tenant des deux types principaux auxquels elles ont été

appliquées.
La première s'adapte quand les déformations élastiques

des piles se bornent à un changement d'orientation de la
section d'appui (elastische Drehung). La seconde, qui
considère des déplacements élastiques "verticaux du sommet

des piles, ne peut tenir compte d'un encastrement, et

suppose la poutre reposant librement sur ses appuis.
La première méthode, d'un usage courant et commode,

permet de résoudre, avec la sécurité voulue-, le plus grand
nombre des problèmes de poutres continues que la
construction peut soulever, mais il n'en restait pas moins
intéressant de rechercher une méthode générale, tenant compte
de toutes les conditions du problème, et de se mettre en état

d'appliquer, d'une manière intégrale et facile, l'élégante
méthode de l'ellipse d'élasticité au cas de la poutre fléchie.

Dans le but de traiter le problème d'une façon tout à

fait.générale, nous avons préféré, plutôt que de nous borner
à des conditions spéciales, tenir compte de l'élasticité
entière des divers éléments de la construction et faire
intervenir, de ce fait, des réactions obliques.

Pour résoudre la question simplement, nous considérons

tour à tour chaque élément de la construction pour lui-
même et ne faisons intervenir les autres éléments dans ce

calcul partiel que pour les conditions d'appui qu'ils déter-.

minent dans la pièce envisagée.
Le calcul se ramène ainsi, pour chaque élément, à celui

d'une travée simple reposant sur des appuis dont l'élasti¬

cité est déterminée par une ellipse correspondante.
Nous calculons en premier lieu cette travée comme

reposant librement sur ses appuis. Nous déterminons ensuite

les déformations relatives dans les sections d'appuis et nous

les annulons sans changer l'état d'équilibre général du

système. Cela nous donne les moments d'encastrement

engendrés par la continuité des parties „

Puis, en envisageant les réactions diverses des appuis,

nous trouvons encore les actions réciproques de la travée

considérée et des parties adjacentes.
Nous sommes ainsi en état de calculer tous les efforts

généraux qui agissent dans la construction, qu'ils soient

dus à des forces verticales ou horizontales situées dans le

plan de symétrie longitudinal de la travée, à l'action de la

température ou du freinage des trains, ou encore à des

déplacements des appuis.
Et, pour cela, nous n'avons naturellement pas besoin de

prendre comme travée l'espace total entre deux appuis. La

travée peut, au besoin, être limitée par deux sections

quelconques de cet intervalle, comme elle le serait dans une

poutre articulée Gerber. Elle ne peut, toutefois, être plus

longue, car son action verticale sur les appuis deviendrait

statiquement indéterminée, dès qu'une pile se trouverait
entre ses extrémités. Il est dès lors plus naturel de limiter
la travée exactement sur les piles, s'il y en a.

Dans les déformations, nous considérons deux composantes

essentielles :

1° La rotation simple, c'est-à-dire une rotation du point
considéré sur lui-même, sans déplacement linéaire ;

2° Le déplacement simple, c'est-à-dire un déplacement

sans rotation, ou rotation autour d'un centre infiniment
éloigné. •

Nous conserverons dans la suite ces deux termes avec

ces déterminations précises.
De plus, nous considérons comme négatives les forces

extérieures verticales descendantes, qu'elles soient le fait
de charges directes ou transmises ; ainsi que les paires de

forces W axiales lorsqu'elles compriment la travée
considérée.

Nous dirons enfin que la travée A B est supportée, si le

centre de courbure de son axe est en dessous. Nous la

dirons suspendue si le centre se trouve en dessus de l'axe.
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Epure de poutre continue sur appuis élastiques
Passerelle métallique sur le canal de l'Aisne à la Marne, à Reims. — Echelle 1 : 100.

I. RÉACTIONS VERTICALES

L'épure qui accompagne cet exposé représente une
travée horizontale A B encastrée sur des appuis obliques.
Nous supposons connue l'ellipse d'élasticité gt de la travée
A B considérée pour elle-même, ainsi que celles de ses points
d'appuis g et d. Ces deux dernières, gg et ga, sont les ellipses

de gauche et de droitel de l'ensemble de la construction

aboutissant à ces appuis. Dans notre cas, cet ensemble
se borne à deux montants inclinés, encastrés dans le sol.

1 Voir Henry Lossier. L'arc continu sur appui* rigide*.

Nous supposons d'abord les encastrements A et B
remplacés par des articulations. La construction se transforme
alors en arc à 2 articulations, A et B, dont nous étudierons
l'état d'équilibre.

Les réactions verticales A( et B( de la travée sont
connues. Elles se déduisent des conditions d'équilibre statique.
Leur expression est

JUL m _ pt JîfL
l " lO A1 P*

où xa et Xb sont les abscisses du point d'application -de la
charge P, comptées de A et de B,
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Epure de poutre continue sur appuis élastiques

Passerelle métallique sur le canal de l'Aisne à la Morne, à Reims. — Echelle 1 : 100.

La travée A B se déforme sous PinÖnence des 3 forces
P1, A1 et S*. Mais l'angle de déformation aux appuis nous
intéresse seul. La flèche de la poutre elle-même est sans
intérêt pour les développements ultérieurs..

Pour déterminer la ligne d'influence des angles a et 3

de déformation de la poutre en A et B, nous soumettons la
travée A B successivement à. l'action de deux surfaces
triangulaires de moments k3B3 et A'3 B'3 L Ces surfaces
représentent l'effet, dans notre travée articulée, de moments fté-

1 La surface A'-, R', se rapporte à l'appui B. Vu la symétrie de
notre exemple, elle n'est pas figurée sur l'épure..

chissanfs agissant soit en A, soit en B. Les lignes élastiques
dues à ces moments sont les lignes d'influence des angles
de déformation dus à la force P.

Pour trouver ces lignes élastiques Ak JB4, nous devons

d'abord réduire les ordonnées des surfaces de moments

As B3 et A s B"3 dans le rapport
Ic_

li '

ob lo est un moment d'inertie arbitraire mais constant, et

li le moment d'inertie variable de la travée. Les courbes

-r-, sont indiquées figure 3.réduites,
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Pour porter la surface réduite de moments en ordonnées

dans le polygone des forcés de distance polaire e (fig. 5),

nous avons adopté une base de réduction r. Nos lignes
élastiques A4 Bi ressortent avec un facteur d'agrandissement
w que nous devons déterminer.

Si E est le coefficient d'élasticité de la matière (toutes
les pièces étant réduites au même coefficient E constant)

et H\ la distance polaire des surfaces de moments, nous

avons (v. Ritter III, chap. I) :

I E-lc
2) u> -0=

où r et e sont des longueurs à prendre à l'échelle et en

centimètres, unité prise dans I et E ; w est alors un nombre

pur.
Si a est l'ordonnée, mesurée sous P, de la ligne élastique

due au moment Ma (surface A3 B3) et que a. soit l'angle de

déformation en A sous l'influence de P{, nous aurons,

d'après le théorème de Maxwell, et en supposant P1 ic,
valeur prise pour l'épure

PA-a=Ma- a.

Pour distinguer entre les valeurs réelles des déformations

et celles portées au dessin et affectées du coefficient

m, nous mettrons désormais ces dernières entre parenthèses

: (a) w a

et notre équation devient

pt (a) Ma(a).
Si nous posons

(a) (a') : l .et Ma Bt0. m,

nous aurons :

d'où

(a')

P* (a)

Pt (a) l
H<n. m

Ba m
(«O

l

(&')
Pt (b) l
H*n m

où Pf est supposé égal à 1*.

IL REACTIONS HORIZONTALES

A côté des deux réactions verticales trouvées, nous avons

encore à déterminer, dans notre arc à deux articulations,
la réaction W, dite horizontale, qui passe par les deux

tourillons.

Dans deux cas, toutefois, cette réaction W fait défaut :

1° Lorsque, les ellipses d'élasticité des appuis et de la

travée n'étant pas obliques entre elles, les 3 axes horizontaux

sont de plus sur une même droite. Dans ce cas, les

déplacements des appuis A et P sous l'influence d'une

force P1, verticale, sont aussi verticaux.
2° Lorsque l'un des appuis ne peut supporter de réaction

horizontale, grâce à la présence de chariots à rouleaux.

Dans ce cas, les ellipses d'appuis dégénèrent, puisqu'elles

donnent des déplacements infinis pour certaines forces

finies.
Nous laissons de côté ces deux cas particuliers, très

fréquents du reste, surtout le second, et supposons le cas

général d'ellipses obliques aux appuis. La paire de réactions

opposées W1, située dans la ligne A B, se fait équilibre

à elle-même. Elle n'est horizontale que pour autant que la

droite A B l'est aussi. Pour la déterminer, nous devons

considérer les 3 actions suivantes :

1° Action des forces verticales A1 et B1 sur les appuis ;

2° Action des forces W£ sur les appuis ;

3° Action des forces Wc sur la poutre.

Pour être complet, nous aurions encore dû faire

intervenir, en cas de poutre courbe, l'action du groupe de forces

P£, A1 et B1 sur la longueur de la corde A B, mais, outre

que cette action est négligeable, puisque nous nous occupons

de poutres continues et non pas d'arcs proprement

dits, de plus elle remplacerait dans l'expression de W* la

fonction linéaire par une ligne courbe. L'exactitude gagnerait

trop peu à cette complication.
Toutefois, nous indiquerons brièvement la construction

de cette déformation.
Si nous considérons la surface limitée par l'axe courbe

de la poutre et sa corde A B, nous y trouvons la surface de

moments déterminée par la paire de forces W. En réduisant

h
cette surface dans le rapport-p-, dont nous nous sommes

servis pour les lignes élastiques AiBi, nous obtenons une

surface réduite, courbe de charge dont le polygone funiculaire

représente la ligne élastique due à W, c'est-à-dire la

ligne d'influence des allongements de A B sous l'action des

charges verticales Pc.

Mais nous faisons abstraction de cette déformation et

nous nous bornons aux trois premières.

Nommons (fig. I)1 A* et B* les antipôles des verticales A

et B par rapport aux ellipses gg et gd ; Wg et W*d ceux de

la direction A B des forces W par rapport à ces mêmes

ellipses et W* l'antipôle de W par rapport à l'ellipse gt de la

travée. Les bras de levier de ces points étant donnés dans

l'épure, nous aurons :

1° Action des forces verticales A1 et B1 sur les appuis.

Supposons la construction transformée en pont console par
la présence d'un chariot en A en place d'une articulation,
et soient A A et A B les déplacements, suivant A B, de A

et B

J A At ga rg hg A B B« gd rd hd (fig. 1)

où A1 et B1 sont négatifs.
Le raccourcissement â AB de la distance A B des

appuis sera

AAB=zAA + JB — At gg rg hg + Bt gd rd hd

valeur ordinairement négative.
2° Action dee forces W1 sur les appuis. La figure 1 nous

donne pour ce déplacement.

AAB=W'[gg.yg.fg + gd.yd. |].
3° Action des forces W sur la poutre. Nous nommerons

Wc â h cette action dont l'expression varie suivant la forme

de la poutre. Nous avons les deux formules

A h gt i«8 si l'axe est droit,. •

A h — gi yi f si l'axe est courbe.3) (fig- 7)

1 L'ellipse gd n'étant pas figurée, vu la symétrie, les points B"

et W'd manquent dans l'épure.
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Dans les deux expressions (3), comme dans celles sous
1° et 2°, les signes des termes sont faciles à déterminer. Le

signe de W{ lui-même est donné par le fait qu'un
raccourcissement J AB correspond à une force WJ de compression,
tandis qu'un allongement provoque une force de tension.

Il se peut faire, dans des cas très particuliers, que les
réactions A( et B1, isolées, donnent à W des signes différents.
Il n'y aura aucune difficulté à les reconnaître.

Si nous réunissons les résultats, nous trouvons

Al 9a ¦ >-g -hg + B* gd rd hd W« (gg yu fu

-f ga ya fd + J it)

où J /i a l'une des valeurs (3).
Si nous posons pour abréger

À — 9o ¦ Vg ¦ fu + 9d ¦ 'Jd fd + J h

r1 9a ¦ ra • ha v — 9d ¦ m ¦ hd

nous trouvons

/ \\'t=p. At + v Bt

ou bien, en remplaçant A' et B1 par leur valeur

i)

Wt — Ar-At/ Bt

\A.^l+A.E!l\ PtL / i + / i ] B

ce qui donne pour W1 une fonction linéaire d'x\

(Fig. 8)

P1 étantLes rapports -A et—j-sont des nombres purs.

négatif (force verticale descendante), A1 et B1 le seront aussi
et ces deux rapports seront positifs si Wf doit être une
compression.

La présence des réactions W1 détermine en A et B, soit
aux appuis, soit à la poutre, des angles de déformation.
Pour la poutre, c'est l'angle tp (fig. 7). Cet angle est égal à

la rotation que doit effectuer l'extrémité P, supposée encastrée,

pour ramener, après la déformation, le point A' sur
la droite A B.

Nous avons
A Va

6) Ç>b l J v» =WAg(. yi. ka.

Cette déformation est nulle dans le cas d'une poutre
droite. Généralement la travée sera assez symétrique pour
qu'on puisse, sans commettre d'erreur notable, prendre

ka ki, -s- l, nous aurons dès lors

A va ~ A vi, — 4 i>. (A suivre)'.

La traversée des Alpes bernoises.

Répoyises de la Commission internationale d'experts au
questionnaire du Comité d'initiative pour la construction
du Chemin de fer du Lötschberg. (Extrait).

(Suite)l.

TROISIÈME QUESTION

Le projet N° I élaboré par MM. Hittmann et Greulich

pour la ligne de Frutigen à Brigue passant sous le Lötschberg,

remplit-il les conditions voulues, ou quels sont les

inconvénients qu'il présente?

Le projet N° 1 de MM. Hittmann et Greulich2 traverse
le Lötschberg par un tunnel de 13 520 m., dont le point
culminant est à 1242,88 m. La déclivité maximum est de

27,5%0, le rayon minimum des courbes de 300 m., la

longueur réelle de la ligne entre Frutigen et Brigue de

59 480 m. Sur la longueur totale exploitée de 59144 m.,
36103 m. (plus du 61 °/0du total et du 80% de la longueur
des deux rampes d'accès au grand tunnel) sont en pentes
de 25 à 27,5°/oo- Les courbes de 300 m. de rayon
représentent presque 33°/0 de la longueur totale et 43°/0 de celle
des rampes ; le rayon moyen de courbure est 312 m. Il y a

sur la ligne 33 tunnels, non compris celui de faite, dont
les longueurs sont inférieures à 2000 m., et ils représentent
22,5 % des deux rampes d'accès.

Le devis, calculé avec grand soin par les auteurs, se

monte à Fr. 69500000. Il donne toutefois lieu aux
observations suivantes des experts :

Le coût de Fr. 792 par mètre, prévu .pour les tunnels
des lignes d'accès, n'est pas suffisant (Fr. 845 au Gothard,
Fr. 945 à l'Arlberg); celui du grand tunnel de Fr. 1997

pour infrastructure, installations et ballastage, est trop bas,

bien que l'exécution de la galerie parallèle n'y soit pas

comprise.
D'après le rapport géologique de MM. von Fellenberg,

Kissling et Schardt, la plus grande partie du tunnel
se. trouvera dans les granits et les gneiss, et, dans le massif

central, on rencontrera le granit de Gastern, très difficile
à percer à cause de la présence du porphyre. A partir de

l'entrée Nord et avant de passer sous le Gasternboden, on
traversera des calcaires où l'on peut prévoir une venue
d'eau de 300 à 400 litres par seconde, qui ne tombera que
dans la suite à un régime régulier de 250 litres environ.

Au Simplon, le coût du tunnel à simple voie, sans galerie

parallèle, était évalué à Fr. 2272 par mètre et l'entreprise
a reçu une majoration de prix de Fr. 4000 000 pour
compenser les excédents dans la dépense du percement. Il n'est
donc pas exagéré de porter le coût prévu au devis à Fr. 2200

par mètre, soit au total à Fr. 2 750000.

Par contre, en ce qui concerne le coût du matériel
roulant, le devis de MM. Hittmann et Greulich peut être réduit
de Fr. 1 000000. Il est d'usage de compter pour ce poste

1 Voir N» du 10 février 1905, page 36.
s Voir N° du 25 juin 1003, page 161.
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