Zeitschrift: Bulletin technique de la Suisse romande

Band: 31 (1905)

Heft: 23

Artikel: Irrigation pérenne des bassins de la moyenne Egypte

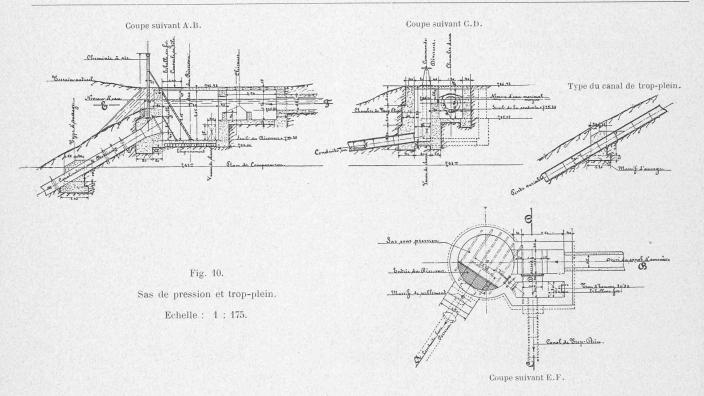
Autor: Béchara, Edm.

DOI: https://doi.org/10.5169/seals-24888

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation


L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 29.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Conduite sous pression. — Cette canalisation est constituée par des tuyaux en tôle d'acier rivés de 60 cm. de diamètre, boulonnés les uns aux autres au moyen de deux brides en fer doux.

La conduite sous pression est posée dans la terre ; elle se joindra à l'ancienne conduite au km. 0,711, à l'emplacement de l'Y prévu en son temps ; mais une conduite parallèle et indépendante, de 60 cm. de diamètre intérieur, sera posée jusqu'à l'usine. Un jeu de vannes logé dans une annexe de l'usine permettra de sortir du circuit l'une ou l'autre des conduites hydrauliques sans interrompre le service à l'usine. Une vanne intercalée à l'Y servira à régler l'apport de chacune des canalisations d'amenée dans la conduite commune.

La longueur totale de la conduite sous pression, mesurée horizontalement entre le sas et l'usine, est de 813 m.; la partie jusqu'à l'Y n'a que 102 m.

Les eaux de la Veveyse de Feygère seront restituées à cette rivière à la cote 641^m,95 ; elles se trouveront ainsi dérivées de la cote 807m,90 (808m,50) à la cote 641m,95 (644m,50), sur une longueur de 2531m,50.

(A suivre).

Irrigation pérenne des Bassins de la Moyenne Egypte.

Par M. Edm. BÉCHARA, ingénieur.

(Suite)1.

Etude hydraulique des canaux et drains.

Le plan coté des hods permet de tracer les canaux sur les crêtes du terrain et les drains dans les dépressions. Un

¹ Voir No du 25 novembre 1905, page 274.

nivellement en long suivant ces tracés donne le profil du sol et permettra ensuite de déterminer les dimensions à donner à ces cours d'eau.

Canaux. — On fixe tout d'abord le niveau des hautes eaux sur le profil longitudinal. Ce niveau doit toujours être de 0^m,25 au-dessus de la plus haute cote du terrain naturel. La pente de l'eau ne doit jamais être supérieure à 0^m,25 par km. Une pente plus accentuée imprimerait à l'eau une grande vitesse, qui endommagerait les digues et causerait beaucoup de dégâts par affouillement. D'autre part, cette pente ne doit pas non plus être inférieure à 0, m05 par km., autrement tout le limon en suspension dans l'eau se déposerait dans le canal et les terres ne recevraient par conséquent qu'une eau peu fertilisante.

Le lit du canal est généralement tracé entre 1 m. et 2^m,50 au-dessous des hautes eaux, suivant l'importance du canal. La digue est arrasée entre 0m,75 et 1m,50 au-dessus des plus hautes eaux. On donne ordinairement une même pente à la digue, aux eaux et au lit.

Ces différents niveaux étant déterminés, il restera à rechercher la largeur du plafond du canal, dont nous avons déjà décrit le profil type.

Considérons un canal destiné à irriguer un nombre nde feddans. La quantité d'eau que doit débiter ce canal par 24 heures sera de $n \times 30 \text{ m}^3$; 30 m³ étant le module d'irrigation établi dans le chapitre précédent. Le débit par

seconde sera :
$$\frac{n \times 30}{86400} = Q.$$

Ayant le débit, on déterminera en première approximation la largeur du canal par la formule de Tadini :

$$l = \frac{Q}{50 \; h \; \sqrt{\; h \; I}}$$
, dans laquelle :

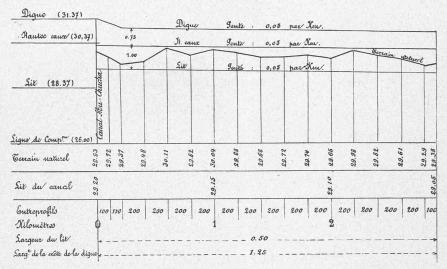


Fig. 5. — Profil en long de la branche Valida du canal Abu-Chucha. Echelles : Longueur, 1 : 30 000. — Hauteur, 1 : 450.

Fig. 6. — Profil transversal de la branche Valida au kilomètre 2 Echelle : 4 : 150.

l = largeur du plafond en mètres. Rappelons que la largeur minimum est de 0^{m} ,50.

Q = débit en mètres cubes par seconde.

h =Profondeur maximum de l'eau en mètres.

I = Pente superficielle de l'eau par mètre courant.

L'examen de cette formule montre qu'il est facile de tirer la valeur de l, qui est la seule inconnue. Or cette valeur de l n'est qu'approximative ; elle nous sert seulement pour restreindre les cas d'indétermination qu'on rencontre dans la vraie formule hydraulique de Manning: $V = C\sqrt{R I}$, où

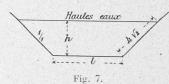
V = la vitesse movenne du courant en mètres,

R =le rayon moyen,

I=la pente superficielle de l'eau par mètre courant,

C = le coefficient de dépense variable avec le rayon moyen, et dont les valeurs sont indiquées dans le tableau ci-dessous.

R	C	R	C	R	C	R	C
0,05	24	0,50	35	2,00	45	6,00	54
0,10	27	0,60	36	2,50	47	7,00	55
0,15	29	0,70	37	3,00	48	8,00	56
0,20	31	0,80	38	3,50	49	9,00	57
0,25	32	0,90	39	4,00	50	10,00	58
0,30	33	1,00	40	4,50	51	12,00	. 60
0,40	34	1,50	43	5,00	52	15,00	63


Considérons le profil de la cunette d'un canal; l nous étant donné par la formule de Tadini, on peut calculer le rayon moyen R, qui représente le rapport de l'aire A du profil au périmètre mouillé P:

$$A = (h + l) h$$

$$P = l + 2 \sqrt{2} h$$

$$= l + 2,83 h$$

$$R = \frac{(h + l) h}{l + 2,83 h}.$$

En introduisant ces éléments dans la formule de Manning, on obtiendra la valeur de la vitesse moyenne V et partant le débit $Q = A \times V$. Si ce débit est égal ou peu supérieur au débit demandé, la valeur de l, déterminée par la formule de Tadini, sera adoptée, mais si le débit calculé par la formule de Manning est inférieur ou trop supérieur au débit cherché, on augmentera où l'on diminuera la valeur de l, en refaisant les mêmes calculs avec la formule de Manning, et ainsi de suite, jusqu'à atteindre le débit voulu.

Un exemple numérique fixera mieux les idées sur ce mode de calcul.

Soit un canal destiné à irriguer une parcelle de $17\,620$ feddans. Le débit par seconde correspondant sera de $\frac{17\,620\times30}{86\,400}=6\,118$ m³.

Supposons $h = 2^{m},00 \text{ et } I = 0,0001.$

La formule de Tadini donnera :

$$l = \frac{6,118}{50 \times 2 \sqrt{\frac{2}{10000}}} = 4^{\text{m}},33.$$

Comme l'on prend en général pour l une valeur quaternaire du mètre, c'est-à-dire que les valeurs de l seront par exemple $2^{\rm m},00$; $2^{\rm m},25$; $2^{\rm m},50$; $2^{\rm m},75$; $3^{\rm m},00$; $3^{\rm m},25$;... etc., nous ferons $l=4^{\rm m},50$ dans notre cas et nous introduirons cette valeur dans la formule de Manning :

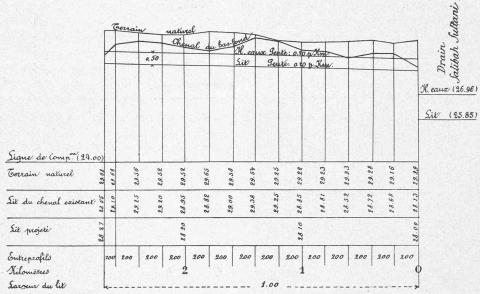


Fig. 8. — Profil en long de la branche Tarchub du drain Salibah Sultani. Echelles: Longueur, 1; 30 000. — Hauteur, 1: 150.

Fig. 9. — Profil transversal de la branche Tarchub au kilomètre 1. Echelle : 4:450.

$$A = (4^{\text{m}},50 + 2) \ 2 = 13,00 \ \text{m}^2.$$

$$P = 4^{\text{m}},50 + 2,83 \ \text{m.} \times 2 = 10,16 \ \text{m}.$$

$$R = \frac{A}{P} = 1,37.$$

Or, dans le tableau des valeurs de C, nous n'avons pas de valeur de C correspondant à R=1,37; il est facile de l'obtenir par interpolation :

$$R = 1,00$$
 $C = 40$ $R = 1,50$ $C = 43$ Pour $R = 1,37$ C sera 42,22.

Par conséquent :
$$V = 42,22 \sqrt{\frac{1,37}{10\ 000}} = 0^{\rm m},49$$
 d'où :

$$Q = A \times V = 13^{\text{m}},00 \times 0^{\text{m}},49 = 6,37 \text{ m}^3.$$

Cette valeur n'étant pas trop supérieure au débit demandé, nous adopterons pour l la valeur de $4^{\rm m}$,50.

La largeur L de la crête des digues est variable avec la largeur l du plafond. Voici les largeurs adoptées par le Cercle.

Drains. — L'eau des canaux est distribuée au moyen de tuyaux en fonte, en grès ou en bois, de 0m,20 de diamètre, placés à travers les digues, à 0^m,25 en contrebas de leur pied. Cette eau s'écoule librement sur le sol par le fait de l'inclinaison naturelle de celui-ci et le recouvre d'une couche de 0^m,10 d'épaisseur environ. Les cultivateurs retiennent cette couche d'eau jusqu'à ce qu'elle ait déposé son limon. Ainsi l'eau pénètre en partie dans le sol et se dirige par des voies souterraines vers les couches les plusbasses des parcelles. La partie qui n'a pas été absorbée ou évaporée, une fois dépourvue de son limon, devient inutile. Elle est alors lâchée pour aller rejoindre, par le fait de la gravitation superficielle, les bas-fonds où sont creusés les drains. Ainsi le drainage est à la fois souterrain et superficiel. Ce double drainage a l'avantage de dissoudre les sels en excès dans le sol et de les entraîner naturellement vers les drains. Il est de fait notoire qu'un terrain dépourvu de drains est irrémédiablement condamné à la stérilité, car les sels qui imprègnent le sol remontent par capillarité à la surface jusqu'à la couvrir d'une blanche efflorescence, et brûlent la récoite.

Le sol ordinaire de l'Egypte absorbe par infiltration une couche d'eau de 0^m,0019 d'épaisseur pendant vingt-quatre heures. Un feddan rejettera donc dans les drains 4200 m² × 0^m,0019 = 8 m³ par vingt-quatre heures. La section des drains devra donc être calculée proportionnellement à la surface des terres à drainer. Les drains, comme il a été dit dans les paragraphes précédents, sont logés dans les talwegs et autant que possible dans les bas-fonds ou chenaux

naturels existants; ils communiquent avec un collecteur général chargé de rejeter les eaux au Nil ou au Bahr Yusef.

Les drains sont, comme les canaux, creusés dans le sol suivant une pente régulière et des talus $^4/_4$. La terre déblayée est jetée des deux côtés de la cunette, dont elle forme des digues accidentelles, car le niveau des eaux s'y trouve toujours en contrebas de celui du sol.

La méthode suivie pour trouver les dimensions des drains est la même que celle des canaux. Le niveau des plus hautes eaux est placé à 0^m,50 au moins au-dessous de la cote du terrain naturel, et la cote du lit est en contrebas de celle des eaux de 0^m,50 à 2 m. suivant l'importance des drains. Le profil type est le même que celui des canaux; ils ne diffèrent que par le rôle des digues, qui, dans les canaux, font partie intégrante du profil, tandis que, dans les drains, elles ne figurent que comme dépôt de déblais.

Ces ouvrages d'art sont généralement construits en maçonnerie de briques, à l'exception de certaines parties qui sont en pierre de taille, telles que les couronnements et les seuils. On a préféré de tout temps en Egypte pour les travaux hydrauliques la construction en briques, qui présente certainement des avantages au point de vue de la facilité du travail et du transport. Le terrain de l'Egypte étant essentiellement argileux, l'entrepreneur peut fabriquer à pied d'œuvre les briques nécessaires à son travail. Les dimensions courantes de la brique sont de $0^{m},24 \times 0^{m},12 \times 0^{m},08$.

Les bains de mortier se composent de 2 parties de chaux et de 3 parties de farine grossière de briques, appelée « homra » dans le pays, qui possède la faculté de rendre la chaux éminemment hydraulique. La chaux est obtenue par la calcination des pierres calcaires extraite des carrières

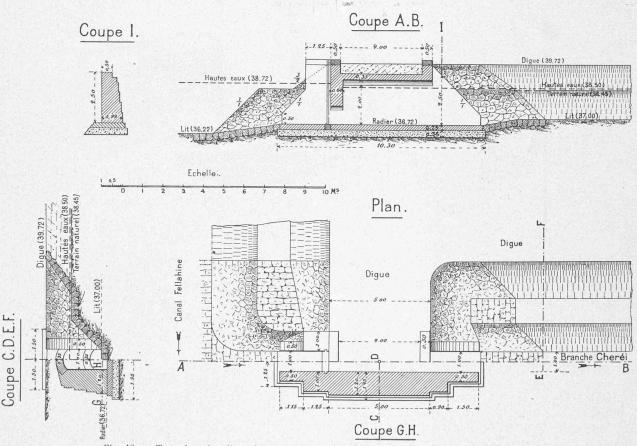


Fig. 10. — Type de prise d'eau à une ouverture (sur la branche Cheréi du canal Fellahine).

Ouvrages d'art.

Le réseau des canaux et drains nécessite un grand nombre d'ouvrages d'art à des fins distinctes. On peut les rapporter à 7 types différents.

- 1º les prises d'eau ;
- 2º les régulateurs ;
- 3º les déversoirs de drainage;
- 4º les stations de pompe;
- 5º les syphons;
- 6º les chutes;
- 7º les ponts-routes.

situées dans les deux chaînes de la vallée du Nil.

Le sol de l'Egypte étant constitué d'alluvions argileux, les fouilles des fondations sont poussées jusqu'à la rencontre de la couche compacte. On assied ordinairement l'ouvrage sur un radier général, comprenant une couche de béton à mortier hydraulique, composé de 2 parties de caillasse dure et de 1 partie de mortier à homra.

Prises d'eau. — Ces ouvrages sont placés en tête de chaque canal et au droit de la digue du cours dont ils dérivent. Pour ne pas interrompre la circulation sur la digue,

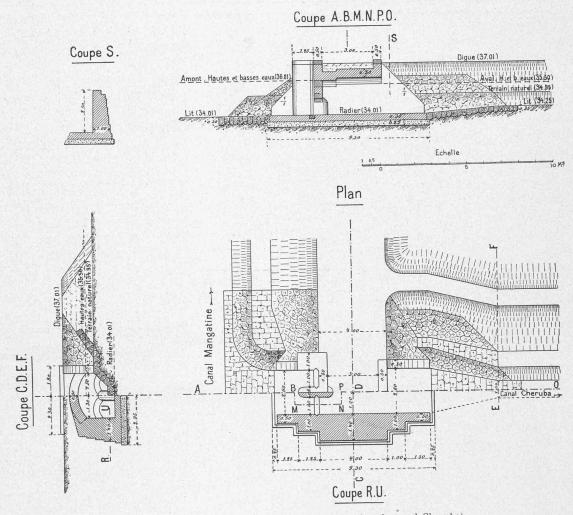


Fig. 41. — Type de prise d'eau à deux ouvertures (sur le canal Cheruba).

la prise affecte la forme d'un pont-route à voûte surbaissée, présentant une ou plusieurs ouvertures suivant l'importance du débit (fig. 10 et 11). En amont et en aval de la prise descendent du parapet une paire de murs en ailes qui se raccordent avec le talus des digues au moyen de perrés construits à sec. Quand l'ouvrage est d'une certaine importance, les murs en ailes d'amont sont remplacés par des murs en retour. Pour éviter les affouillements aux abords des prises, on a prévu des enrochements dans le lit du canal principal et du canal dérivé. Le radier de la prise est toujours en contrebas du lit du canal dérivé, afin d'éviter l'ensablement ou la détérioration, si, pour une cause quelconque, le lit du canal dérivé a été affouillé aux abords de la prise.

La prise est destinée également à régler le débit du canal. Le réglage se fait au moyen de poutrelles mobiles horizontales, ou de vannes mobiles en tôle. Les premières sont employées quand la prise a son ouverture libre supérieure à 1 m. Les poutrelles sont en bois équarris, assez larges pour empêcher le passage libre de l'eau ; celles de la plus grande dimension sont de $3^{\rm m},40 \times 0^{\rm m},25 \times 0^{\rm m},14$. Elles glissent dans des coulisses en fonte encastrées dans des rainures, de chaque côté de l'ouverture et dans la par-

tie amont de l'ouvrage (fig. 13). Ces poutrelles sont montées et descendues directement à bras d'homme, ou bien, dans les prises d'une grande retenue d'eau, au moyen d'un palan métallique muni de moufles (fig. 13). Le palan est mo-

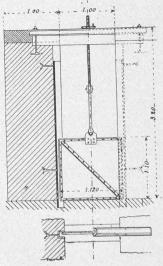


Fig. 12. — Type de vance en tôle. Echelle : 1 : 150.

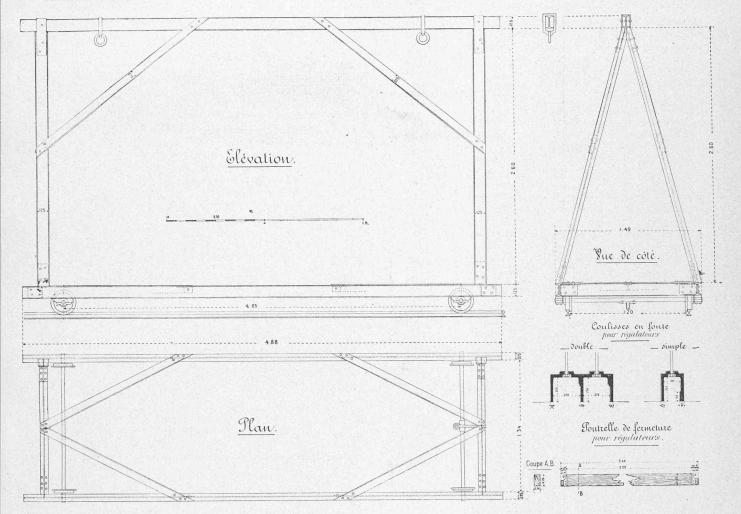


Fig. 43. — Palan métallique roulant pour régulateurs (système breveté E.-H. Day).

bile dans le sens transversal au canal; il repose sur deux rails courant sur une passerelle en bois qui relie les deux murs en retour. Les poutrelles portent à chacune de leurs extrémités un crochet à travers lequel l'éclusier fait passer la corde de manœuvre. La poutrelle du fond repose sur un seuil en pierre de taille encastré dans le radier même afin d'assurer l'étanchéité du système.

Les vannes en tôle sont employées dans les prises des canaux secondaires (fig. 12). Elles ont 1^m,10 de large et glissent dans des coulisses en fonte. Elles s'abaissent ou s'élèvent au moyen d'une vis verticale sans fin de 0^m,05 de diamètre, rattachée par une de ses extrémités à la partie supérieure de la vanne. L'autre extrémité est terminée à la hauteur du parapet par un gros écrou en bronze, posé sur une traverse métallique qui maintient tout le système en suspens. L'écrou tourne au moyen d'une clef mobile. Pour empêcher les cultivateurs de commander à leur gré la prise d'eau, l'écrou est fixé à la traverse métallique par un cadenas.

(A suivre).

Divers.

Tunnel du Simplon.

Extrait du XXVIII^{mo} rapport trimestriel sur l'état des travaux au 30 septembre 1905.

Avancement des travaux.

	Gôté I	Nord.	Côté Sud.			
	Progrès.	Etat fin sept.	Progrès. m.	Etat fin sept.	Total.	
Galerie d'avancement		10376	_	9353	19729	
» parallèle		10165	15	9630	19795	
Abatages	157	10488	63	9281	19769	
Revêtements	300	10502	223	9249	19751	

Côté Nord. — L'Entreprise a enlevé une certaine quantité de tuyaux et quatre turbines avec quatre pompes centrifuges accouplées, qui lui appartenaient. Les portes de sûreté ont été sorties du tunnel, ainsi que la conduite à acétylène de la station du tunnel et les deux turbines avec pompes centrifuges de la galerie parallèle. La grille de séparation a été transportée au km. 10,399. La grue électrique est hors de service.

Le bâtiment des locomobiles a été transformé pour recevoir la station centrale d'électricité.

La galerie parallèle a été terminée le 6 juillet ; la longueur percée du côté Nord est de 10148 m. L'écoulement de l'eau a